Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications

The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 24; H. 11; S. 3729 - 3741
Hauptverfasser: Wu, Yuwei, Jia, Yunde, Li, Peihua, Zhang, Jian, Yuan, Junsong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2015
Schlagworte:
ISSN:1057-7149, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data space, and thus are not directly applicable to the Riemannian manifold. In this paper, we propose a novel sparse representation method of SPD matrices in the data-dependent manifold kernel space. The graph Laplacian is incorporated into the kernel space to better reflect the underlying geometry of SPD matrices. Under the proposed framework, we design two different positive definite kernel functions that can be readily transformed to the corresponding manifold kernels. The sparse representation obtained has more discriminating power. Extensive experimental results demonstrate good performance of manifold kernel sparse codes in image classification, face recognition, and visual tracking.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2015.2451953