Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications

The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data sp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 24; no. 11; pp. 3729 - 3741
Main Authors: Wu, Yuwei, Jia, Yunde, Li, Peihua, Zhang, Jian, Yuan, Junsong
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2015
Subjects:
ISSN:1057-7149, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data space, and thus are not directly applicable to the Riemannian manifold. In this paper, we propose a novel sparse representation method of SPD matrices in the data-dependent manifold kernel space. The graph Laplacian is incorporated into the kernel space to better reflect the underlying geometry of SPD matrices. Under the proposed framework, we design two different positive definite kernel functions that can be readily transformed to the corresponding manifold kernels. The sparse representation obtained has more discriminating power. Extensive experimental results demonstrate good performance of manifold kernel sparse codes in image classification, face recognition, and visual tracking.
AbstractList The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data space, and thus are not directly applicable to the Riemannian manifold. In this paper, we propose a novel sparse representation method of SPD matrices in the data-dependent manifold kernel space. The graph Laplacian is incorporated into the kernel space to better reflect the underlying geometry of SPD matrices. Under the proposed framework, we design two different positive definite kernel functions that can be readily transformed to the corresponding manifold kernels. The sparse representation obtained has more discriminating power. Extensive experimental results demonstrate good performance of manifold kernel sparse codes in image classification, face recognition, and visual tracking.
Author Yunde Jia
Peihua Li
Jian Zhang
Junsong Yuan
Yuwei Wu
Author_xml – sequence: 1
  givenname: Yuwei
  surname: Wu
  fullname: Wu, Yuwei
– sequence: 2
  givenname: Yunde
  surname: Jia
  fullname: Jia, Yunde
– sequence: 3
  givenname: Peihua
  surname: Li
  fullname: Li, Peihua
– sequence: 4
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
– sequence: 5
  givenname: Junsong
  surname: Yuan
  fullname: Yuan, Junsong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26151938$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQQK2KqnyUOxIS8pFLth5_JPERAW1XBRUVOEeOM5GMEifYXqT993i7CwcOnGzJ781Iz4dkz08eCTkBtgBg-sfD8m7BGagFlwq0El_IAWgJBWOS7-U7U1VRgdT75DDGJ8YgY-U3ss9LyLyoD0h7a7zrp6GjfzB4HOj9bEJE-g_ngBF9MslNnk49vV-PI6bgLL2bokvuBYsr7J13Cemt2TxgpMZ3dJkivZjnwdn_bvxOvvZmiHi8O4_I48_rh8vfxc3fX8vLi5vCCtCpsKW2vLW6Z9gJrmzbl50UYDjnpdGVNVLUNZNVK1VXSxCCsYxy2VelbtuqFkfkfDt3DtPzCmNqRhctDoPxOK1iAxWAEmWtWEbPduiqHbFr5uBGE9bNW5cMsC1gwxRjwP4dAdZs0jc5fbNJ3-zSZ6X8oFi3rZeCccNn4ulWdIj4vid_m5K8Fq-GWZAq
CODEN IIPRE4
CitedBy_id crossref_primary_10_3390_math10203810
crossref_primary_10_1109_ACCESS_2022_3170712
crossref_primary_10_1016_j_patcog_2017_10_001
crossref_primary_10_1007_s10044_020_00941_1
crossref_primary_10_1109_ACCESS_2020_3033484
crossref_primary_10_1016_j_ins_2019_12_041
crossref_primary_10_1177_1748302619873995
crossref_primary_10_1016_j_ins_2022_07_077
crossref_primary_10_1109_TMI_2022_3169640
crossref_primary_10_1109_ACCESS_2020_2984941
crossref_primary_10_1155_2021_6663710
crossref_primary_10_1016_j_ijleo_2018_10_092
crossref_primary_10_1109_TII_2024_3385066
crossref_primary_10_1016_j_dsp_2023_104159
crossref_primary_10_1080_2150704X_2018_1519268
crossref_primary_10_1016_j_media_2019_06_012
crossref_primary_10_1080_10618600_2024_2357620
crossref_primary_10_1109_TSMC_2017_2736248
crossref_primary_10_1016_j_eswa_2019_112927
crossref_primary_10_1109_TMM_2018_2844685
crossref_primary_10_1016_j_eswa_2023_119613
crossref_primary_10_1109_ACCESS_2019_2929584
crossref_primary_10_1016_j_patcog_2020_107500
Cites_doi 10.1007/s11263-012-0582-z
10.1016/j.neucom.2012.12.039
10.1109/TPAMI.2013.143
10.1109/TIP.2013.2282078
10.1109/CVPR.2006.68
10.1007/978-3-642-12307-8_32
10.1007/978-3-642-03040-6_91
10.1109/TNNLS.2014.2387383
10.1109/CVPR.2013.233
10.1109/ICCV.2013.202
10.1007/978-3-642-23808-6_21
10.1007/978-3-319-10578-9_20
10.1109/CVPR.2013.307
10.1007/978-1-4612-1128-0
10.1109/CVPR.2008.4587350
10.1109/CVPR.2010.5539917
10.1109/CVPR.2009.5206806
10.1109/TIP.2012.2215620
10.1109/TPAMI.2005.92
10.1109/ICASSP.2012.6288305
10.1109/TIP.2014.2322938
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.patcog.2012.08.015
10.1109/TPAMI.2012.63
10.1109/AVSS.2010.71
10.1109/34.879790
10.1109/34.761261
10.1109/TPAMI.2008.79
10.1145/1102351.1102455
10.1109/TIP.2014.2313227
10.1109/ICCV.2011.6126346
10.1109/TPAMI.2008.75
10.1109/CVPR.2013.17
10.1137/050637996
10.1007/s11263-014-0722-8
10.1109/TCSVT.2013.2291355
10.1109/TPAMI.2012.215
10.1109/TCSVT.2008.924108
10.1109/TCSVT.2013.2291283
10.1109/TSP.2013.2274276
10.1109/TPAMI.2012.259
10.1109/ICCV.2013.387
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TIP.2015.2451953
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3741
ExternalDocumentID 26151938
10_1109_TIP_2015_2451953
7145428
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education Tier-1, Singapore
  grantid: M4011272.040
– fundername: National Natural Science Foundation of China
  grantid: 61375044
  funderid: 10.13039/501100001809
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  grantid: 20121101110035
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c319t-c69c2bc9f0ed325cbf6d431a2226a97ca4388047b45d8413300f0e24f769bb783
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358615500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Sun Nov 09 10:59:33 EST 2025
Mon Jul 21 06:03:06 EDT 2025
Sat Nov 29 03:20:58 EST 2025
Tue Nov 18 21:52:29 EST 2025
Tue Aug 26 16:40:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Kernel sparse coding
image classification
visual tracking
face recognition
region covariance descriptor
symmetric positive definite matrices
Riemannian manifold
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c69c2bc9f0ed325cbf6d431a2226a97ca4388047b45d8413300f0e24f769bb783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26151938
PQID 1711536850
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1711536850
ieee_primary_7145428
crossref_citationtrail_10_1109_TIP_2015_2451953
pubmed_primary_26151938
crossref_primary_10_1109_TIP_2015_2451953
PublicationCentury 2000
PublicationDate 2015-Nov.
2015-11-00
2015-Nov
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References chung (ref36) 1997; 92
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
mei (ref44) 2009
van den berg (ref38) 1984
ref46
ref48
ref47
ref42
mairal (ref30) 2010; 11
ref41
bao (ref45) 2012
ref43
ref49
ref8
ref7
ref9
ref4
tibshirani (ref39) 1996; 58
ref3
ref6
ref40
harandi (ref20) 2012
ref35
ref34
ref37
ref31
ref33
ref32
ref2
ref1
yang (ref5) 2010
ref24
ref23
ref26
ref25
ref22
ref28
ref27
ref29
zhang (ref21) 2015
References_xml – ident: ref2
  doi: 10.1007/s11263-012-0582-z
– ident: ref22
  doi: 10.1016/j.neucom.2012.12.039
– ident: ref12
  doi: 10.1109/TPAMI.2013.143
– volume: 92
  year: 1997
  ident: ref36
  publication-title: Spectral Graph Theory
– ident: ref32
  doi: 10.1109/TIP.2013.2282078
– ident: ref46
  doi: 10.1109/CVPR.2006.68
– ident: ref19
  doi: 10.1007/978-3-642-12307-8_32
– ident: ref29
  doi: 10.1007/978-3-642-03040-6_91
– ident: ref16
  doi: 10.1109/TNNLS.2014.2387383
– ident: ref24
  doi: 10.1109/CVPR.2013.233
– ident: ref23
  doi: 10.1109/ICCV.2013.202
– start-page: 448
  year: 2010
  ident: ref5
  article-title: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref14
  doi: 10.1007/978-3-642-23808-6_21
– ident: ref15
  doi: 10.1007/978-3-319-10578-9_20
– start-page: 1830
  year: 2012
  ident: ref45
  article-title: Real time robust L1 tracker using accelerated proximal gradient approach
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 216
  year: 2012
  ident: ref20
  article-title: Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref41
  doi: 10.1109/CVPR.2013.307
– year: 1984
  ident: ref38
  publication-title: Harmonic Analysis on Semigroups Theory of Positive Definite and Related Functions
  doi: 10.1007/978-1-4612-1128-0
– ident: ref37
  doi: 10.1109/CVPR.2008.4587350
– ident: ref43
  doi: 10.1109/CVPR.2010.5539917
– ident: ref10
  doi: 10.1109/CVPR.2009.5206806
– ident: ref33
  doi: 10.1109/TIP.2012.2215620
– ident: ref49
  doi: 10.1109/TPAMI.2005.92
– ident: ref31
  doi: 10.1109/ICASSP.2012.6288305
– ident: ref34
  doi: 10.1109/TIP.2014.2322938
– volume: 58
  start-page: 267
  year: 1996
  ident: ref39
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Statist Soc B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref17
  doi: 10.1016/j.patcog.2012.08.015
– ident: ref6
  doi: 10.1109/TPAMI.2012.63
– ident: ref18
  doi: 10.1109/AVSS.2010.71
– ident: ref48
  doi: 10.1109/34.879790
– start-page: 1
  year: 2015
  ident: ref21
  article-title: Online dictionary learning on symmetric positive definite manifolds with vision applications
  publication-title: Proc AAAI Conf Artif Intell (AAAI)
– volume: 11
  start-page: 19
  year: 2010
  ident: ref30
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– ident: ref47
  doi: 10.1109/34.761261
– ident: ref4
  doi: 10.1109/TPAMI.2008.79
– ident: ref25
  doi: 10.1145/1102351.1102455
– ident: ref40
  doi: 10.1109/TIP.2014.2313227
– ident: ref13
  doi: 10.1109/ICCV.2011.6126346
– start-page: 1436
  year: 2009
  ident: ref44
  article-title: Robust visual tracking using $\ell _{1}$ minimization
  publication-title: Proc IEEE 12th Int Conf Comput Vis (ICCV)
– ident: ref27
  doi: 10.1109/TPAMI.2008.75
– ident: ref9
  doi: 10.1109/CVPR.2013.17
– ident: ref26
  doi: 10.1137/050637996
– ident: ref7
  doi: 10.1007/s11263-014-0722-8
– ident: ref1
  doi: 10.1109/TCSVT.2013.2291355
– ident: ref42
  doi: 10.1109/TPAMI.2012.215
– ident: ref28
  doi: 10.1109/TCSVT.2008.924108
– ident: ref3
  doi: 10.1109/TCSVT.2013.2291283
– ident: ref35
  doi: 10.1109/TSP.2013.2274276
– ident: ref8
  doi: 10.1109/TPAMI.2012.259
– ident: ref11
  doi: 10.1109/ICCV.2013.387
SSID ssj0014516
Score 2.3381596
Snippet The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3729
SubjectTerms Algorithms
Biometric Identification
Covariance matrices
Databases, Factual
Dictionaries
Face recognition
Geometry
Humans
Image classification
Image Processing, Computer-Assisted - methods
Kernel
Kernel sparse coding
Machine Learning
Manifolds
Measurement
Region covariance descriptor
Riemannian manifold
Sparse matrices
Symmetric Positive Definite Matrices
Visual tracking
Title Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications
URI https://ieeexplore.ieee.org/document/7145428
https://www.ncbi.nlm.nih.gov/pubmed/26151938
https://www.proquest.com/docview/1711536850
Volume 24
WOSCitedRecordID wos000358615500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5U-tA-VKutPa2yhb4UGi8mm2z2UapSKcpRLdxb2OzOwsGZyOVO6H_fmU0u3ENb6FseZpKQb4b5NvML4BMa5SiO5-TiWRpJ4-OokM5FiU0qshFnU-fDsgl1d1dMp3qyBV-GXhhEDMVneMaXIZfvGrviX2VjdS4zosvbsK1U3vVqDRkDXjgbMpuZikhOr1OSsR4_3Ey4his7S8IsFV6dk3Ag19yUshGNwnqVvzPNEHGud__vXffgdc8sxUVnCm9gC-t92O1Zpuh9uN2HVxsjCA-gujX1zDdzJ77josa5uH-ioy6KH6FCtm9MqkXjxf2vx0dev2XFJBR6PWN0iX7GnFXchkH_2ApTO3GzbMXFRl78Lfy8vnr4-i3q9y5ElhxyGdlcE1JW-xhdmmS28rkjnmGISuRGK2skT5CRqpKZKygIpnFMoon0KtdVpYr0HezUTY3vQWTKG2IMXF9lpc_RkFqaS2OIBqqsSkcwXn__0vZDyXk3xrwMh5NYlwReyeCVPXgj-DxoPHUDOf4he8DADHI9JiP4uIa4JGfiDImpsVm15bkigswj-eMRHHbYD8prkzn6802P4SU_umtT_AA7y8UKT-CFfV7O2sUpWey0OA0W-xugdORp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB7SpND0kLRJmzpJ2y30UqhiRVppvceQBzGJjWlcyE2s9gEGRwqWHei_78x6LXxoCrnpMCsWfTPst5rHB_DdKmHwHM8xxLM04srFUY8bEyU6KdFHjE6N82ITYjjs3d_L0Qb8bHthrLW--Mye0KPP5ZtaL-hXWVec8gzp8ivYIuWs0K3V5gxIctbnNjMRoaVcJSVj2R33R1TFlZ0kfpoKieckdJRLaktZO4-8wMrzXNOfOVe7L9vtO9gJ3JKdLZ3hPWzYag92A89kIYqbPXi7NoRwH8qBqiaunhp2Y2eVnbK7R7zsWvbL18iG1qSK1Y7d_Xl4IAEuzUa-1OvJRhfWTYi1soEf9W8bpirD-vOGna1lxj_A76vL8fl1FJQXIo0hOY90LhErLV1sTZpkunS5QaahkEzkSgqtOM2Q4aLkmekhEmkco2nCnchlWYpe-hE2q7qyn4BlwinkDFRhpbnLrcJlac6VQiIosjLtQHf1_QsdxpKTOsa08NeTWBYIXkHgFQG8DvxoVzwuR3L8x3afgGntAiYd-LaCuMBwohyJqmy9aIpTgRSZhvLHHThYYt8uXrnM4b9f-hXeXI8Ht8Vtf3hzBNu0jWXT4jFszmcL-xle66f5pJl98X77F0yr5so
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold+Kernel+Sparse+Representation+of+Symmetric+Positive-Definite+Matrices+and+Its+Applications&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yuwei+Wu&rft.au=Yunde+Jia&rft.au=Peihua+Li&rft.au=Jian+Zhang&rft.date=2015-11-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=24&rft.issue=11&rft.spage=3729&rft.epage=3741&rft_id=info:doi/10.1109%2FTIP.2015.2451953&rft_id=info%3Apmid%2F26151938&rft.externalDocID=7145428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon