TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition

Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to breakthrough results in the computer vision field by allowing models to provide varying levels of focus across image regions. In this work, we present...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 83; no. 8; pp. 22099 - 22117
Main Authors: Bodapati, Jyostna Devi, Balaji, Bharadwaj Bagepalli
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2024
Springer Nature B.V
Subjects:
ISSN:1573-7721, 1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to breakthrough results in the computer vision field by allowing models to provide varying levels of focus across image regions. In this work, we present Tumor Aware Net, an end-to-end trainable attention based Convolutional Neural Network that learns effective representations from Magnetic Resonance (MR) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA) to project the higher dimensional MR image representations to a lower dimensional space with improved discrimination. These lower dimensional descriptors are passed through an attention module, which prioritizes tumor descriptors over the rest. Furthermore, the proposed SCDA is trained jointly with the Neural induced Support Vector Classifier (NSVC) to achieve maximum margin separation. The proposed model has been validated on several publicly available benchmark datasets for tumor recognition. Based on the outcomes of the experimental studies, we claim that the proposed model favours stability and complements the learned representations when combined with attention. Despite its simplicity in terms of model parameters, the proposed model outperforms existing models for tumor type categorization.
AbstractList Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to breakthrough results in the computer vision field by allowing models to provide varying levels of focus across image regions. In this work, we present Tumor Aware Net, an end-to-end trainable attention based Convolutional Neural Network that learns effective representations from Magnetic Resonance (MR) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA) to project the higher dimensional MR image representations to a lower dimensional space with improved discrimination. These lower dimensional descriptors are passed through an attention module, which prioritizes tumor descriptors over the rest. Furthermore, the proposed SCDA is trained jointly with the Neural induced Support Vector Classifier (NSVC) to achieve maximum margin separation. The proposed model has been validated on several publicly available benchmark datasets for tumor recognition. Based on the outcomes of the experimental studies, we claim that the proposed model favours stability and complements the learned representations when combined with attention. Despite its simplicity in terms of model parameters, the proposed model outperforms existing models for tumor type categorization.
Author Bodapati, Jyostna Devi
Balaji, Bharadwaj Bagepalli
Author_xml – sequence: 1
  givenname: Jyostna Devi
  orcidid: 0000-0002-5185-882X
  surname: Bodapati
  fullname: Bodapati, Jyostna Devi
  email: jyostna.bodapati82@gmail.com
  organization: VFSTR Deemed to be University
– sequence: 2
  givenname: Bharadwaj Bagepalli
  surname: Balaji
  fullname: Balaji, Bharadwaj Bagepalli
  organization: IEEE Member
BookMark eNp9kM9O9SAQxYnRxL8v4IrEdXWAtlzcGfX7NDG60TWh3Om1pkIF6o1P4GtLrYnGhathmPObOTm7ZNN5h4QcMjhmAPIkMgYlL4CLglVVJYv1BtlhlRSFlJxt_nhvk90YnwBYXfFyh7zfj88-nK1NwFtMp_QCcaABh4ARXTKp8472aILr3Iquu_RITUp5Mv03JuKSxsGEiNR69-r7cRqYni7R-S5OjBmTR2f9EgNtfaBNMJ2jabqa71i_ct3E7JOt1vQRD77qHnn4d3l_flXc3P2_Pj-7KaxgKhW2gkZakJwvbYl1rRRf5EYaZVqrJFMKDQDnTSPEAhRnolR11VaAbW2sKMUeOZr3DsG_jBiTfvJjyJaj5koAKMFBZNViVtngYwzYatvNYaRsv9cM9BS7nmPXOXb9GbteZ5T_QofQPZvw9jckZihmsVth-Hb1B_UBcxma7g
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107221
crossref_primary_10_1016_j_compbiomed_2025_110166
crossref_primary_10_1007_s00138_025_01665_0
crossref_primary_10_3390_bioengineering12030274
crossref_primary_10_1007_s00521_023_09164_x
crossref_primary_10_1016_j_neucom_2025_130824
Cites_doi 10.1007/s12652-020-02568-w
10.1016/j.compmedimag.2019.05.001
10.1371/journal.pone.0157112
10.3390/app10061999
10.1142/S0218001421570056
10.1109/JBHI.2019.2891526
10.1166/jmihi.2018.2285
10.1016/j.jocs.2018.12.003
10.1007/s00521-021-06546-x
10.18653/v1/D15-1166
10.1016/j.bbe.2018.10.004
10.1007/s12652-020-02727-z
10.1016/j.future.2019.05.035
10.1109/CVPR.2017.195
10.1007/s11042-020-10423-5
10.18280/ts.380337
10.1109/ICCKE.2018.8566571
10.3390/electronics9060914
10.1038/s41598-021-90428-8
10.1177/1063293X211010542
10.1007/s11760-021-01877-7
10.1117/12.2254195
10.1007/s40031-022-00746-2
10.1371/journal.pone.0140381
10.1109/EIT.2018.8500308
10.1007/978-981-13-6459-4_17
10.1016/j.measurement.2021.110491
10.3390/diagnostics10080565
10.1007/s11760-020-01816-y
10.1016/j.patrec.2019.11.019
10.1109/ACCESS.2022.3153306
10.1109/RBME.2019.2946868
10.1109/ICIP.2018.8451379
10.1007/978-981-10-9035-6_33
10.1016/j.neunet.2021.02.012
10.1007/s11760-013-0456-z
10.1007/s11760-020-01793-2
10.1007/s11042-022-12811-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-15557-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 22117
ExternalDocumentID 10_1007_s11042_023_15557_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7XB
8AL
8FD
8FK
AFFHD
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-c50b7c0722dc4e6699287227a9afc97199ea0022bb338092134965f50ef6ac343
IEDL.DBID M0C
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051759100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 09:16:35 EST 2025
Sat Nov 29 06:20:33 EST 2025
Tue Nov 18 22:13:01 EST 2025
Fri Feb 21 02:41:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Reconstruction convolutional auto-encoder
Pre-trained Convolutional Neural Networks (CNNs)
Spatial attention
Convolutional support vector classifier
Brain tumor recognition
Deep features
Sparse Convolutional Denoising Autoencoder (SCDA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c50b7c0722dc4e6699287227a9afc97199ea0022bb338092134965f50ef6ac343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5185-882X
PQID 2930093203
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_2930093203
crossref_citationtrail_10_1007_s11042_023_15557_w
crossref_primary_10_1007_s11042_023_15557_w
springer_journals_10_1007_s11042_023_15557_w
PublicationCentury 2000
PublicationDate 20240300
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bodapati JD, Rohith V (2021) Chxcapsnet: Deep capsule network with transfer learning for evaluating pneumonia in paediatric chest radiographs. Measurement, 110491
Deepika K, Bodapati JD, Srihitha RK (2019) An efficient automatic brain tumor classification using lbp features and svm-based classifier. In: Proceedings of International conference on computational intelligence and data engineering, Springer, pp 163–170
ZhaoYLiHWanSSekuboyinaAHuXTettehGPiraudMMenzeBKnowledge-aided convolutional neural network for small organ segmentationIEEE J Biomed Health Infor20192341363137310.1109/JBHI.2019.2891526
Ismael MR, Abdel-Qader I (2018) Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE international conference on electro/information technology (EIT), IEEE, pp 0252–0257
AsifSYiWAinQUHouJYiTSiJImproving effectiveness of different deep transfer learning-based models for detecting brain tumors from mr imagesIEEE Access202210347163473010.1109/ACCESS.2022.3153306
ChengJHuangWCaoSYangRYangWYunZWangZFengQEnhanced performance of brain tumor classification via tumor region augmentation and partitionPloS one20151010e014038110.1371/journal.pone.0140381264478614598126
XieXA k-nearest neighbor technique for brain tumor segmentation using minkowski distanceJ Med Imaging Health Infor20188218018510.1166/jmihi.2018.2285
SasankVVenkateswarluSBrain tumor classification using modified kernel based softplus extreme learning machineMultimed Tools Appl2021809135131353410.1007/s11042-020-10423-5
AnarakiAKAyatiMKazemiFMagnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithmsBiocybern Biomed Eng2019391637410.1016/j.bbe.2018.10.004
ArakeriMPReddyGRMComputer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance imagesSIViP20159240942510.1007/s11760-013-0456-z
BİNGOLHALATASBClassification of brain tumor images using deep learning methodsTurk J Sci Technol2021161137143
DeepakSAmeerPAutomated categorization of brain tumor from mri using cnn features and svmJ Ambient Intell Humanized Comput20211288357836910.1007/s12652-020-02568-w
Wang H, Zhang D, Ding S, Gao Z, Feng J, Wan S (2021) Rib segmentation algorithm for x-ray image based on unpaired sample augmentation and multi-scale network. Neural Comput Applic, 1–15
Bodapati JD (2022) Stacked convolutional auto-encoder representations with spatial attention for efficient diabetic retinopathy diagnosis. Multimed Tools Appl, 1–24
Cheng J (2021) Brain tumor dataset. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427(2017). Accessed: 10 Apr 2021
MehrotraRAnsariMAgrawalRAnandRA transfer learning approach for ai-based classification of brain tumorsMach Learn Appl20202100003
BodapatiJDVeeranjaneyuluNShareefSNHakakSBilalMMaddikuntaPKRJoOBlended multi-modal deep convnet features for diabetic retinopathy severity predictionElectron20209691410.3390/electronics9060914
NaralasettiVShaikRKKatepalliGBodapatiJDDeep learning models for pneumonia identification and classification based on x-ray imagesTraitement du Signal202138310.18280/ts.380337
HalderTKSarkarKMandalASarkarSA novel histogram feature for brain tumor detectionInt J Inf Technol202214418831892
RanjbarzadehRKasgariABGhoushchiSJAnariSNaseriMBendechacheMBrain tumor segmentation based on deep learning and an attention mechanism using mri multi-modalities brain imagesSci Rep202111111710.1038/s41598-021-90428-8
SwatiZNKZhaoQKabirMAliFAliZAhmedSLuJBrain tumor classification for mr images using transfer learning and fine-tuningComput Med Imaging Graph201975344610.1016/j.compmedimag.2019.05.00131150950
Paul JS, Plassard AJ, Landman BA, Fabbri D (2017) Deep learning for brain tumor classification. In: Medical Imaging 2017: Biomedical applications in molecular, structural, and functional imaging. vol 10137, International society for optics and photonics, p 1013710
Bodapati JD (2021) Sae-pd-seq: sequence autoencoder-based pre-training of decoder for sequence learning tasks. SIViP, 1–7
Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR (2019) Brain tumor classification using convolutional neural network. In: World Congress on medical physics and biomedical engineering 2018. Springer, pp 183–189
Mohammed (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/mohamedmetwalysherif/braintumordataset. Accessed: 10 Mar 2022
SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using mri imagesPattern Recogn Lett20201291811892020PaReL.129..181S10.1016/j.patrec.2019.11.019
WangLZhenHFangXWanSDingWGuoYA unified two-parallel-branch deep neural network for joint gland contour and segmentation learningFutur Gener Comput Syst201910031632410.1016/j.future.2019.05.035
Br35H (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection. Accessed: 10 Mar 2022
Pashaei A, Sajedi H, Jazayeri N (2018) Brain tumor classification via convolutional neural network and extreme learning machines. In: 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), pp 314–319
BodapatiJDSrilakshmiUVeeranjaneyuluNFernet: a deep cnn architecture for facial expression recognition in the wildJ Inst Eng (India):, Ser B20221032439448
Afshar P, Mohammadi A, Plataniotis KN (2018) Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, pp 3129–3133
KimYOhnIKimDFast convergence rates of deep neural networks for classificationNeural Netw202113817919710.1016/j.neunet.2021.02.01233676328
Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation
Naoneel (2021) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection(2020). Accessed: 30 Sep 2021
ChengJYangWHuangMHuangWJiangJZhouYYangRZhaoJFengYFengQRetrieval of brain tumors by adaptive spatial pooling and fisher vector representationPloS one2016116e015711210.1371/journal.pone.0157112272730914894628
Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (07)
Bodapati JD, Shareef SN, Naralasetti V, Mundukur NB (2021) Msenet: Multi-modal squeeze-and-excitation network for brain tumor severity prediction. International Journal of Pattern Recognition and Artificial Intelligence, 2157005
Bodapati JD, Shaik NS, Naralasetti V (2021) Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. Journal of Ambient Intelligence and Humanized Computing
Bodapati JD, Naik D, Suvarna B, Naralasetti V (2022) A deep learning framework with cross pooled soft attention for facial expression recognition. Journal of The Institution of Engineers (India):, Series B, 1–11
SajjadMKhanSMuhammadKWuWUllahABaikSWMulti-grade brain tumor classification using deep cnn with extensive data augmentationJ Comput Sci20193017418210.1016/j.jocs.2018.12.003
KhanMAAshrafIAlhaisoniMDamaševičiusRSchererRRehmanABukhariSACMultimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologistsDiagnostics202010856510.3390/diagnostics10080565327817957459797
GhaffariMSowmyaAOliverRAutomated brain tumor segmentation using multimodal brain scans: A survey based on models submitted to the brats 2012–2018 challengesIEEE Rev Biomed Eng20191315616810.1109/RBME.2019.294686831613783
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate
ThayumanavanMRamasamyAAn efficient approach for brain tumor detection and segmentation in mr brain images using random forest classifierConcurr Eng202129326627410.1177/1063293X211010542
BodapatiJDShaikNSNaralasettiVMundukurNBJoint training of two-channel deep neural network for brain tumor classificationSIViP202115475376010.1007/s11760-020-01793-2
BodapatiJDVijayAVeeranjaneyuluNBrain tumor detection using deep features in the latent spaceIngé,nierie des Systèmes d’Information2020252
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
BadžaMMBarjaktarovićMČClassification of brain tumors from mri images using a convolutional neural networkAppl Sci2020106199910.3390/app10061999
Deepak S, Ameer P (2020) Automated categorization of brain tumor from mri using cnn features and svm. Journal of Ambient Intelligence and Humanized Computing
Bodapati JD, Shaik NS, Naralasetti V (2021) Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. SIViP, 1–8
JD Bodapati (15557_CR19) 2020; 25
15557_CR25
15557_CR24
M Ghaffari (15557_CR28) 2019; 13
JD Bodapati (15557_CR18) 2020; 9
15557_CR21
15557_CR20
S Deepak (15557_CR26) 2021; 12
15557_CR16
R Ranjbarzadeh (15557_CR40) 2021; 11
J Cheng (15557_CR22) 2015; 10
15557_CR14
MM Badža (15557_CR6) 2020; 10
15557_CR13
Y Kim (15557_CR32) 2021; 138
15557_CR12
15557_CR11
15557_CR10
S Asif (15557_CR5) 2022; 10
ZNK Swati (15557_CR44) 2019; 75
TK Halder (15557_CR29) 2022; 14
AK Anaraki (15557_CR3) 2019; 39
JD Bodapati (15557_CR15) 2021; 15
V Sasank (15557_CR42) 2021; 80
MI Sharif (15557_CR43) 2020; 129
15557_CR47
15557_CR46
JD Bodapati (15557_CR17) 2022; 103
J Cheng (15557_CR23) 2016; 11
X Xie (15557_CR49) 2018; 8
15557_CR2
15557_CR1
15557_CR39
15557_CR38
R Mehrotra (15557_CR34) 2020; 2
V Naralasetti (15557_CR37) 2021; 38
15557_CR7
15557_CR9
H BİNGOL (15557_CR8) 2021; 16
L Wang (15557_CR48) 2019; 100
Y Zhao (15557_CR50) 2019; 23
15557_CR36
15557_CR35
MA Khan (15557_CR31) 2020; 10
15557_CR33
M Sajjad (15557_CR41) 2019; 30
15557_CR30
MP Arakeri (15557_CR4) 2015; 9
M Thayumanavan (15557_CR45) 2021; 29
15557_CR27
References_xml – reference: BodapatiJDVeeranjaneyuluNShareefSNHakakSBilalMMaddikuntaPKRJoOBlended multi-modal deep convnet features for diabetic retinopathy severity predictionElectron20209691410.3390/electronics9060914
– reference: Bodapati JD (2021) Sae-pd-seq: sequence autoencoder-based pre-training of decoder for sequence learning tasks. SIViP, 1–7
– reference: ThayumanavanMRamasamyAAn efficient approach for brain tumor detection and segmentation in mr brain images using random forest classifierConcurr Eng202129326627410.1177/1063293X211010542
– reference: Bodapati JD, Shaik NS, Naralasetti V (2021) Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. Journal of Ambient Intelligence and Humanized Computing
– reference: Paul JS, Plassard AJ, Landman BA, Fabbri D (2017) Deep learning for brain tumor classification. In: Medical Imaging 2017: Biomedical applications in molecular, structural, and functional imaging. vol 10137, International society for optics and photonics, p 1013710
– reference: GhaffariMSowmyaAOliverRAutomated brain tumor segmentation using multimodal brain scans: A survey based on models submitted to the brats 2012–2018 challengesIEEE Rev Biomed Eng20191315616810.1109/RBME.2019.294686831613783
– reference: ZhaoYLiHWanSSekuboyinaAHuXTettehGPiraudMMenzeBKnowledge-aided convolutional neural network for small organ segmentationIEEE J Biomed Health Infor20192341363137310.1109/JBHI.2019.2891526
– reference: Mohammed (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/mohamedmetwalysherif/braintumordataset. Accessed: 10 Mar 2022
– reference: BİNGOLHALATASBClassification of brain tumor images using deep learning methodsTurk J Sci Technol2021161137143
– reference: Bodapati JD, Rohith V (2021) Chxcapsnet: Deep capsule network with transfer learning for evaluating pneumonia in paediatric chest radiographs. Measurement, 110491
– reference: ChengJYangWHuangMHuangWJiangJZhouYYangRZhaoJFengYFengQRetrieval of brain tumors by adaptive spatial pooling and fisher vector representationPloS one2016116e015711210.1371/journal.pone.0157112272730914894628
– reference: Deepak S, Ameer P (2020) Automated categorization of brain tumor from mri using cnn features and svm. Journal of Ambient Intelligence and Humanized Computing
– reference: BodapatiJDShaikNSNaralasettiVMundukurNBJoint training of two-channel deep neural network for brain tumor classificationSIViP202115475376010.1007/s11760-020-01793-2
– reference: XieXA k-nearest neighbor technique for brain tumor segmentation using minkowski distanceJ Med Imaging Health Infor20188218018510.1166/jmihi.2018.2285
– reference: AnarakiAKAyatiMKazemiFMagnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithmsBiocybern Biomed Eng2019391637410.1016/j.bbe.2018.10.004
– reference: Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation
– reference: SasankVVenkateswarluSBrain tumor classification using modified kernel based softplus extreme learning machineMultimed Tools Appl2021809135131353410.1007/s11042-020-10423-5
– reference: Deepika K, Bodapati JD, Srihitha RK (2019) An efficient automatic brain tumor classification using lbp features and svm-based classifier. In: Proceedings of International conference on computational intelligence and data engineering, Springer, pp 163–170
– reference: Bodapati JD, Shareef SN, Naralasetti V, Mundukur NB (2021) Msenet: Multi-modal squeeze-and-excitation network for brain tumor severity prediction. International Journal of Pattern Recognition and Artificial Intelligence, 2157005
– reference: KimYOhnIKimDFast convergence rates of deep neural networks for classificationNeural Netw202113817919710.1016/j.neunet.2021.02.01233676328
– reference: Bodapati JD, Shaik NS, Naralasetti V (2021) Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. SIViP, 1–8
– reference: MehrotraRAnsariMAgrawalRAnandRA transfer learning approach for ai-based classification of brain tumorsMach Learn Appl20202100003
– reference: DeepakSAmeerPAutomated categorization of brain tumor from mri using cnn features and svmJ Ambient Intell Humanized Comput20211288357836910.1007/s12652-020-02568-w
– reference: Cheng J (2021) Brain tumor dataset. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427(2017). Accessed: 10 Apr 2021
– reference: KhanMAAshrafIAlhaisoniMDamaševičiusRSchererRRehmanABukhariSACMultimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologistsDiagnostics202010856510.3390/diagnostics10080565327817957459797
– reference: SajjadMKhanSMuhammadKWuWUllahABaikSWMulti-grade brain tumor classification using deep cnn with extensive data augmentationJ Comput Sci20193017418210.1016/j.jocs.2018.12.003
– reference: BodapatiJDSrilakshmiUVeeranjaneyuluNFernet: a deep cnn architecture for facial expression recognition in the wildJ Inst Eng (India):, Ser B20221032439448
– reference: Bodapati JD, Naik D, Suvarna B, Naralasetti V (2022) A deep learning framework with cross pooled soft attention for facial expression recognition. Journal of The Institution of Engineers (India):, Series B, 1–11
– reference: BadžaMMBarjaktarovićMČClassification of brain tumors from mri images using a convolutional neural networkAppl Sci2020106199910.3390/app10061999
– reference: Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR (2019) Brain tumor classification using convolutional neural network. In: World Congress on medical physics and biomedical engineering 2018. Springer, pp 183–189
– reference: Naoneel (2021) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection(2020). Accessed: 30 Sep 2021
– reference: Bodapati JD (2022) Stacked convolutional auto-encoder representations with spatial attention for efficient diabetic retinopathy diagnosis. Multimed Tools Appl, 1–24
– reference: SwatiZNKZhaoQKabirMAliFAliZAhmedSLuJBrain tumor classification for mr images using transfer learning and fine-tuningComput Med Imaging Graph201975344610.1016/j.compmedimag.2019.05.00131150950
– reference: SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using mri imagesPattern Recogn Lett20201291811892020PaReL.129..181S10.1016/j.patrec.2019.11.019
– reference: Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (07)
– reference: HalderTKSarkarKMandalASarkarSA novel histogram feature for brain tumor detectionInt J Inf Technol202214418831892
– reference: AsifSYiWAinQUHouJYiTSiJImproving effectiveness of different deep transfer learning-based models for detecting brain tumors from mr imagesIEEE Access202210347163473010.1109/ACCESS.2022.3153306
– reference: RanjbarzadehRKasgariABGhoushchiSJAnariSNaseriMBendechacheMBrain tumor segmentation based on deep learning and an attention mechanism using mri multi-modalities brain imagesSci Rep202111111710.1038/s41598-021-90428-8
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
– reference: Wang H, Zhang D, Ding S, Gao Z, Feng J, Wan S (2021) Rib segmentation algorithm for x-ray image based on unpaired sample augmentation and multi-scale network. Neural Comput Applic, 1–15
– reference: BodapatiJDVijayAVeeranjaneyuluNBrain tumor detection using deep features in the latent spaceIngé,nierie des Systèmes d’Information2020252
– reference: NaralasettiVShaikRKKatepalliGBodapatiJDDeep learning models for pneumonia identification and classification based on x-ray imagesTraitement du Signal202138310.18280/ts.380337
– reference: ArakeriMPReddyGRMComputer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance imagesSIViP20159240942510.1007/s11760-013-0456-z
– reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate
– reference: Br35H (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection. Accessed: 10 Mar 2022
– reference: Pashaei A, Sajedi H, Jazayeri N (2018) Brain tumor classification via convolutional neural network and extreme learning machines. In: 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), pp 314–319
– reference: WangLZhenHFangXWanSDingWGuoYA unified two-parallel-branch deep neural network for joint gland contour and segmentation learningFutur Gener Comput Syst201910031632410.1016/j.future.2019.05.035
– reference: Afshar P, Mohammadi A, Plataniotis KN (2018) Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, pp 3129–3133
– reference: ChengJHuangWCaoSYangRYangWYunZWangZFengQEnhanced performance of brain tumor classification via tumor region augmentation and partitionPloS one20151010e014038110.1371/journal.pone.0140381264478614598126
– reference: Ismael MR, Abdel-Qader I (2018) Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE international conference on electro/information technology (EIT), IEEE, pp 0252–0257
– volume: 12
  start-page: 8357
  issue: 8
  year: 2021
  ident: 15557_CR26
  publication-title: J Ambient Intell Humanized Comput
  doi: 10.1007/s12652-020-02568-w
– ident: 15557_CR20
– volume: 75
  start-page: 34
  year: 2019
  ident: 15557_CR44
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.05.001
– volume: 11
  start-page: e0157112
  issue: 6
  year: 2016
  ident: 15557_CR23
  publication-title: PloS one
  doi: 10.1371/journal.pone.0157112
– volume: 10
  start-page: 1999
  issue: 6
  year: 2020
  ident: 15557_CR6
  publication-title: Appl Sci
  doi: 10.3390/app10061999
– ident: 15557_CR16
  doi: 10.1142/S0218001421570056
– ident: 15557_CR25
  doi: 10.1007/s12652-020-02568-w
– volume: 25
  start-page: 2
  year: 2020
  ident: 15557_CR19
  publication-title: Ingé,nierie des Systèmes d’Information
– ident: 15557_CR7
– volume: 23
  start-page: 1363
  issue: 4
  year: 2019
  ident: 15557_CR50
  publication-title: IEEE J Biomed Health Infor
  doi: 10.1109/JBHI.2019.2891526
– volume: 8
  start-page: 180
  issue: 2
  year: 2018
  ident: 15557_CR49
  publication-title: J Med Imaging Health Infor
  doi: 10.1166/jmihi.2018.2285
– volume: 30
  start-page: 174
  year: 2019
  ident: 15557_CR41
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– ident: 15557_CR47
  doi: 10.1007/s00521-021-06546-x
– ident: 15557_CR33
  doi: 10.18653/v1/D15-1166
– volume: 39
  start-page: 63
  issue: 1
  year: 2019
  ident: 15557_CR3
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.10.004
– ident: 15557_CR13
  doi: 10.1007/s12652-020-02727-z
– volume: 100
  start-page: 316
  year: 2019
  ident: 15557_CR48
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.05.035
– ident: 15557_CR24
  doi: 10.1109/CVPR.2017.195
– volume: 80
  start-page: 13513
  issue: 9
  year: 2021
  ident: 15557_CR42
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10423-5
– volume: 38
  start-page: 3
  year: 2021
  ident: 15557_CR37
  publication-title: Traitement du Signal
  doi: 10.18280/ts.380337
– ident: 15557_CR38
  doi: 10.1109/ICCKE.2018.8566571
– volume: 9
  start-page: 914
  issue: 6
  year: 2020
  ident: 15557_CR18
  publication-title: Electron
  doi: 10.3390/electronics9060914
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 15557_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90428-8
– volume: 29
  start-page: 266
  issue: 3
  year: 2021
  ident: 15557_CR45
  publication-title: Concurr Eng
  doi: 10.1177/1063293X211010542
– ident: 15557_CR9
  doi: 10.1007/s11760-021-01877-7
– ident: 15557_CR35
– ident: 15557_CR39
  doi: 10.1117/12.2254195
– ident: 15557_CR11
  doi: 10.1007/s40031-022-00746-2
– volume: 10
  start-page: e0140381
  issue: 10
  year: 2015
  ident: 15557_CR22
  publication-title: PloS one
  doi: 10.1371/journal.pone.0140381
– volume: 14
  start-page: 1883
  issue: 4
  year: 2022
  ident: 15557_CR29
  publication-title: Int J Inf Technol
– ident: 15557_CR30
  doi: 10.1109/EIT.2018.8500308
– ident: 15557_CR27
  doi: 10.1007/978-981-13-6459-4_17
– ident: 15557_CR21
– ident: 15557_CR12
  doi: 10.1016/j.measurement.2021.110491
– volume: 10
  start-page: 565
  issue: 8
  year: 2020
  ident: 15557_CR31
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10080565
– ident: 15557_CR14
  doi: 10.1007/s11760-020-01816-y
– volume: 129
  start-page: 181
  year: 2020
  ident: 15557_CR43
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.019
– volume: 10
  start-page: 34716
  year: 2022
  ident: 15557_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153306
– volume: 103
  start-page: 439
  issue: 2
  year: 2022
  ident: 15557_CR17
  publication-title: J Inst Eng (India):, Ser B
– volume: 16
  start-page: 137
  issue: 1
  year: 2021
  ident: 15557_CR8
  publication-title: Turk J Sci Technol
– ident: 15557_CR36
– volume: 13
  start-page: 156
  year: 2019
  ident: 15557_CR28
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2019.2946868
– ident: 15557_CR2
  doi: 10.1109/ICIP.2018.8451379
– volume: 2
  start-page: 100003
  year: 2020
  ident: 15557_CR34
  publication-title: Mach Learn Appl
– ident: 15557_CR1
  doi: 10.1007/978-981-10-9035-6_33
– volume: 138
  start-page: 179
  year: 2021
  ident: 15557_CR32
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.02.012
– volume: 9
  start-page: 409
  issue: 2
  year: 2015
  ident: 15557_CR4
  publication-title: SIViP
  doi: 10.1007/s11760-013-0456-z
– volume: 15
  start-page: 753
  issue: 4
  year: 2021
  ident: 15557_CR15
  publication-title: SIViP
  doi: 10.1007/s11760-020-01793-2
– ident: 15557_CR10
  doi: 10.1007/s11042-022-12811-5
– ident: 15557_CR46
SSID ssj0016524
Score 2.4019809
Snippet Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22099
SubjectTerms Artificial neural networks
Brain cancer
Brain research
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Datasets
Image analysis
Machine learning
Magnetic resonance imaging
Medical imaging
Multimedia
Multimedia Information Systems
Neural networks
Noise reduction
Representations
Special Purpose and Application-Based Systems
Success
Support vector machines
Tumors
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHbxpo0_Qj3oY6PMgQnbJbSdJUBG1H17k_wX_bpEs3FRX03CQNeZ_Je-_3AI65EzGqKMVOEghM05TjiLgC80jKRGiKU16BuF6H_X40HLIbWxQ2rrPd65BkpakXxW6uKSXRNgZrG-iHeLoMK9rcRaZhw-3dwzx2EPiE2vKY7-d9NkELv_JLKLSyML3m__a2CRvWo0TdGQtswZLKWtCsuzUgK7wtWP8APbgNb4PJS150p7xQfVWeoQulRqhCuKyrkTJkO0o8IvNYiwwQZ5UaiYzlS5BWRcVYIZO2btlX70JrsfzJPD8gPilzA5KZ6D1oxxgJ04sCleavaJ61lGc7cN-7HJxfYduUAUstrSWWviNC6YSEJJKqIGBM37kICTnjqWShy5jixjEQQl9-HWYA41jgp76j0oBLj3q70MjyTO0BoonwkypW6CmaEodT5YVCuiKKkihUog1uTadYWsRy0zjjOV5gLZtzj_W5x9W5x9M2nMznjGZ4Hb-O7tTkj63sjmPtAJl3HuJ4bTityb34_PNq-38bfgBrRHtIs4S2DjTKYqIOYVW-lk_j4qji6XfzPfY2
  priority: 102
  providerName: Springer Nature
Title TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition
URI https://link.springer.com/article/10.1007/s11042-023-15557-w
https://www.proquest.com/docview/2930093203
Volume 83
WOSCitedRecordID wos001051759100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKBQqFsrKB25g4ThOHHNBpbRCApZVKVC4RH4FVYJkyWbZn8DfxpN1dgGJXrhYivKyNGPPeB7fB_BQs0IJLwRlLjdUVJWmBU8M1YW1zgSJC92DuL6Wk0lxfq6mMeA2j2WVw57Yb9SusRgjfxLMEp6-OUufzb5TZI3C7Gqk0NiCHfRssKTvDTtaZxHyLJLaFowGy5jEpplV61yCjSnBYtFgUTNJl38apo23-VeCtLc7J7v_O-ObcCN6nORwpSK34Iqv92B3YHMgcXHvwfXfoAlvw8-zxbemPVzq1k9895S88H5GegTMoVupJpFx4gvBYC5BoM6-dJKgZXQkbFXt3BMsa4_qHWYRdrnmAsMTRC-6BkE0XZhDcJyJQa4K0uFfybqqqanvwPuT47OjlzSSNlAbVnNHbcaMtExy7qzwea5UOJNxLrXSlVUyUcprdByMCYdjphBQTuVZlTFf5dqmIt2H7bqp_V0gwpnM9bnE1IuKMy18Ko1NTFG4QnozgmSQWGkjojkSa3wtN1jMKOUySLnspVwuR_Bo_c5shedx6dMHg2jLuLbn5UauI3g8KMfm9r-_du_yr92Hazx4TKsCtwPY7tqFfwBX7Y_uYt6OYUt-_DSGnefHk-lpuHol6bjXdhz52zBOs89hPH334RdEtgeX
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQ5UChULBTwAU5gkThObCMhVFGqVrusOCxSb8F_QZUgWbJZVjwBb8Mz4snPLiDRWw-ckziW_c2MxzPzDcATHUnFPec0cpmhvCg0lSw2VEtrnQk7znVL4joR06k8O1Pvt-DnUAuDaZWDTmwVtass3pG_CGYJvW8WJa_nXyl2jcLo6tBCo4PF2H9fBZdt8er0KOzvU8aO387enNC-qwC1AW4NtWlkhI0EY85yn2VKBaeBMaGVLqwSsVJeo2UzJnhvkULGM5WlRRr5ItM24UkY9wpc5YkUKFdjQddRiyztm-jKiAZLHPdFOl2pXoyFMMFC0mDBU0FXfxrCzen2r4Bsa-eOd_-3FboFN_sTNTnsROA2bPlyD3aHbhWkV157cOM36sU78GO2_FLVhytd-6lvXpIj7-ekZfgcqrFK0nfU-ETwspogEWmbGkrQ8jsSVHG98ATT9nvxDbMIWrw6x-sXopdNhSShLswhOAbEYC8O0uBfyTprqyrvwodLWZx92C6r0t8Dwp1JXRsrTTwvWKS5T4SxsZHSSeHNCOIBIbntGduxccjnfMM1jajKA6ryFlX5agTP1t_MO76SC98-GKCU97prkW9wNILnAxg3j_892v2LR3sM109m7yb55HQ6fgA7LJwOu2S-A9hu6qV_CNfst-Z8UT9qpYrAx8sG6S9Jklrg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAcKJQiFgr4ACewmjjOj5EQqlhWVK1WeyhSxSXYjoMqQbJks6x4At6Jp2MmcXYBid564JzEsezP8-OZ-QbgqQ4yJZ2UPCgSw2VZap6J0HCdWVsY3HGpOxLXk3Q6zc7O1GwLfg61MJRWOcjETlAXtaU78gNUS-R9iyA6KH1axGw8eT3_yqmDFEVah3YaPUSO3fcVum-LV0dj3OtnQkzenr55x32HAW4Rei23cWBSG6RCFFa6JFEKHQghUq10aVUaKuU0aTlj0JMLFLGfqSQu48CVibaRjHDcK3A1RR-T0gln8Yd1BCOJfUPdLOColUNfsNOX7YVUFIPakqM2j1O--lMpbizdv4Kznc6b7PzPq3UbbnlLmx32R-MObLlqF3aGLhbMC7VduPkbJeNd-HG6_FI3hyvduKlrX7Kxc3PWMX8OVVoV8502PjG6xGZEUNqljDKyCAqGIrpZOEbp_P5Y4yxQutfndC3D9LKtiTy0wDmgw8AM9ehgLf2VrbO56moP3l_K4tyD7aqu3H1gsjBx0cVQIydLEWjpotTY0GRZkaXOjCAc0JJbz-RODUU-5xsOakJYjgjLO4TlqxE8X38z73lMLnx7f4BV7mXaIt9gagQvBmBuHv97tAcXj_YEriM285Oj6fFDuCHQaOxz_PZhu22W7hFcs9_a80XzuDtgDD5eNkZ_AU8kZAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TumorAwareNet%3A+Deep+representation+learning+with+attention+based+sparse+convolutional+denoising+autoencoder+for+brain+tumor+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bodapati%2C+Jyostna+Devi&rft.au=Balaji%2C+Bharadwaj+Bagepalli&rft.date=2024-03-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=8&rft.spage=22099&rft.epage=22117&rft_id=info:doi/10.1007%2Fs11042-023-15557-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15557_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon