Deep learning model for real-time image compression in Internet of Underwater Things (IoUT)
Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of Internet of Underwater Things (IoUT). It offers a broader view of applications such as atmosphere observation, habitat monitoring of sea ani...
Uloženo v:
| Vydáno v: | Journal of real-time image processing Ročník 17; číslo 6; s. 2097 - 2111 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1861-8200, 1861-8219 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of Internet of Underwater Things (IoUT). It offers a broader view of applications such as atmosphere observation, habitat monitoring of sea animals, defense and disaster prediction. Data transmission of images captured by the smart underwater objects is very challenging due to the nature of underwater environment and necessitates an efficient image transmission strategy for IoUT. In this paper, we model and implement a discrete wavelet transform (DWT) based deep learning model for image compression in IoUT. For achieving effective compression with better reconstruction image quality, convolution neural network (CNN) is used at the encoding as well as decoding side. We validate DWT–CNN model using extensive set of experimentations and depict that the presented deep learning model is superior to existing methods such as super-resolution convolutional neural networks (SRCNN), JPEG and JPEG2000 in terms of compression performance as well as reconstructed image quality. The DWT–CNN model attains an average peak signal-to-noise ratio (PSNR) of 53.961 with average space saving (SS) of 79.7038%. |
|---|---|
| AbstractList | Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of Internet of Underwater Things (IoUT). It offers a broader view of applications such as atmosphere observation, habitat monitoring of sea animals, defense and disaster prediction. Data transmission of images captured by the smart underwater objects is very challenging due to the nature of underwater environment and necessitates an efficient image transmission strategy for IoUT. In this paper, we model and implement a discrete wavelet transform (DWT) based deep learning model for image compression in IoUT. For achieving effective compression with better reconstruction image quality, convolution neural network (CNN) is used at the encoding as well as decoding side. We validate DWT–CNN model using extensive set of experimentations and depict that the presented deep learning model is superior to existing methods such as super-resolution convolutional neural networks (SRCNN), JPEG and JPEG2000 in terms of compression performance as well as reconstructed image quality. The DWT–CNN model attains an average peak signal-to-noise ratio (PSNR) of 53.961 with average space saving (SS) of 79.7038%. |
| Author | Selim, Mahmoud M. Elhoseny, Mohamed Thenmozhi, M. Shankar, K. Krishnaraj, N. |
| Author_xml | – sequence: 1 givenname: N. surname: Krishnaraj fullname: Krishnaraj, N. organization: Department of Computer Science and Engineering, SASI Institute of Technology and Engineering – sequence: 2 givenname: Mohamed surname: Elhoseny fullname: Elhoseny, Mohamed organization: Faculty of Computers and Information, Mansoura University – sequence: 3 givenname: M. surname: Thenmozhi fullname: Thenmozhi, M. organization: Department of IT, SRM Institute of Science and Technology – sequence: 4 givenname: Mahmoud M. surname: Selim fullname: Selim, Mahmoud M. organization: Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University – sequence: 5 givenname: K. surname: Shankar fullname: Shankar, K. email: shankarcrypto@gmail.com organization: School of Computing, Kalasalingam Academy of Research and Education |
| BookMark | eNp9kD9PwzAQxS0EEm3hCzBZYoEh4Isbxx5R-VepEks7MVhOcimpErvYqRDfHpcgkBg63en03ru735gcW2eRkAtgN8BYfhsAsmyaMFAJYzJXiTgiI5ACEpmCOv7tGTsl4xA2jIlc8GxEXu8Rt7RF421j17RzFba0dp56NG3SNx3SpjNrpKXrth5DaJyljaVz26O32FNX05Wt0H-YOKDLt5gS6NXcrZbXZ-SkNm3A8586IavHh-XsOVm8PM1nd4uk5KD6pMxUOlWYZqwAkHnFBJRgWCZRCs5SXqhiWhdFBkZBwZGXspYgqxJR8YzXgk_I5ZC79e59h6HXG7fzNq7UqYqP50KqPKrSQVV6F4LHWm99fM1_amB6D1EPEHWEqL8h6n20_Gcqm970EULvTdMetvLBGuIeu0b_d9UB1xf6yIeb |
| CitedBy_id | crossref_primary_10_3233_JIFS_179480 crossref_primary_10_1109_JIOT_2022_3161050 crossref_primary_10_3233_JIFS_179483 crossref_primary_10_3233_JIFS_179484 crossref_primary_10_3233_JIFS_179482 crossref_primary_10_3233_JIFS_179487 crossref_primary_10_1371_journal_pone_0286685 crossref_primary_10_3233_JIFS_179485 crossref_primary_10_1016_j_apor_2021_102837 crossref_primary_10_1016_j_egyr_2022_01_177 crossref_primary_10_1109_TCSVT_2022_3218791 crossref_primary_10_3233_JIFS_179489 crossref_primary_10_3233_JIFS_179523 crossref_primary_10_1007_s00371_023_03069_5 crossref_primary_10_1155_2022_2343021 crossref_primary_10_1016_j_adhoc_2022_102998 crossref_primary_10_1007_s12145_021_00762_8 crossref_primary_10_1016_j_jnca_2021_103295 crossref_primary_10_1109_TCSVT_2024_3369638 crossref_primary_10_3390_jmse11010124 crossref_primary_10_1007_s11554_020_01051_1 crossref_primary_10_32604_cmc_2022_024618 crossref_primary_10_1109_JETCAS_2024_3490504 crossref_primary_10_1016_j_envres_2021_111527 crossref_primary_10_1007_s12652_020_02719_z crossref_primary_10_3233_JIFS_179490 crossref_primary_10_3233_JIFS_179491 crossref_primary_10_32604_cmc_2022_028570 crossref_primary_10_1155_2022_9607755 crossref_primary_10_3233_JIFS_179494 crossref_primary_10_1109_ACCESS_2022_3144137 crossref_primary_10_3233_JIFS_179492 crossref_primary_10_1080_17455030_2021_1998729 crossref_primary_10_3390_bdcc6020044 crossref_primary_10_3233_JIFS_179496 crossref_primary_10_3233_JIFS_179497 crossref_primary_10_1109_JSEN_2024_3402134 crossref_primary_10_1109_TR_2020_2972567 crossref_primary_10_3389_fams_2021_716044 crossref_primary_10_1007_s11277_021_09410_2 crossref_primary_10_1007_s11042_022_11952_x crossref_primary_10_1155_2022_5294151 crossref_primary_10_3233_JIFS_189810 crossref_primary_10_1109_JSEN_2021_3130947 crossref_primary_10_3390_electronics12122590 crossref_primary_10_1109_JSEN_2022_3228457 crossref_primary_10_1016_j_heliyon_2023_e22316 crossref_primary_10_3390_s23125596 crossref_primary_10_1007_s11554_023_01346_z crossref_primary_10_1007_s11554_021_01099_7 crossref_primary_10_1016_j_compeleceng_2021_107555 crossref_primary_10_1007_s11554_025_01621_1 crossref_primary_10_1007_s10772_020_09690_2 crossref_primary_10_3390_electronics10243079 crossref_primary_10_3233_JIFS_179501 crossref_primary_10_1109_ACCESS_2022_3173256 crossref_primary_10_1109_JOE_2023_3249243 crossref_primary_10_1007_s12145_025_01732_0 crossref_primary_10_1016_j_aaf_2021_10_006 crossref_primary_10_1007_s00366_021_01455_y crossref_primary_10_1002_ett_4399 crossref_primary_10_1155_2021_5553470 crossref_primary_10_1007_s11277_025_11783_7 crossref_primary_10_1108_LHT_10_2021_0351 crossref_primary_10_32604_cmc_2021_014924 crossref_primary_10_1109_TITS_2022_3202225 crossref_primary_10_1155_2021_5539793 crossref_primary_10_1109_JSEN_2022_3187372 crossref_primary_10_1155_2021_1875060 crossref_primary_10_1007_s00371_020_01884_8 crossref_primary_10_1016_j_sysarc_2021_102214 crossref_primary_10_3233_JIFS_179477 crossref_primary_10_3390_s21113698 crossref_primary_10_3233_JIFS_179475 crossref_primary_10_1038_s41598_024_57385_4 crossref_primary_10_1007_s11276_022_02921_1 crossref_primary_10_1109_MGRS_2023_3343623 crossref_primary_10_1007_s00366_021_01450_3 crossref_primary_10_3233_JIFS_179512 crossref_primary_10_1109_TCSS_2024_3376732 crossref_primary_10_1109_ACCESS_2025_3552555 crossref_primary_10_3233_JIFS_179518 crossref_primary_10_3233_JIFS_179515 crossref_primary_10_1109_TCSVT_2022_3229296 crossref_primary_10_1007_s11227_023_05629_x crossref_primary_10_1007_s11227_025_07322_7 crossref_primary_10_1109_TITS_2022_3148166 crossref_primary_10_1109_TITS_2022_3162850 crossref_primary_10_1016_j_ins_2024_121008 crossref_primary_10_1109_JOE_2023_3235058 |
| Cites_doi | 10.1016/j.adhoc.2018.09.009 10.1109/TPAMI.2015.2439281 10.1002/wcm.654 10.1109/TETC.2015.2390034 10.1016/j.jnca.2011.04.002 10.1016/j.jnca.2012.07.012 10.1109/MNET.2006.1637927 10.1109/TCSVT.2007.906942 10.1016/j.future.2018.10.009 10.1109/TIP.2007.891788 10.1109/TIP.2007.894242 10.1007/s11042-013-1419-7 10.1007/s00521-018-3801-x 10.1049/PBTE049E 10.1109/CVPR.2017.577 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s11554-019-00879-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| EndPage | 2111 |
| ExternalDocumentID | 10_1007_s11554_019_00879_6 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-c59249e250b1187d061c1a058e863023b9b4fbb51a91b3e3c8f818dcee9353f63 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 125 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588147800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-8200 |
| IngestDate | Wed Nov 05 04:17:32 EST 2025 Sat Nov 29 03:23:16 EST 2025 Tue Nov 18 22:02:46 EST 2025 Fri Feb 21 02:39:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Deep learning Image compression Image reconstruction IoUT Underwater |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c59249e250b1187d061c1a058e863023b9b4fbb51a91b3e3c8f818dcee9353f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918676897 |
| PQPubID | 2044148 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2918676897 crossref_primary_10_1007_s11554_019_00879_6 crossref_citationtrail_10_1007_s11554_019_00879_6 springer_journals_10_1007_s11554_019_00879_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Liu, Zhou, Cui (CR6) 2008; 8 Domingo (CR2) 2012; 35 Uthayakumar, Vengattaraman, Dhavachelvan (CR7) 2019; 83 CR4 Perera, Liu, Jayawardena (CR1) 2015; 3 Foi, Katkovnik, Egiazarian (CR10) 2007; 16 Cui, Kong, Gerla, Zhou (CR5) 2006; 20 CR8 CR19 CR18 CR17 Duchi, Hazan, Singer (CR12) 2011; 12 CR16 CR14 CR13 Zhai, Zhang, Yang, Lin, Xu (CR9) 2008; 18 CR11 CR20 Lakshmanaprabu, Mohanty, Shankar, Arunkumar, Ramirez (CR24) 2019; 92 Kavasidis, Palazzo, Di Salvo, Giordano, Spampinato (CR22) 2014; 70 Pascual, Sanjuan, Cueva, Pelayo, Alvarez, Gonzalez (CR3) 2011; 34 Dong, Loy, He, Tang (CR15) 2016; 38 Chang, Girod (CR21) 2007; 16 Elhoseny, Shankar, Lakshmanaprabu, Maseleno, Arunkumar (CR23) 2018 879_CR14 C Dong (879_CR15) 2016; 38 879_CR13 J-H Cui (879_CR5) 2006; 20 879_CR8 879_CR11 M Elhoseny (879_CR23) 2018 L Liu (879_CR6) 2008; 8 879_CR20 879_CR4 J Duchi (879_CR12) 2011; 12 MC Domingo (879_CR2) 2012; 35 J Pascual (879_CR3) 2011; 34 G Zhai (879_CR9) 2008; 18 879_CR19 A Foi (879_CR10) 2007; 16 879_CR18 879_CR17 879_CR16 J Uthayakumar (879_CR7) 2019; 83 CL Chang (879_CR21) 2007; 16 I Kavasidis (879_CR22) 2014; 70 SK Lakshmanaprabu (879_CR24) 2019; 92 C Perera (879_CR1) 2015; 3 |
| References_xml | – volume: 83 start-page: 149 year: 2019 end-page: 157 ident: CR7 article-title: A new lossless neighborhood indexing sequence (NIS) algorithm for data compression in wireless sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2018.09.009 – volume: 38 start-page: 295 issue: 2 year: 2016 end-page: 307 ident: CR15 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – ident: CR19 – ident: CR18 – volume: 8 start-page: 977 issue: 8 year: 2008 end-page: 994 ident: CR6 article-title: Prospects and problems of wireless communications for underwater sensor networks publication-title: Wiley Wirel. Commun. Mob. Comput. doi: 10.1002/wcm.654 – volume: 3 start-page: 585 issue: 4 year: 2015 end-page: 598 ident: CR1 article-title: The emerging internet of things marketplace from an industrial perspective: a survey publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2015.2390034 – volume: 34 start-page: 1634 issue: 5 year: 2011 end-page: 1647 ident: CR3 article-title: Modeling architecture for collaborative virtual objects based on services publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2011.04.002 – ident: CR4 – ident: CR14 – ident: CR16 – volume: 35 start-page: 1879 issue: 6 year: 2012 end-page: 1890 ident: CR2 article-title: An overview of the internet of underwater things publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.07.012 – volume: 20 start-page: 12 issue: 3 year: 2006 end-page: 18 ident: CR5 article-title: The challenges of building mobile underwater wireless networks for aquatic applications publication-title: IEEE Netw. doi: 10.1109/MNET.2006.1637927 – ident: CR17 – ident: CR13 – ident: CR11 – volume: 18 start-page: 122 issue: 1 year: 2008 end-page: 126 ident: CR9 article-title: Efficient image deblocking based on postfiltering in shifted windows publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2007.906942 – volume: 92 start-page: 374 year: 2019 end-page: 382 ident: CR24 article-title: Optimal deep learning model for classification of lung cancer on CT images publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2018.10.009 – volume: 16 start-page: 1395 issue: 5 year: 2007 end-page: 1411 ident: CR10 article-title: Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.891788 – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: CR12 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – ident: CR8 – volume: 16 start-page: 1289 issue: 5 year: 2007 end-page: 1302 ident: CR21 article-title: Direction-adaptive discrete wavelet transform for image compression publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.894242 – volume: 70 start-page: 413 issue: 1 year: 2014 end-page: 432 ident: CR22 article-title: An innovative web-based collaborative platform for video annotation publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-013-1419-7 – year: 2018 ident: CR23 article-title: Hybrid optimization with cryptography encryption for medical image security in Internet of Things publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3801-x – ident: CR20 – volume: 35 start-page: 1879 issue: 6 year: 2012 ident: 879_CR2 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.07.012 – volume: 34 start-page: 1634 issue: 5 year: 2011 ident: 879_CR3 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2011.04.002 – ident: 879_CR14 – ident: 879_CR13 – ident: 879_CR8 doi: 10.1049/PBTE049E – volume: 20 start-page: 12 issue: 3 year: 2006 ident: 879_CR5 publication-title: IEEE Netw. doi: 10.1109/MNET.2006.1637927 – ident: 879_CR16 – volume: 16 start-page: 1289 issue: 5 year: 2007 ident: 879_CR21 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.894242 – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 879_CR15 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 92 start-page: 374 year: 2019 ident: 879_CR24 publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2018.10.009 – ident: 879_CR19 – ident: 879_CR20 – volume: 70 start-page: 413 issue: 1 year: 2014 ident: 879_CR22 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-013-1419-7 – year: 2018 ident: 879_CR23 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3801-x – volume: 3 start-page: 585 issue: 4 year: 2015 ident: 879_CR1 publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2015.2390034 – ident: 879_CR17 doi: 10.1109/CVPR.2017.577 – volume: 16 start-page: 1395 issue: 5 year: 2007 ident: 879_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.891788 – volume: 12 start-page: 2121 year: 2011 ident: 879_CR12 publication-title: J. Mach. Learn. Res. – ident: 879_CR18 – volume: 18 start-page: 122 issue: 1 year: 2008 ident: 879_CR9 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2007.906942 – ident: 879_CR4 – volume: 8 start-page: 977 issue: 8 year: 2008 ident: 879_CR6 publication-title: Wiley Wirel. Commun. Mob. Comput. doi: 10.1002/wcm.654 – volume: 83 start-page: 149 year: 2019 ident: 879_CR7 publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2018.09.009 – ident: 879_CR11 doi: 10.1109/CVPR.2016.90 |
| SSID | ssj0067635 |
| Score | 2.540115 |
| Snippet | Recently, the advancements of Internet-of-Things (IoT) have expanded its application in underwater environment which leads to the development of a new field of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2097 |
| SubjectTerms | Algorithms Artificial neural networks Coding standards Communication Computer Graphics Computer Science Data compression Data transmission Deep learning Discrete Wavelet Transform Energy efficiency Image coding Image compression Image Processing and Computer Vision Image quality Image reconstruction Image transmission Internet of Things Machine learning Multimedia Information Systems Neural networks Pattern Recognition Propagation Sensors Signal to noise ratio Signal,Image and Speech Processing Special Issue Paper Underwater |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnTKXnwQdHA-pUmj6IOBRmimwx8KM1HZTC7sVX9982lqUVRQZ-bhnK5u99dc3c_hA5DpVlHp4IoJSgJFcuIiH1BfJpRwAsdhLZR-Cbu9dhwyG9dU9i8qnavriStp66b3QD6TOrLCcxR44QuoiUDdwwIG-7uHyr_S2HEGqRZjHrE4FvHtcp8v8dnOKpjzC_XohZtus3_fecaWnXRJT4r1WEdLeh8AzUr5gbsDHkTPV5oPcWOMeIJWzocbMJXbELIMQG-eTx6Np4GQ8V5WSmb41GOy_-HusCTDFvGpLcU9i3JP_HR9WTQP95Cg-5l__yKOJoFIo39FURGkINpEwsJ4B5XBuGll3YiphkFSiHBRZgJEXkp90SgA8kyg_LKoCsPoiCjwTZq5JNc7yBssiMWp8ZR-EKGRge4rwIvSiEnpEx2VAt5lbQT6WaQAxXGOKmnJ4P0EiO9xEovoS108vHOtJzA8evqdnWIibPGeeJzGNtHGY9b6LQ6tPrxz7vt_m35HlrxIR231S5t1ChmL3ofLcvXYjSfHVgtfQebO97f priority: 102 providerName: Springer Nature |
| Title | Deep learning model for real-time image compression in Internet of Underwater Things (IoUT) |
| URI | https://link.springer.com/article/10.1007/s11554-019-00879-6 https://www.proquest.com/docview/2918676897 |
| Volume | 17 |
| WOSCitedRecordID | wos000588147800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1861-8219 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: P5Z dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1861-8219 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: K7- dateStart: 20060301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1861-8219 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwIwql8oEDCCyazbFPiFUgUFWxCcEhipegSiUtbYHfx5M4VCDBhUsuSawoY8-bsWfeA9gKteFNk0qqtWQ01DyjMvYl9VnGEC9MEBaNwldxq8UfHkTbbbgNXVll5RMLR617CvfI932B1GuMi_ig_0pRNQpPV52ExiRMI0sCSje0o8fKEzMkW8OEizOPWqRruqaZsnUOgdQm0oIiK5ug7DswjaPNHwekBe6czf_3ixdgzkWc5LCcIoswYfIlmK_UHIhb3MvwdGJMnzgViWdSSOQQG9ISG1Z2KWrQk86L9T4Eq9DL6tmcdHJS7imaEellpFBR-khx3FIQlGxf9O5ud1bg7uz09vicOukFquyaHFEVYV5mbHwkUY9cW9RXXtqMuOEMZYakkGEmZeSlwpOBCRTPLPJri7giiIKMBaswlfdyswbEZkw8Tq3z8KUK7bwQvg68KMU8kXHV1DXwqv-eKMdLjvIY3WTMqIy2SqytksJWCavB7tc7_ZKV48-n65WBErdCh8nYOjXYq0w8vv37aOt_j7YBsz6m5EXFSx2mRoM3swkz6n3UGQ4aMH102mpfN2DyMqaNYrba6_XN_SdEcOyZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RgNReSgutmgLtHqhERVeNX-vdA0KoFBElRBwSCYmD8T5cRSJOStwi_hS_kRk_GrUSuXHo2fZItr-db2Z3Zj6A3dA62XGp5tZqwUMrM65jX3NfZIL4wgVh2SjcjwcDeXGhzlfgvumFobLKxieWjtpODe2Rf_UVjV4TUsWHs5-cVKPodLWR0Khg0XN3t5iyzQ-6x_h_P_n-yffht1Neqwpwg3AruIko5XBI_Zqkti0SmvHSTiSdFKSgo5UOM60jL1WeDlxgZIakZpFMVBAFmQjQ7jNYDQMZ07rqxbzx_IKGu1GCJ4XHkVk7dZNO1apHxI2Ju-I0BU5x8TcRLqLbfw5kS547Wf_fvtAreFlH1OyoWgKvYcXlG7DeqFWw2nltwuWxczNWq2T8YKUEEMOQnWHYfM2L8cSx8QS9K6Mq-6o6OGfjnFV7pq5g04yVKlG3KdmtBE_ZXnc6Gn5-A6MnecW30MqnuXsHDDNCGafoHH1tQsS98m3gRSnlwUKajm2D1_znxNRz10n-4zpZTIwmbCSIjaTERiLasP_nmVk1dWTp3dsNIJLaA82TBRra8KWB1OLy49beL7f2EZ6fDs_6Sb876G3BC5-2H8rqnm1oFTe_3A6smd_FeH7zoVwbDK6eGmoPMkJESA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQcPioZ2X2lyFLVYLKVgKwUPy2aTlULdlnbVv29mH1ZFBfG82bBMJvlmNjPfB3DsKs3rOpBUKcmoq3hEZcOW1GYRQ7zQjps2CrcbnQ4fDET3Qxd_Wu1eXElmPQ3I0hQntYmKavPGN4RBkwYLipxqgrJFWHKxkB7z9bv74ixmSLeGKRdnFjVYV8_bZr6f4zM0zePNL1ekKfI0y___5nVYy6NOcpG5yQYs6HgTyoWiA8k3-BY8XGk9IbmSxCNJZXKICWuJCS1HFHXoyfDJnEAEK9GzCtqYDGOS_VfUCRlHJFVSeg1w3kwUlJy0xv3e6Tb0m9e9yxuayy_Q0OzLhIYe5mbaxEgSNcmVQf7QCuoe15yh1JAU0o2k9KxAWNLRTsgjg_7KoK5wPCdizg6U4nGsd4GYrIk3AnOA2DJ0jW8IWzmWF2CuyHhYVxWwCsv7Yc5NjhIZI3_OqozW8431_NR6PqvA2fs7k4yZ49fR1WJB_XyXznxbIJ0f46JRgfNiAeePf55t72_Dj2Cle9X0263O7T6s2pixpwUxVSgl02d9AMvhSzKcTQ9T530D82Hqpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+model+for+real-time+image+compression+in+Internet+of+Underwater+Things+%28IoUT%29&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Krishnaraj%2C+N.&rft.au=Elhoseny%2C+Mohamed&rft.au=Thenmozhi%2C+M.&rft.au=Selim%2C+Mahmoud+M.&rft.date=2020-12-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=17&rft.issue=6&rft.spage=2097&rft.epage=2111&rft_id=info:doi/10.1007%2Fs11554-019-00879-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_019_00879_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |