Deep learning model for real-time image compression in Internet of Underwater Things (IoUT)

Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of Internet of Underwater Things (IoUT). It offers a broader view of applications such as atmosphere observation, habitat monitoring of sea ani...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing Vol. 17; no. 6; pp. 2097 - 2111
Main Authors: Krishnaraj, N., Elhoseny, Mohamed, Thenmozhi, M., Selim, Mahmoud M., Shankar, K.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Subjects:
ISSN:1861-8200, 1861-8219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of Internet of Underwater Things (IoUT). It offers a broader view of applications such as atmosphere observation, habitat monitoring of sea animals, defense and disaster prediction. Data transmission of images captured by the smart underwater objects is very challenging due to the nature of underwater environment and necessitates an efficient image transmission strategy for IoUT. In this paper, we model and implement a discrete wavelet transform (DWT) based deep learning model for image compression in IoUT. For achieving effective compression with better reconstruction image quality, convolution neural network (CNN) is used at the encoding as well as decoding side. We validate DWT–CNN model using extensive set of experimentations and depict that the presented deep learning model is superior to existing methods such as super-resolution convolutional neural networks (SRCNN), JPEG and JPEG2000 in terms of compression performance as well as reconstructed image quality. The DWT–CNN model attains an average peak signal-to-noise ratio (PSNR) of 53.961 with average space saving (SS) of 79.7038%.
AbstractList Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of Internet of Underwater Things (IoUT). It offers a broader view of applications such as atmosphere observation, habitat monitoring of sea animals, defense and disaster prediction. Data transmission of images captured by the smart underwater objects is very challenging due to the nature of underwater environment and necessitates an efficient image transmission strategy for IoUT. In this paper, we model and implement a discrete wavelet transform (DWT) based deep learning model for image compression in IoUT. For achieving effective compression with better reconstruction image quality, convolution neural network (CNN) is used at the encoding as well as decoding side. We validate DWT–CNN model using extensive set of experimentations and depict that the presented deep learning model is superior to existing methods such as super-resolution convolutional neural networks (SRCNN), JPEG and JPEG2000 in terms of compression performance as well as reconstructed image quality. The DWT–CNN model attains an average peak signal-to-noise ratio (PSNR) of 53.961 with average space saving (SS) of 79.7038%.
Author Selim, Mahmoud M.
Elhoseny, Mohamed
Thenmozhi, M.
Shankar, K.
Krishnaraj, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Krishnaraj
  fullname: Krishnaraj, N.
  organization: Department of Computer Science and Engineering, SASI Institute of Technology and Engineering
– sequence: 2
  givenname: Mohamed
  surname: Elhoseny
  fullname: Elhoseny, Mohamed
  organization: Faculty of Computers and Information, Mansoura University
– sequence: 3
  givenname: M.
  surname: Thenmozhi
  fullname: Thenmozhi, M.
  organization: Department of IT, SRM Institute of Science and Technology
– sequence: 4
  givenname: Mahmoud M.
  surname: Selim
  fullname: Selim, Mahmoud M.
  organization: Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University
– sequence: 5
  givenname: K.
  surname: Shankar
  fullname: Shankar, K.
  email: shankarcrypto@gmail.com
  organization: School of Computing, Kalasalingam Academy of Research and Education
BookMark eNp9kD9PwzAQxS0EEm3hCzBZYoEh4Isbxx5R-VepEks7MVhOcimpErvYqRDfHpcgkBg63en03ru735gcW2eRkAtgN8BYfhsAsmyaMFAJYzJXiTgiI5ACEpmCOv7tGTsl4xA2jIlc8GxEXu8Rt7RF421j17RzFba0dp56NG3SNx3SpjNrpKXrth5DaJyljaVz26O32FNX05Wt0H-YOKDLt5gS6NXcrZbXZ-SkNm3A8586IavHh-XsOVm8PM1nd4uk5KD6pMxUOlWYZqwAkHnFBJRgWCZRCs5SXqhiWhdFBkZBwZGXspYgqxJR8YzXgk_I5ZC79e59h6HXG7fzNq7UqYqP50KqPKrSQVV6F4LHWm99fM1_amB6D1EPEHWEqL8h6n20_Gcqm970EULvTdMetvLBGuIeu0b_d9UB1xf6yIeb
CitedBy_id crossref_primary_10_3233_JIFS_179480
crossref_primary_10_1109_JIOT_2022_3161050
crossref_primary_10_3233_JIFS_179483
crossref_primary_10_3233_JIFS_179484
crossref_primary_10_3233_JIFS_179482
crossref_primary_10_3233_JIFS_179487
crossref_primary_10_1371_journal_pone_0286685
crossref_primary_10_3233_JIFS_179485
crossref_primary_10_1016_j_apor_2021_102837
crossref_primary_10_1016_j_egyr_2022_01_177
crossref_primary_10_1109_TCSVT_2022_3218791
crossref_primary_10_3233_JIFS_179489
crossref_primary_10_3233_JIFS_179523
crossref_primary_10_1007_s00371_023_03069_5
crossref_primary_10_1155_2022_2343021
crossref_primary_10_1016_j_adhoc_2022_102998
crossref_primary_10_1007_s12145_021_00762_8
crossref_primary_10_1016_j_jnca_2021_103295
crossref_primary_10_1109_TCSVT_2024_3369638
crossref_primary_10_3390_jmse11010124
crossref_primary_10_1007_s11554_020_01051_1
crossref_primary_10_32604_cmc_2022_024618
crossref_primary_10_1109_JETCAS_2024_3490504
crossref_primary_10_1016_j_envres_2021_111527
crossref_primary_10_1007_s12652_020_02719_z
crossref_primary_10_3233_JIFS_179490
crossref_primary_10_3233_JIFS_179491
crossref_primary_10_32604_cmc_2022_028570
crossref_primary_10_1155_2022_9607755
crossref_primary_10_3233_JIFS_179494
crossref_primary_10_1109_ACCESS_2022_3144137
crossref_primary_10_3233_JIFS_179492
crossref_primary_10_1080_17455030_2021_1998729
crossref_primary_10_3390_bdcc6020044
crossref_primary_10_3233_JIFS_179496
crossref_primary_10_3233_JIFS_179497
crossref_primary_10_1109_JSEN_2024_3402134
crossref_primary_10_1109_TR_2020_2972567
crossref_primary_10_3389_fams_2021_716044
crossref_primary_10_1007_s11277_021_09410_2
crossref_primary_10_1007_s11042_022_11952_x
crossref_primary_10_1155_2022_5294151
crossref_primary_10_3233_JIFS_189810
crossref_primary_10_1109_JSEN_2021_3130947
crossref_primary_10_3390_electronics12122590
crossref_primary_10_1109_JSEN_2022_3228457
crossref_primary_10_1016_j_heliyon_2023_e22316
crossref_primary_10_3390_s23125596
crossref_primary_10_1007_s11554_023_01346_z
crossref_primary_10_1007_s11554_021_01099_7
crossref_primary_10_1016_j_compeleceng_2021_107555
crossref_primary_10_1007_s11554_025_01621_1
crossref_primary_10_1007_s10772_020_09690_2
crossref_primary_10_3390_electronics10243079
crossref_primary_10_3233_JIFS_179501
crossref_primary_10_1109_ACCESS_2022_3173256
crossref_primary_10_1109_JOE_2023_3249243
crossref_primary_10_1007_s12145_025_01732_0
crossref_primary_10_1016_j_aaf_2021_10_006
crossref_primary_10_1007_s00366_021_01455_y
crossref_primary_10_1002_ett_4399
crossref_primary_10_1155_2021_5553470
crossref_primary_10_1007_s11277_025_11783_7
crossref_primary_10_1108_LHT_10_2021_0351
crossref_primary_10_32604_cmc_2021_014924
crossref_primary_10_1109_TITS_2022_3202225
crossref_primary_10_1155_2021_5539793
crossref_primary_10_1109_JSEN_2022_3187372
crossref_primary_10_1155_2021_1875060
crossref_primary_10_1007_s00371_020_01884_8
crossref_primary_10_1016_j_sysarc_2021_102214
crossref_primary_10_3233_JIFS_179477
crossref_primary_10_3390_s21113698
crossref_primary_10_3233_JIFS_179475
crossref_primary_10_1038_s41598_024_57385_4
crossref_primary_10_1007_s11276_022_02921_1
crossref_primary_10_1109_MGRS_2023_3343623
crossref_primary_10_1007_s00366_021_01450_3
crossref_primary_10_3233_JIFS_179512
crossref_primary_10_1109_TCSS_2024_3376732
crossref_primary_10_1109_ACCESS_2025_3552555
crossref_primary_10_3233_JIFS_179518
crossref_primary_10_3233_JIFS_179515
crossref_primary_10_1109_TCSVT_2022_3229296
crossref_primary_10_1007_s11227_023_05629_x
crossref_primary_10_1007_s11227_025_07322_7
crossref_primary_10_1109_TITS_2022_3148166
crossref_primary_10_1109_TITS_2022_3162850
crossref_primary_10_1016_j_ins_2024_121008
crossref_primary_10_1109_JOE_2023_3235058
Cites_doi 10.1016/j.adhoc.2018.09.009
10.1109/TPAMI.2015.2439281
10.1002/wcm.654
10.1109/TETC.2015.2390034
10.1016/j.jnca.2011.04.002
10.1016/j.jnca.2012.07.012
10.1109/MNET.2006.1637927
10.1109/TCSVT.2007.906942
10.1016/j.future.2018.10.009
10.1109/TIP.2007.891788
10.1109/TIP.2007.894242
10.1007/s11042-013-1419-7
10.1007/s00521-018-3801-x
10.1049/PBTE049E
10.1109/CVPR.2017.577
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11554-019-00879-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
EndPage 2111
ExternalDocumentID 10_1007_s11554_019_00879_6
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-c59249e250b1187d061c1a058e863023b9b4fbb51a91b3e3c8f818dcee9353f63
IEDL.DBID RSV
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588147800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Wed Nov 05 04:17:32 EST 2025
Sat Nov 29 03:23:16 EST 2025
Tue Nov 18 22:02:46 EST 2025
Fri Feb 21 02:39:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Image compression
Image reconstruction
IoUT
Underwater
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c59249e250b1187d061c1a058e863023b9b4fbb51a91b3e3c8f818dcee9353f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918676897
PQPubID 2044148
PageCount 15
ParticipantIDs proquest_journals_2918676897
crossref_primary_10_1007_s11554_019_00879_6
crossref_citationtrail_10_1007_s11554_019_00879_6
springer_journals_10_1007_s11554_019_00879_6
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liu, Zhou, Cui (CR6) 2008; 8
Domingo (CR2) 2012; 35
Uthayakumar, Vengattaraman, Dhavachelvan (CR7) 2019; 83
CR4
Perera, Liu, Jayawardena (CR1) 2015; 3
Foi, Katkovnik, Egiazarian (CR10) 2007; 16
Cui, Kong, Gerla, Zhou (CR5) 2006; 20
CR8
CR19
CR18
CR17
Duchi, Hazan, Singer (CR12) 2011; 12
CR16
CR14
CR13
Zhai, Zhang, Yang, Lin, Xu (CR9) 2008; 18
CR11
CR20
Lakshmanaprabu, Mohanty, Shankar, Arunkumar, Ramirez (CR24) 2019; 92
Kavasidis, Palazzo, Di Salvo, Giordano, Spampinato (CR22) 2014; 70
Pascual, Sanjuan, Cueva, Pelayo, Alvarez, Gonzalez (CR3) 2011; 34
Dong, Loy, He, Tang (CR15) 2016; 38
Chang, Girod (CR21) 2007; 16
Elhoseny, Shankar, Lakshmanaprabu, Maseleno, Arunkumar (CR23) 2018
879_CR14
C Dong (879_CR15) 2016; 38
879_CR13
J-H Cui (879_CR5) 2006; 20
879_CR8
879_CR11
M Elhoseny (879_CR23) 2018
L Liu (879_CR6) 2008; 8
879_CR20
879_CR4
J Duchi (879_CR12) 2011; 12
MC Domingo (879_CR2) 2012; 35
J Pascual (879_CR3) 2011; 34
G Zhai (879_CR9) 2008; 18
879_CR19
A Foi (879_CR10) 2007; 16
879_CR18
879_CR17
879_CR16
J Uthayakumar (879_CR7) 2019; 83
CL Chang (879_CR21) 2007; 16
I Kavasidis (879_CR22) 2014; 70
SK Lakshmanaprabu (879_CR24) 2019; 92
C Perera (879_CR1) 2015; 3
References_xml – volume: 83
  start-page: 149
  year: 2019
  end-page: 157
  ident: CR7
  article-title: A new lossless neighborhood indexing sequence (NIS) algorithm for data compression in wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2018.09.009
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  end-page: 307
  ident: CR15
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– ident: CR19
– ident: CR18
– volume: 8
  start-page: 977
  issue: 8
  year: 2008
  end-page: 994
  ident: CR6
  article-title: Prospects and problems of wireless communications for underwater sensor networks
  publication-title: Wiley Wirel. Commun. Mob. Comput.
  doi: 10.1002/wcm.654
– volume: 3
  start-page: 585
  issue: 4
  year: 2015
  end-page: 598
  ident: CR1
  article-title: The emerging internet of things marketplace from an industrial perspective: a survey
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2015.2390034
– volume: 34
  start-page: 1634
  issue: 5
  year: 2011
  end-page: 1647
  ident: CR3
  article-title: Modeling architecture for collaborative virtual objects based on services
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.04.002
– ident: CR4
– ident: CR14
– ident: CR16
– volume: 35
  start-page: 1879
  issue: 6
  year: 2012
  end-page: 1890
  ident: CR2
  article-title: An overview of the internet of underwater things
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.07.012
– volume: 20
  start-page: 12
  issue: 3
  year: 2006
  end-page: 18
  ident: CR5
  article-title: The challenges of building mobile underwater wireless networks for aquatic applications
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2006.1637927
– ident: CR17
– ident: CR13
– ident: CR11
– volume: 18
  start-page: 122
  issue: 1
  year: 2008
  end-page: 126
  ident: CR9
  article-title: Efficient image deblocking based on postfiltering in shifted windows
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2007.906942
– volume: 92
  start-page: 374
  year: 2019
  end-page: 382
  ident: CR24
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2018.10.009
– volume: 16
  start-page: 1395
  issue: 5
  year: 2007
  end-page: 1411
  ident: CR10
  article-title: Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.891788
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: CR12
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– ident: CR8
– volume: 16
  start-page: 1289
  issue: 5
  year: 2007
  end-page: 1302
  ident: CR21
  article-title: Direction-adaptive discrete wavelet transform for image compression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.894242
– volume: 70
  start-page: 413
  issue: 1
  year: 2014
  end-page: 432
  ident: CR22
  article-title: An innovative web-based collaborative platform for video annotation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-013-1419-7
– year: 2018
  ident: CR23
  article-title: Hybrid optimization with cryptography encryption for medical image security in Internet of Things
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3801-x
– ident: CR20
– volume: 35
  start-page: 1879
  issue: 6
  year: 2012
  ident: 879_CR2
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.07.012
– volume: 34
  start-page: 1634
  issue: 5
  year: 2011
  ident: 879_CR3
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.04.002
– ident: 879_CR14
– ident: 879_CR13
– ident: 879_CR8
  doi: 10.1049/PBTE049E
– volume: 20
  start-page: 12
  issue: 3
  year: 2006
  ident: 879_CR5
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2006.1637927
– ident: 879_CR16
– volume: 16
  start-page: 1289
  issue: 5
  year: 2007
  ident: 879_CR21
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.894242
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 879_CR15
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 92
  start-page: 374
  year: 2019
  ident: 879_CR24
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2018.10.009
– ident: 879_CR19
– ident: 879_CR20
– volume: 70
  start-page: 413
  issue: 1
  year: 2014
  ident: 879_CR22
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-013-1419-7
– year: 2018
  ident: 879_CR23
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3801-x
– volume: 3
  start-page: 585
  issue: 4
  year: 2015
  ident: 879_CR1
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2015.2390034
– ident: 879_CR17
  doi: 10.1109/CVPR.2017.577
– volume: 16
  start-page: 1395
  issue: 5
  year: 2007
  ident: 879_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.891788
– volume: 12
  start-page: 2121
  year: 2011
  ident: 879_CR12
  publication-title: J. Mach. Learn. Res.
– ident: 879_CR18
– volume: 18
  start-page: 122
  issue: 1
  year: 2008
  ident: 879_CR9
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2007.906942
– ident: 879_CR4
– volume: 8
  start-page: 977
  issue: 8
  year: 2008
  ident: 879_CR6
  publication-title: Wiley Wirel. Commun. Mob. Comput.
  doi: 10.1002/wcm.654
– volume: 83
  start-page: 149
  year: 2019
  ident: 879_CR7
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2018.09.009
– ident: 879_CR11
  doi: 10.1109/CVPR.2016.90
SSID ssj0067635
Score 2.5400481
Snippet Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2097
SubjectTerms Algorithms
Artificial neural networks
Coding standards
Communication
Computer Graphics
Computer Science
Data compression
Data transmission
Deep learning
Discrete Wavelet Transform
Energy efficiency
Image coding
Image compression
Image Processing and Computer Vision
Image quality
Image reconstruction
Image transmission
Internet of Things
Machine learning
Multimedia Information Systems
Neural networks
Pattern Recognition
Propagation
Sensors
Signal to noise ratio
Signal,Image and Speech Processing
Special Issue Paper
Underwater
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBw8KBo0y5o1JxF1KMjYYYOhh5JkqQxmO7eq_77vtalDwV08Nw2lL-9970te3kfIsbDcQdaqGcQByWCFCKbjpmZGahk729BS5heFH1udTjgYqK7fcJv5ssoyJuaBepha3CO_aChsvSZD1bqavDFUjcLTVS-hsUxWsEsCSjd0g6cyEktstoaEK5ScAdJd-kszxdU5BFIg0ophVzbF5E9gmmebvw5Ic9xpV__7xRtk3Wec9LpYIptkySVbpFqqOVDv3Nvk-da5CfUqEi80l8ihkNJSSCvHDDXo6egVog_FKvSiejaho4QWe4ouo2lMcxWlT43zFoKg9OQh7fdOd0i_fde7uWdeeoFZ8MmM2QB5mYP8yKAe-RBQ33J9GYQulCgzZJRpxsYEXCtuhBM2jAH5h4C4SgQilmKXVJI0cXuEAv1W2koVI3cDl1e8GUsHTM8IGM9tjfDyv0fW9yVHeYxxNO-ojLaKwFZRbqtI1sjZ9zuToivHwtH10kCR99BZNLdOjZyXJp4__nu2_cWzHZC1BlLyvOKlTirZ9N0dklX7kY1m06N8fX4BPDbpeg
  priority: 102
  providerName: ProQuest
Title Deep learning model for real-time image compression in Internet of Underwater Things (IoUT)
URI https://link.springer.com/article/10.1007/s11554-019-00879-6
https://www.proquest.com/docview/2918676897
Volume 17
WOSCitedRecordID wos000588147800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: P5Z
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: K7-
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oePAiPiOKpAcPGm1CWbZsjz4gGg0hCIboYdOWriHBhcCqf9_pPtxo1EQve9m22Uw7881sZ-YDOHQ0M-i1Sop2gFM8IQ6VQUNSxSUPjK5LzuNC4dtmp-MNh6KbFoUtsmz37EoyttR5sZuFPgx9BbV91ATly1BEuPMsYUPv7j6zv9y2WLNhlscZRXyrpaUy36_xGY5yH_PLtWiMNu3S_75zHdZS75KcJcdhA5ZMuAmljLmBpIq8BY-XxsxIyhjxRGI6HILuK0EXckIt3zwZP6OlITbjPMmUDck4JMn_QxORaUBixqQ3addNyD_J0fV00D_ehkG71b-4oinNAtWofxHVro3BDPpCynKPjxDhNZM11zMet5RCSqhGoJTLpGDKMY72AkT5EaKrcFwn4M4OFMJpaHaBYKgtpOYisHEaqrdgjYAbjOqUg-OZLgPLpO3rtAe5pcKY-Hn3ZCs9H6Xnx9LzeRlOPubMkg4cv46uZJvop9q48OvCtu3jnmiW4TTbtPz1z6vt_W34PqzWbTgeZ7tUoBDNX8wBrOjXaLyYV6F43up0e1VYvmlSfHbdh2p8ct8Bhc_isA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB58gV6sT6xWzUFB0WB306abg4j4wNJaPFQQPKzZNCuFuq12VfxT_kZn9mFR0JsHz5sd2M2Xb2aSzHwAW8I4FqNWzZEHJEeECK7DiuaB1DK0xtVSJoXCzVqr5d3cqKsxeM9rYehaZc6JCVF3-ob2yA9cRa3XpKdqR4NHTqpRdLqaS2iksGjYt1dM2YaH9VOc323XPT9rn1zwTFWAG4RbzE2VUg6Lrj8gqe0OOjTj6HLVs54kBZ1ABZUwCKqOVk4grDBeiE6tg85EiaoIpUC74zBZEV6N1lWjxnPml9TcjRI8TzocPWs5K9JJS_XIcWPirjh1gVNcfnWEo-j224Fs4ufOC__tD83BbBZRs-N0CczDmI0WoJCrVbCMvBbh9tTaActUMu5ZIgHEMGRnGDb3eNx9sKz7gOzK6JZ9ejs4Yt2IpXumNmb9kCUqUa-a7KaCp2yn3r9u7y7B9Z984jJMRP3IrgCTqqy0kSqk3BQpTTmVUFrMZAOB4x1TBCefZ99kfddJ_qPnjzpGEzZ8xIafYMOXRdj7fGeQdh35dXQpB4SfMdDQH6GhCPs5pEaPf7a2-ru1TZi-aF82_Wa91ViDGZe2H5LbPSWYiJ-e7TpMmZe4O3zaSNYGg7u_htoHrkVErw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB20inixfmK1ag4eFA3tdtt0cxS1WCylYCsFD0s2TaRQt6Vd9e87sx9WRQXxvNmwTDJ58zYz8wCOXe0YjFoVx3NAcNwhLle2qngglLBGV5QQcaFwq95ue_2-7Hyo4o-z3bMryaSmgbo0hVFpMrCleeEbwSDSYMmpp5rkYhGWqpRIT3z97j47iwW1WyPK5QmHI9aV07KZ7-f4DE3zePPLFWmMPI38_795HdbSqJNdJNtkAxZMuAn5TNGBpQ6-BQ9XxkxYqiTxyGKZHIZhLcPQcsRJh54Nn_AEYpSJnmTQhmwYsuS_oonY2LJYSelV0byJKCg7aY573dNt6DWuu5c3PJVf4Br9MuK6RtzMYIwUkCb5AJFfO6pc84wnSGookEHVBkHNUdIJXONqzyL6DxB1pVtzrXB3IBeOQ7MLDCm4VFpIS_wN3V46VSsMsr3AxfGOLoCTWd7XaW9yksgY-fOuymQ9H63nx9bzRQHO3t-ZJJ05fh1dzBbUT7105lcktfMTnqwX4DxbwPnjn2fb-9vwI1jpXDX8VrN9uw-rFWLscUJMEXLR9NkcwLJ-iYaz6WG8ed8AT1_rDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+model+for+real-time+image+compression+in+Internet+of+Underwater+Things+%28IoUT%29&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Krishnaraj%2C+N.&rft.au=Elhoseny%2C+Mohamed&rft.au=Thenmozhi%2C+M.&rft.au=Selim%2C+Mahmoud+M.&rft.date=2020-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=17&rft.issue=6&rft.spage=2097&rft.epage=2111&rft_id=info:doi/10.1007%2Fs11554-019-00879-6&rft.externalDocID=10_1007_s11554_019_00879_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon