Application of multi-level adaptive neural network based on optimization algorithm in image style transfer

Arbitrary image style transfer is the process of inputting any set of images to generate images with a certain artistic style. Aiming at the problem of how to adapt both global style and local style and maintain spatial consistency based on the arbitrary style transfer algorithm. This paper proposed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 83; číslo 29; s. 73127 - 73149
Hlavní autoři: Li, Hong-an, Wang, Lanye, Liu, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2024
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Arbitrary image style transfer is the process of inputting any set of images to generate images with a certain artistic style. Aiming at the problem of how to adapt both global style and local style and maintain spatial consistency based on the arbitrary style transfer algorithm. This paper proposed a multi-level adaptive arbitrary style transfer network and adopted a multi-level strategy to integrate multi-level context information in a progressive manner. First, the convolution block attention module C B A M is referenced to the encoder to improve the semantic matching of the algorithm and maintain spatial consistency. Secondly, the multi-branch content is integrated with the style features, quantifying the local similarity between content and style features in a non-local way, rearranges the distribution of style representation according to the content representation. Finally, the multi-layer features after alignment are provided to the decoder module by the Adaptive Weight Skip Connection A W S C , which can integrate local and global styles efficiently and flexibly. In addition, the identity loss is used to eliminate image artifacts and better retain the content structure information. Qualitative and quantitative experiments show that the proposed method is superior to the most advanced CNN-based method, and can generate high-quality stylized images with arbitrary styles and better visual effects.
AbstractList Arbitrary image style transfer is the process of inputting any set of images to generate images with a certain artistic style. Aiming at the problem of how to adapt both global style and local style and maintain spatial consistency based on the arbitrary style transfer algorithm. This paper proposed a multi-level adaptive arbitrary style transfer network and adopted a multi-level strategy to integrate multi-level context information in a progressive manner. First, the convolution block attention module C B A M is referenced to the encoder to improve the semantic matching of the algorithm and maintain spatial consistency. Secondly, the multi-branch content is integrated with the style features, quantifying the local similarity between content and style features in a non-local way, rearranges the distribution of style representation according to the content representation. Finally, the multi-layer features after alignment are provided to the decoder module by the Adaptive Weight Skip Connection A W S C , which can integrate local and global styles efficiently and flexibly. In addition, the identity loss is used to eliminate image artifacts and better retain the content structure information. Qualitative and quantitative experiments show that the proposed method is superior to the most advanced CNN-based method, and can generate high-quality stylized images with arbitrary styles and better visual effects.
Arbitrary image style transfer is the process of inputting any set of images to generate images with a certain artistic style. Aiming at the problem of how to adapt both global style and local style and maintain spatial consistency based on the arbitrary style transfer algorithm. This paper proposed a multi-level adaptive arbitrary style transfer network and adopted a multi-level strategy to integrate multi-level context information in a progressive manner. First, the convolution block attention module CBAM is referenced to the encoder to improve the semantic matching of the algorithm and maintain spatial consistency. Secondly, the multi-branch content is integrated with the style features, quantifying the local similarity between content and style features in a non-local way, rearranges the distribution of style representation according to the content representation. Finally, the multi-layer features after alignment are provided to the decoder module by the Adaptive Weight Skip Connection AWSC, which can integrate local and global styles efficiently and flexibly. In addition, the identity loss is used to eliminate image artifacts and better retain the content structure information. Qualitative and quantitative experiments show that the proposed method is superior to the most advanced CNN-based method, and can generate high-quality stylized images with arbitrary styles and better visual effects.
Author Li, Hong-an
Wang, Lanye
Liu, Jun
Author_xml – sequence: 1
  givenname: Hong-an
  surname: Li
  fullname: Li, Hong-an
  organization: College of Computer Science and Technology, Xi’an University of Science and Technology, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
– sequence: 2
  givenname: Lanye
  surname: Wang
  fullname: Wang, Lanye
  email: 21208088028@stu.xust.edu.cn
  organization: College of Computer Science and Technology, Xi’an University of Science and Technology
– sequence: 3
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Shaanxi Technical College of Finance and Economics
BookMark eNp9kM1OwzAQhC1UJNrCC3CyxDlgO06THKuKP6kSFzhbjr0pLk4cbAdUnp60QQJx6GlX2vl2Z2eGJq1rAaFLSq4pIflNoJRwlhDGE1rwjCb0BE1plqdJnjM6-dOfoVkIW0LoImN8irbLrrNGyWhci12Nm95Gk1j4AIulll00H4Bb6L20Q4mfzr_hSgbQeK8fxo35GmFpN86b-Npg02LTyA3gEHcWcPSyDTX4c3RaSxvg4qfO0cvd7fPqIVk_3T-ulutEpbSMicpKCUUm6YIpXhdaZoSQmhNVVMCkrrSqirrgKpOMQqmKvFQ1hYpryXWpNU3n6Grc23n33kOIYut63w4nRUrKsuR8wdNBxUaV8i4ED7Xo_ODa7wQlYp-pGDMVQ6bikKnYry7-QcrEw_vDk8YeR9MRDcOddgP-19UR6huoiZB-
CitedBy_id crossref_primary_10_1007_s42452_025_07513_0
crossref_primary_10_1080_13682199_2024_2418216
Cites_doi 10.1109/MCG.2003.1210863
10.1145/3394171.3414015
10.1007/978-3-319-10602-1_48
10.1609/aaai.v34i04.5862
10.1109/ICCV48922.2021.01435
10.3934/mbe.2021330
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2017.759
10.1109/CVPR.2019.00603
10.1609/aaai.v35i2.16208
10.1109/CVPR.2017.296
10.1109/CVPR.2018.00745
10.1155/2022/1693892
10.1109/CVPR.2018.00860
10.1109/CVPR.2017.36
10.1109/CVPR46437.2021.00092
10.1109/CVPR.2018.00858
10.1109/CVPR.2016.272
10.1109/CVPR.2016.265
10.1109/CVPR.2017.437
10.1109/ICCV.2017.167
10.1109/ICCV48922.2021.00658
10.1007/978-3-030-01234-2_1
10.13232/j.cnki.jnju.2021.01.001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-024-18451-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 73149
ExternalDocumentID 10_1007_s11042_024_18451_1
GrantInformation_xml – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  grantid: 2023-JC-YB-517
  funderid: http://dx.doi.org/10.13039/501100010023
– fundername: the Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
  grantid: VRLAB2023B08
– fundername: the high-level talent introduction project of Shaanxi Technical College of Finance and Economics
  grantid: 2022KY01
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-c59ae85a162c4f8da5000f40c8be2adbdcb8f84c5a21e9c879cf1eb4da4d9dd13
IEDL.DBID 7WY
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157530400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 04:17:29 EST 2025
Tue Nov 18 21:51:52 EST 2025
Sat Nov 29 06:20:44 EST 2025
Fri Feb 21 02:39:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Arbitrary image style transfer
Convolution block attention module
Multi-level strategy
Adaptive weight skip connection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c59ae85a162c4f8da5000f40c8be2adbdcb8f84c5a21e9c879cf1eb4da4d9dd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3099944643
PQPubID 54626
PageCount 23
ParticipantIDs proquest_journals_3099944643
crossref_primary_10_1007_s11042_024_18451_1
crossref_citationtrail_10_1007_s11042_024_18451_1
springer_journals_10_1007_s11042_024_18451_1
PublicationCentury 2000
PublicationDate 20240900
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li Y, Fang C, Yang J et al (2017) Diversified texture synthesis with feed-forward networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 3920–3928
Dong W, Huang H, Ma C, Deng Y, Tang F, Xu C (2020) Arbitrary video style transfer via multi-channel correlation, pp 1–7. arXiv preprint arXiv:2009.08003
DuJWuZZhuZCcpl: contrastive coherence preserving loss for versatile style transfer2022ChamSpringer18
Lin TY, Maire M, Belongie S, Hays J, Zitnick CL (2014) Microsoft coco: common objects in context, 1–10. CoRR, arXiv:1409.1556
Deng Y, Tang F, Dong W, Huang H, Ma C, Xu C (2021) Arbitrary video style transfer via multi-channel correlation. In: AAAI Conference on artificial intelligence (AAAI), pp 1210–1217
Ulyanov D, Lebedev V, Vedaldi A et al (2017) Improved texture networks: maximizing quality and diversity in feed forward stylization and texture synthesis. Proceedings of the IEEE conference on computer vision and pattern recognition, 4105–4113
Huang X, Belongie S (2017) Arbitrary style transfer in real-time with adaptive instance normalization. In: IEEE International Conference on Computer Vision (ICCV). IEEE, pp 1501–1510
Tian QC, Schmidt M (2016) Fast patch-based style transfer of arbitrary style. Fast patch-based style transfer of arbitrary style, pp 1–5
Li Y, Fang C, Yang J, Wang Z, Lu X, Yang MH (2017) Universal style transfer via feature transforms. In: Advances in neural information processing systems (NeurIPS), pp 386–396
Jacobs C, Salesin D, Oliver N, Hertzmann A, Curless AB (2001)Image analogies. Proc Siggraph, pp 327–340
Freeman WT, Efros A (2001) Image quilting for texture synthesis and transfer. Computer Science Division, University of California, CA 94720, USA, pp 341–346
Woo S, Park J, Lee JY et al (2018) Cbam: convolutional block attention module. Proceedings of the European conference on computer vision (ECCV), 3–19
Fei-Fei L, Johnson J, Alahi A (2016) Perceptual losses for real-time style transfer and super-resolution. European Conference on Computer Vision. Berlin: Springer, pp 694–711
An J, Huang S, Song Y, Dou D, Liu W, Luo J (2021) Artflow: unbiased image style transfer via reversible neural flflows. IEEE, pp 832–871
Liao YM, Huang YF, Papakostas G (2022) Deep learning-based application of image style transfer. Math Probl Eng, pp 1–5
ZengXHLuYZTongSYPhotorealism style transfer combining MRFs-based and gram-based featuresJournal of Nanjing University Natural Science202157011910.13232/j.cnki.jnju.2021.01.001
Dumoulin V, Shlens J, Kudlur M (2016) A learned representation for artistic style. CoRR, arXiv:1610.07629
Cheng J, Jaiswal A, Wu Y, Natarajan P, Natarajan P (2019) Styleware normalized loss for improving arbitrary style transfer. In: IEEE/CVF Conference on computer vision and pattern recognition(CVPR). IEEE, pp 5880–5888
Gatys LA (2015) Texture synthesis using convolutional neural networks. arXiv:1505.07376 (2015-11-09)
Jing Y, Liu X, Ding Y, Wang X, Wen S (2020) Dynamic instance normalization for arbitrary style transfer. arXiv preprint 34:4369–4376. arXiv:2009.08003
Li C, Wand M (2017) Combining markov random fields and convolutional neural networks for image synthesis. Proceedings of the IEEE conference on computer vision and pattern recognition, 2479–2486
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning, 448–456
Li YH, Wang NY, Liu JY et al (2017) Demystifying neural style transfer. (2017-07-04)[2023-12-9]. arXiv:1701.01036
Ulyanov D, Lebedev V, Vedaldi A et al (2016) Texture networks: feed-forward synthesis of textures and stylized images. Proceedings of the international conference on machine learning(ICML), 1349–1357
Liu S, Lin T, He D, Li F, Ding E (2021) Adaattn: revisit attention mechanism in arbitrary neural style transfer. In: Proceedings of the IEEE international conference on computer vision, pp 1–10
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Sci, 1556–2014. arXiv:1409.1556
Gatys LA, Ecker AS, Bethge M (2015) A neural algorithm of artistic style. ArXiv preprint arXiv 8:13–18
Gu S, Chen C, Liao J, Yuan L (2018) Arbitrary style transfer with deep feature reshuffle. IEEE, pp 8222–8231
Chen D, Yuan L, Liao J, Yu N, Hua G (2017) Stylebank: an explicit representation for neural image style transfer. Proceedings of the IEEE conference on computer vision and pattern recognition, 1897–1906
Dong W, Sun W, Huang F, Deng Y, Tang F, Xu C (2020) Arbitrary style transfer via multi-adaptation network. In: Proceedings of the 28th ACM international conference on multimedia, pp 1–9
LiHZhengQYanWTaoRQiXWenZImage super-resolution reconstruction for secure data transmission in Internet of Things environmentMath Biosci Eng20211856652667110.3934/mbe.2021330
Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 7132–7141
AshikhminMVFast texture transferIEEE Comput Graphics Appl2003234384310.1109/MCG.2003.1210863
Sheng L, Lin Z, Shao J, Wang X (2018) Avatarnet: multi-scale zero-shot style transfer by feature decoration. IEEE, pp 8242–8250
ChengJJaiswalAWuYNatarajanPNatarajanPWikiartgallery, inc:acaseforcriticalthingkingIEEE2011263593608
LeeHSeoSRyooSYoonKDirectional texture transfer. Proc Siggraph20109624348
Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2414–2423
Wu X, Hu Z, Sheng L, Xu D (2021) Styleformer: real-time arbitrary style transfer via parametric style composition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14 618–14 627
Chen H, Zhao L, Wang Z et al (2021) Artistic Style transfer with internal-external learning and contrastive learning. Neural Information Processing Systems
Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2021) The unreasonable effectiveness of deep features as a perceptual metric. IEEE, pp 1–10
Wang X, Oxholm G, Zhang D et al (2017) Multimodal transfer: a hierarchical deep convolutional neural network for fast artistic style transfer. Proc of IEEE conference on computer vision and pattern recognition. Washington DC: IEEE Computer Society, 7178–7186
Lee KH, Park DY (2019) Arbitrary style transfer with style-attentional networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5880–5888
Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial transformer networks. Advances in neural information processing systems, 2017–2025
18451_CR3
18451_CR23
18451_CR24
18451_CR1
18451_CR21
18451_CR43
18451_CR2
18451_CR22
18451_CR41
18451_CR20
18451_CR42
18451_CR29
18451_CR27
18451_CR28
J Cheng (18451_CR40) 2011; 26
18451_CR25
18451_CR26
18451_CR9
18451_CR7
H Li (18451_CR37) 2021; 18
18451_CR8
MV Ashikhmin (18451_CR4) 2003; 23
18451_CR6
18451_CR12
18451_CR34
18451_CR13
18451_CR35
18451_CR10
18451_CR32
18451_CR33
18451_CR30
J Du (18451_CR31) 2022
XH Zeng (18451_CR11) 2021; 57
18451_CR18
H Lee (18451_CR5) 2010; 96
18451_CR19
18451_CR16
18451_CR38
18451_CR17
18451_CR39
18451_CR14
18451_CR36
18451_CR15
References_xml – reference: Wang X, Oxholm G, Zhang D et al (2017) Multimodal transfer: a hierarchical deep convolutional neural network for fast artistic style transfer. Proc of IEEE conference on computer vision and pattern recognition. Washington DC: IEEE Computer Society, 7178–7186
– reference: Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2021) The unreasonable effectiveness of deep features as a perceptual metric. IEEE, pp 1–10
– reference: Ulyanov D, Lebedev V, Vedaldi A et al (2016) Texture networks: feed-forward synthesis of textures and stylized images. Proceedings of the international conference on machine learning(ICML), 1349–1357
– reference: Jacobs C, Salesin D, Oliver N, Hertzmann A, Curless AB (2001)Image analogies. Proc Siggraph, pp 327–340
– reference: Lee KH, Park DY (2019) Arbitrary style transfer with style-attentional networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5880–5888
– reference: Liu S, Lin T, He D, Li F, Ding E (2021) Adaattn: revisit attention mechanism in arbitrary neural style transfer. In: Proceedings of the IEEE international conference on computer vision, pp 1–10
– reference: Chen D, Yuan L, Liao J, Yu N, Hua G (2017) Stylebank: an explicit representation for neural image style transfer. Proceedings of the IEEE conference on computer vision and pattern recognition, 1897–1906
– reference: Gatys LA, Ecker AS, Bethge M (2015) A neural algorithm of artistic style. ArXiv preprint arXiv 8:13–18
– reference: Li Y, Fang C, Yang J et al (2017) Diversified texture synthesis with feed-forward networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 3920–3928
– reference: Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2414–2423
– reference: An J, Huang S, Song Y, Dou D, Liu W, Luo J (2021) Artflow: unbiased image style transfer via reversible neural flflows. IEEE, pp 832–871
– reference: Woo S, Park J, Lee JY et al (2018) Cbam: convolutional block attention module. Proceedings of the European conference on computer vision (ECCV), 3–19
– reference: Gatys LA (2015) Texture synthesis using convolutional neural networks. arXiv:1505.07376 (2015-11-09)
– reference: Gu S, Chen C, Liao J, Yuan L (2018) Arbitrary style transfer with deep feature reshuffle. IEEE, pp 8222–8231
– reference: Cheng J, Jaiswal A, Wu Y, Natarajan P, Natarajan P (2019) Styleware normalized loss for improving arbitrary style transfer. In: IEEE/CVF Conference on computer vision and pattern recognition(CVPR). IEEE, pp 5880–5888
– reference: LiHZhengQYanWTaoRQiXWenZImage super-resolution reconstruction for secure data transmission in Internet of Things environmentMath Biosci Eng20211856652667110.3934/mbe.2021330
– reference: Li YH, Wang NY, Liu JY et al (2017) Demystifying neural style transfer. (2017-07-04)[2023-12-9]. arXiv:1701.01036
– reference: DuJWuZZhuZCcpl: contrastive coherence preserving loss for versatile style transfer2022ChamSpringer18
– reference: ZengXHLuYZTongSYPhotorealism style transfer combining MRFs-based and gram-based featuresJournal of Nanjing University Natural Science202157011910.13232/j.cnki.jnju.2021.01.001
– reference: Dong W, Huang H, Ma C, Deng Y, Tang F, Xu C (2020) Arbitrary video style transfer via multi-channel correlation, pp 1–7. arXiv preprint arXiv:2009.08003
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Sci, 1556–2014. arXiv:1409.1556
– reference: Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial transformer networks. Advances in neural information processing systems, 2017–2025
– reference: AshikhminMVFast texture transferIEEE Comput Graphics Appl2003234384310.1109/MCG.2003.1210863
– reference: Li Y, Fang C, Yang J, Wang Z, Lu X, Yang MH (2017) Universal style transfer via feature transforms. In: Advances in neural information processing systems (NeurIPS), pp 386–396
– reference: Wu X, Hu Z, Sheng L, Xu D (2021) Styleformer: real-time arbitrary style transfer via parametric style composition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14 618–14 627
– reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning, 448–456
– reference: LeeHSeoSRyooSYoonKDirectional texture transfer. Proc Siggraph20109624348
– reference: Tian QC, Schmidt M (2016) Fast patch-based style transfer of arbitrary style. Fast patch-based style transfer of arbitrary style, pp 1–5
– reference: Deng Y, Tang F, Dong W, Huang H, Ma C, Xu C (2021) Arbitrary video style transfer via multi-channel correlation. In: AAAI Conference on artificial intelligence (AAAI), pp 1210–1217
– reference: Jing Y, Liu X, Ding Y, Wang X, Wen S (2020) Dynamic instance normalization for arbitrary style transfer. arXiv preprint 34:4369–4376. arXiv:2009.08003
– reference: Sheng L, Lin Z, Shao J, Wang X (2018) Avatarnet: multi-scale zero-shot style transfer by feature decoration. IEEE, pp 8242–8250
– reference: Huang X, Belongie S (2017) Arbitrary style transfer in real-time with adaptive instance normalization. In: IEEE International Conference on Computer Vision (ICCV). IEEE, pp 1501–1510
– reference: Freeman WT, Efros A (2001) Image quilting for texture synthesis and transfer. Computer Science Division, University of California, CA 94720, USA, pp 341–346
– reference: Fei-Fei L, Johnson J, Alahi A (2016) Perceptual losses for real-time style transfer and super-resolution. European Conference on Computer Vision. Berlin: Springer, pp 694–711
– reference: Ulyanov D, Lebedev V, Vedaldi A et al (2017) Improved texture networks: maximizing quality and diversity in feed forward stylization and texture synthesis. Proceedings of the IEEE conference on computer vision and pattern recognition, 4105–4113
– reference: Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 7132–7141
– reference: ChengJJaiswalAWuYNatarajanPNatarajanPWikiartgallery, inc:acaseforcriticalthingkingIEEE2011263593608
– reference: Dumoulin V, Shlens J, Kudlur M (2016) A learned representation for artistic style. CoRR, arXiv:1610.07629
– reference: Chen H, Zhao L, Wang Z et al (2021) Artistic Style transfer with internal-external learning and contrastive learning. Neural Information Processing Systems
– reference: Lin TY, Maire M, Belongie S, Hays J, Zitnick CL (2014) Microsoft coco: common objects in context, 1–10. CoRR, arXiv:1409.1556
– reference: Liao YM, Huang YF, Papakostas G (2022) Deep learning-based application of image style transfer. Math Probl Eng, pp 1–5
– reference: Li C, Wand M (2017) Combining markov random fields and convolutional neural networks for image synthesis. Proceedings of the IEEE conference on computer vision and pattern recognition, 2479–2486
– reference: Dong W, Sun W, Huang F, Deng Y, Tang F, Xu C (2020) Arbitrary style transfer via multi-adaptation network. In: Proceedings of the 28th ACM international conference on multimedia, pp 1–9
– volume: 23
  start-page: 38
  issue: 4
  year: 2003
  ident: 18451_CR4
  publication-title: IEEE Comput Graphics Appl
  doi: 10.1109/MCG.2003.1210863
– ident: 18451_CR24
– ident: 18451_CR28
  doi: 10.1145/3394171.3414015
– volume: 96
  start-page: 43
  issue: 2
  year: 2010
  ident: 18451_CR5
  publication-title: Directional texture transfer. Proc Siggraph
– start-page: 1
  volume-title: Ccpl: contrastive coherence preserving loss for versatile style transfer
  year: 2022
  ident: 18451_CR31
– ident: 18451_CR39
  doi: 10.1007/978-3-319-10602-1_48
– ident: 18451_CR41
– ident: 18451_CR22
  doi: 10.1609/aaai.v34i04.5862
– ident: 18451_CR43
– ident: 18451_CR33
  doi: 10.1109/ICCV48922.2021.01435
– ident: 18451_CR23
  doi: 10.1145/3394171.3414015
– volume: 18
  start-page: 6652
  issue: 5
  year: 2021
  ident: 18451_CR37
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021330
– ident: 18451_CR34
– ident: 18451_CR12
  doi: 10.1007/978-3-319-46475-6_43
– ident: 18451_CR14
  doi: 10.1109/CVPR.2017.759
– ident: 18451_CR17
– ident: 18451_CR30
– ident: 18451_CR3
– ident: 18451_CR27
  doi: 10.1109/CVPR.2019.00603
– ident: 18451_CR32
  doi: 10.1609/aaai.v35i2.16208
– ident: 18451_CR7
– ident: 18451_CR9
– ident: 18451_CR13
– ident: 18451_CR19
  doi: 10.1109/CVPR.2017.296
– ident: 18451_CR36
  doi: 10.1109/CVPR.2018.00745
– ident: 18451_CR1
  doi: 10.1155/2022/1693892
– ident: 18451_CR26
  doi: 10.1109/CVPR.2018.00860
– ident: 18451_CR18
  doi: 10.1109/CVPR.2017.36
– ident: 18451_CR42
  doi: 10.1109/CVPR46437.2021.00092
– ident: 18451_CR25
  doi: 10.1109/CVPR.2018.00858
– ident: 18451_CR10
  doi: 10.1109/CVPR.2016.272
– ident: 18451_CR8
  doi: 10.1109/CVPR.2016.265
– ident: 18451_CR15
  doi: 10.1109/CVPR.2017.437
– ident: 18451_CR20
  doi: 10.1109/ICCV.2017.167
– ident: 18451_CR21
– ident: 18451_CR35
– volume: 26
  start-page: 593
  issue: 3
  year: 2011
  ident: 18451_CR40
  publication-title: IEEE
– ident: 18451_CR2
– ident: 18451_CR29
  doi: 10.1109/ICCV48922.2021.00658
– ident: 18451_CR6
– ident: 18451_CR16
– ident: 18451_CR38
  doi: 10.1007/978-3-030-01234-2_1
– volume: 57
  start-page: 1
  issue: 01
  year: 2021
  ident: 18451_CR11
  publication-title: Journal of Nanjing University Natural Science
  doi: 10.13232/j.cnki.jnju.2021.01.001
SSID ssj0016524
Score 2.390274
Snippet Arbitrary image style transfer is the process of inputting any set of images to generate images with a certain artistic style. Aiming at the problem of how to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73127
SubjectTerms Adaptive algorithms
Algorithms
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image quality
Modules
Multilayers
Multimedia Information Systems
Representations
Special Purpose and Application-Based Systems
Track 6: Computer Vision for Multimedia Applications
Visual effects
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPejB6VScTsnBmwaWNm3T4xCHBxmCOnYr-dTK1o22Cv73Jlm7qqig1-YllLy8L957vwfAGRVKs0gRZPSvRMRnEeIaxygMmW8-cSwcfPH4JhqN6GQS31ZNYUVd7V6nJJ2mbprdsG0lMTYFmagkwMjEPOuBRZuxMfrdeJU7CAOPVO0x3-_7bIIav_JLKtRZmGH7f_-2A7YrjxIOlk9gF6yprAPa9bQGWAlvB2x9gB7cA8-DJnMN5xq6wkI0tSVEkEm2sFoQWrBLc3S2LBWH1uJJaOnN8qxq4IRs-jjP0_JpBtMMpjOjn2BRvk0VLJ1PrPJ98DC8ur-8RtXcBSSMQJZIBDFTNGA49ATRVLqhCZr0BeXKY5JLwammRATMwyoWNIqFxooTyYiMpcT-AWhl80wdAhiERFFh1IZinOC-4EwzosNA22Zqs7ELcM2KRFSg5HY2xjRp4JTt1SbmahN3tQnugvPVnsUSkuNX6l7N4aQSzyLxrV9sAmHid8FFzdFm-efTjv5Gfgw2PfsoXE1aD7TK_EWdgA3xWqZFfuqe7TsDleuY
  priority: 102
  providerName: Springer Nature
Title Application of multi-level adaptive neural network based on optimization algorithm in image style transfer
URI https://link.springer.com/article/10.1007/s11042-024-18451-1
https://www.proquest.com/docview/3099944643
Volume 83
WOSCitedRecordID wos001157530400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlgMc6AMqFtrKh96KxTqxE-eE2qoVErCsWiiFS-T40S7azS67Aan_vmOv0wASvXAZKfFDlsaeGXseH8C-1Nap3HKK8tdQnqqcVo4VNMtUir8qpkP54ov3-WAgLy-LYXxwW8SwylYmBkFtptq_kb9OvSmDdxeevpn9oB41yntXI4TGA1hDRS08gkH-5eudFyETEdRW9ilqRhaTZpapc8wnpqCGonjHEYyyPxVTZ23-5SANeud0_X9XvAFPosVJDpdbZBNWbL0F6y2aA4mHewse_1aa8Cl8P-w822TqSAg8pGMfYkSUUTMvJYkvholT18tQcuI1oiG-PzZPYoInUeMrXFVzPSGjmowmKL_IorkZW9IEm9nOn8Hn05NPx29pxGWgGg9sQ7UolJVCsSzR3EkTQBUc72tZ2USZyuhKOsm1UAmzhZZ5oR2zFTeKm8IYlm7Daj2t7XMgIuNWahQrVlWc9XWlnOIuE84nW-PAHrCWKaWORcs9dsa47Mote0aWyMgyMLJkPTi4GzNbluy4t_dOy70yHt9F2bGuB69a_nfN_57txf2zvYRHid9yIUZtB1ab-U-7Cw_1r2a0mO-FzbsHa0cng-EZfr3LKdIP_WNPk49Ih-Ib0rPzi1sp2f4p
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH9BMBEPgAhhBXUOetIJO-20nR4MIQiB7LLxgIZbnc4HLNntLrtVwj_F3-ibaUvVRG4cvHZmXtLpb35vXt8XwDuhjJWJ4RT5V1MeyoTmlqU0jmWIj3KmfPnib_1kMBDn5-mXBbhrcmFcWGXDiZ6o9US5f-S7obvKoO3Cw73pNXVdo5x3tWmhUcGiZ25v0GSbfzr5jN_3fRAcHZ4dHNO6qwBVCLeSqiiVRkSSxYHiVmjfEsDyrhK5CaTOtcqFFVxFMmAmVSJJlWUm51pynWrNQpT7BJZ4KGJ3onoJvfdaxFHdRFd0KWpiVifpVKl6zCXCoEakaFNFjLI_FWF7u_3LIev13NHq_7ZDa7BS36jJfnUEXsCCKdZhtelWQWryWofnv5VefAlX-63nnkws8YGVdORCqIjUcuq0AHHFPlF0UYXKE6fxNXHzcXhcJ7ASObrAXSgvx2RYkOEY-ZnMy9uRIaW3CcxsA74-yvtvwmIxKcwWkCjmRiikTSNzzroql1ZyG0fWJZPjwg6wBgSZqouyu94go6wtJ-2AkyFwMg-cjHXgw_2aaVWS5MHZOw1aspqe5lkLlQ58bPDWDv9b2quHpb2FZ8dnp_2sfzLobcNy4ODu4_F2YLGc_TCv4an6WQ7nszf-4BD4_tg4_AVRPViF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH_BxRg9CCLGVZA56Ekn7LTTdnogBIWNBLLZGDXc6nQ-YM1ud92tEP41_jretFOKJnLj4LUz85JOf_PevL6PH8BboYyVieEU9a-mPJQJzS1LaRzLEB_lTFXti78fJ4OBODlJh0tw1dTCuLTKRidWilpPlftHvh26qwz6Ljzctj4tYrjf3539oo5BykVaGzqNGiJH5vIC3bfFzuE-fut3QdA_-PrpM_UMA1Qh9EqqolQaEUkWB4pboSt6AMt7SuQmkDrXKhdWcBXJgJlUiSRVlpmca8l1qjULUe4DWE5CdHo6sPzxYDD8chPDiCNPqSt6FO0y8yU7deEec2UxaB8pelgRo-xPs9jedf8Kz1ZWr7_yP-_XKjz1d22yVx-OZ7BkijVYaXgsiFdra_DkVlPG5_Bzr43pk6klVcolHbvkKiK1nDn7QFwbUBRd1En0xN0FNHHzcXjiS1uJHJ_iLpRnEzIqyGiCmpssysuxIWXlLZj5Ony7l_d_AZ1iWpiXQKKYG6FQoRqZc9ZTubSS2ziyrswcF3aBNYDIlG_X7lhDxlnbaNqBKEMQZRWIMtaF9zdrZnWzkjtnbzTIybziWmQtbLrwocFeO_xvaa_ulrYFjxB-2fHh4Og1PA4c8qtEvQ3olPPfZhMeqvNytJi_8aeIwI_7BuI1_A5i1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+multi-level+adaptive+neural+network+based+on+optimization+algorithm+in+image+style+transfer&rft.jtitle=Multimedia+tools+and+applications&rft.au=Li%2C+Hong-an&rft.au=Wang%2C+Lanye&rft.au=Liu%2C+Jun&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=29&rft.spage=73127&rft.epage=73149&rft_id=info:doi/10.1007%2Fs11042-024-18451-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon