TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition
Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to breakthrough results in the computer vision field by allowing models to provide varying levels of focus across image regions. In this work, we present...
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 83; číslo 8; s. 22099 - 22117 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to breakthrough results in the computer vision field by allowing models to provide varying levels of focus across image regions. In this work, we present Tumor Aware Net, an end-to-end trainable attention based Convolutional Neural Network that learns effective representations from Magnetic Resonance (MR) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA) to project the higher dimensional MR image representations to a lower dimensional space with improved discrimination. These lower dimensional descriptors are passed through an attention module, which prioritizes tumor descriptors over the rest. Furthermore, the proposed SCDA is trained jointly with the Neural induced Support Vector Classifier (NSVC) to achieve maximum margin separation. The proposed model has been validated on several publicly available benchmark datasets for tumor recognition. Based on the outcomes of the experimental studies, we claim that the proposed model favours stability and complements the learned representations when combined with attention. Despite its simplicity in terms of model parameters, the proposed model outperforms existing models for tumor type categorization. |
|---|---|
| AbstractList | Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to breakthrough results in the computer vision field by allowing models to provide varying levels of focus across image regions. In this work, we present Tumor Aware Net, an end-to-end trainable attention based Convolutional Neural Network that learns effective representations from Magnetic Resonance (MR) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA) to project the higher dimensional MR image representations to a lower dimensional space with improved discrimination. These lower dimensional descriptors are passed through an attention module, which prioritizes tumor descriptors over the rest. Furthermore, the proposed SCDA is trained jointly with the Neural induced Support Vector Classifier (NSVC) to achieve maximum margin separation. The proposed model has been validated on several publicly available benchmark datasets for tumor recognition. Based on the outcomes of the experimental studies, we claim that the proposed model favours stability and complements the learned representations when combined with attention. Despite its simplicity in terms of model parameters, the proposed model outperforms existing models for tumor type categorization. |
| Author | Bodapati, Jyostna Devi Balaji, Bharadwaj Bagepalli |
| Author_xml | – sequence: 1 givenname: Jyostna Devi orcidid: 0000-0002-5185-882X surname: Bodapati fullname: Bodapati, Jyostna Devi email: jyostna.bodapati82@gmail.com organization: VFSTR Deemed to be University – sequence: 2 givenname: Bharadwaj Bagepalli surname: Balaji fullname: Balaji, Bharadwaj Bagepalli organization: IEEE Member |
| BookMark | eNp9kM9O9SAQxYnRxL8v4IrEdXWAtlzcGfX7NDG60TWh3Om1pkIF6o1P4GtLrYnGhathmPObOTm7ZNN5h4QcMjhmAPIkMgYlL4CLglVVJYv1BtlhlRSFlJxt_nhvk90YnwBYXfFyh7zfj88-nK1NwFtMp_QCcaABh4ARXTKp8472aILr3Iquu_RITUp5Mv03JuKSxsGEiNR69-r7cRqYni7R-S5OjBmTR2f9EgNtfaBNMJ2jabqa71i_ct3E7JOt1vQRD77qHnn4d3l_flXc3P2_Pj-7KaxgKhW2gkZakJwvbYl1rRRf5EYaZVqrJFMKDQDnTSPEAhRnolR11VaAbW2sKMUeOZr3DsG_jBiTfvJjyJaj5koAKMFBZNViVtngYwzYatvNYaRsv9cM9BS7nmPXOXb9GbteZ5T_QofQPZvw9jckZihmsVth-Hb1B_UBcxma7g |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107221 crossref_primary_10_1016_j_compbiomed_2025_110166 crossref_primary_10_1007_s00138_025_01665_0 crossref_primary_10_3390_bioengineering12030274 crossref_primary_10_1007_s00521_023_09164_x crossref_primary_10_1016_j_neucom_2025_130824 |
| Cites_doi | 10.1007/s12652-020-02568-w 10.1016/j.compmedimag.2019.05.001 10.1371/journal.pone.0157112 10.3390/app10061999 10.1142/S0218001421570056 10.1109/JBHI.2019.2891526 10.1166/jmihi.2018.2285 10.1016/j.jocs.2018.12.003 10.1007/s00521-021-06546-x 10.18653/v1/D15-1166 10.1016/j.bbe.2018.10.004 10.1007/s12652-020-02727-z 10.1016/j.future.2019.05.035 10.1109/CVPR.2017.195 10.1007/s11042-020-10423-5 10.18280/ts.380337 10.1109/ICCKE.2018.8566571 10.3390/electronics9060914 10.1038/s41598-021-90428-8 10.1177/1063293X211010542 10.1007/s11760-021-01877-7 10.1117/12.2254195 10.1007/s40031-022-00746-2 10.1371/journal.pone.0140381 10.1109/EIT.2018.8500308 10.1007/978-981-13-6459-4_17 10.1016/j.measurement.2021.110491 10.3390/diagnostics10080565 10.1007/s11760-020-01816-y 10.1016/j.patrec.2019.11.019 10.1109/ACCESS.2022.3153306 10.1109/RBME.2019.2946868 10.1109/ICIP.2018.8451379 10.1007/978-981-10-9035-6_33 10.1016/j.neunet.2021.02.012 10.1007/s11760-013-0456-z 10.1007/s11760-020-01793-2 10.1007/s11042-022-12811-5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-15557-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 22117 |
| ExternalDocumentID | 10_1007_s11042_023_15557_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7XB 8AL 8FD 8FK AFFHD JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-c50b7c0722dc4e6699287227a9afc97199ea0022bb338092134965f50ef6ac343 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051759100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Wed Nov 05 09:16:35 EST 2025 Sat Nov 29 06:20:33 EST 2025 Tue Nov 18 22:13:01 EST 2025 Fri Feb 21 02:41:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Reconstruction convolutional auto-encoder Pre-trained Convolutional Neural Networks (CNNs) Spatial attention Convolutional support vector classifier Brain tumor recognition Deep features Sparse Convolutional Denoising Autoencoder (SCDA) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c50b7c0722dc4e6699287227a9afc97199ea0022bb338092134965f50ef6ac343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5185-882X |
| PQID | 2930093203 |
| PQPubID | 54626 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2930093203 crossref_citationtrail_10_1007_s11042_023_15557_w crossref_primary_10_1007_s11042_023_15557_w springer_journals_10_1007_s11042_023_15557_w |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Bodapati JD, Rohith V (2021) Chxcapsnet: Deep capsule network with transfer learning for evaluating pneumonia in paediatric chest radiographs. Measurement, 110491 Deepika K, Bodapati JD, Srihitha RK (2019) An efficient automatic brain tumor classification using lbp features and svm-based classifier. In: Proceedings of International conference on computational intelligence and data engineering, Springer, pp 163–170 ZhaoYLiHWanSSekuboyinaAHuXTettehGPiraudMMenzeBKnowledge-aided convolutional neural network for small organ segmentationIEEE J Biomed Health Infor20192341363137310.1109/JBHI.2019.2891526 Ismael MR, Abdel-Qader I (2018) Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE international conference on electro/information technology (EIT), IEEE, pp 0252–0257 AsifSYiWAinQUHouJYiTSiJImproving effectiveness of different deep transfer learning-based models for detecting brain tumors from mr imagesIEEE Access202210347163473010.1109/ACCESS.2022.3153306 ChengJHuangWCaoSYangRYangWYunZWangZFengQEnhanced performance of brain tumor classification via tumor region augmentation and partitionPloS one20151010e014038110.1371/journal.pone.0140381264478614598126 XieXA k-nearest neighbor technique for brain tumor segmentation using minkowski distanceJ Med Imaging Health Infor20188218018510.1166/jmihi.2018.2285 SasankVVenkateswarluSBrain tumor classification using modified kernel based softplus extreme learning machineMultimed Tools Appl2021809135131353410.1007/s11042-020-10423-5 AnarakiAKAyatiMKazemiFMagnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithmsBiocybern Biomed Eng2019391637410.1016/j.bbe.2018.10.004 ArakeriMPReddyGRMComputer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance imagesSIViP20159240942510.1007/s11760-013-0456-z BİNGOLHALATASBClassification of brain tumor images using deep learning methodsTurk J Sci Technol2021161137143 DeepakSAmeerPAutomated categorization of brain tumor from mri using cnn features and svmJ Ambient Intell Humanized Comput20211288357836910.1007/s12652-020-02568-w Wang H, Zhang D, Ding S, Gao Z, Feng J, Wan S (2021) Rib segmentation algorithm for x-ray image based on unpaired sample augmentation and multi-scale network. Neural Comput Applic, 1–15 Bodapati JD (2022) Stacked convolutional auto-encoder representations with spatial attention for efficient diabetic retinopathy diagnosis. Multimed Tools Appl, 1–24 Cheng J (2021) Brain tumor dataset. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427(2017). Accessed: 10 Apr 2021 MehrotraRAnsariMAgrawalRAnandRA transfer learning approach for ai-based classification of brain tumorsMach Learn Appl20202100003 BodapatiJDVeeranjaneyuluNShareefSNHakakSBilalMMaddikuntaPKRJoOBlended multi-modal deep convnet features for diabetic retinopathy severity predictionElectron20209691410.3390/electronics9060914 NaralasettiVShaikRKKatepalliGBodapatiJDDeep learning models for pneumonia identification and classification based on x-ray imagesTraitement du Signal202138310.18280/ts.380337 HalderTKSarkarKMandalASarkarSA novel histogram feature for brain tumor detectionInt J Inf Technol202214418831892 RanjbarzadehRKasgariABGhoushchiSJAnariSNaseriMBendechacheMBrain tumor segmentation based on deep learning and an attention mechanism using mri multi-modalities brain imagesSci Rep202111111710.1038/s41598-021-90428-8 SwatiZNKZhaoQKabirMAliFAliZAhmedSLuJBrain tumor classification for mr images using transfer learning and fine-tuningComput Med Imaging Graph201975344610.1016/j.compmedimag.2019.05.00131150950 Paul JS, Plassard AJ, Landman BA, Fabbri D (2017) Deep learning for brain tumor classification. In: Medical Imaging 2017: Biomedical applications in molecular, structural, and functional imaging. vol 10137, International society for optics and photonics, p 1013710 Bodapati JD (2021) Sae-pd-seq: sequence autoencoder-based pre-training of decoder for sequence learning tasks. SIViP, 1–7 Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR (2019) Brain tumor classification using convolutional neural network. In: World Congress on medical physics and biomedical engineering 2018. Springer, pp 183–189 Mohammed (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/mohamedmetwalysherif/braintumordataset. Accessed: 10 Mar 2022 SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using mri imagesPattern Recogn Lett20201291811892020PaReL.129..181S10.1016/j.patrec.2019.11.019 WangLZhenHFangXWanSDingWGuoYA unified two-parallel-branch deep neural network for joint gland contour and segmentation learningFutur Gener Comput Syst201910031632410.1016/j.future.2019.05.035 Br35H (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection. Accessed: 10 Mar 2022 Pashaei A, Sajedi H, Jazayeri N (2018) Brain tumor classification via convolutional neural network and extreme learning machines. In: 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), pp 314–319 BodapatiJDSrilakshmiUVeeranjaneyuluNFernet: a deep cnn architecture for facial expression recognition in the wildJ Inst Eng (India):, Ser B20221032439448 Afshar P, Mohammadi A, Plataniotis KN (2018) Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, pp 3129–3133 KimYOhnIKimDFast convergence rates of deep neural networks for classificationNeural Netw202113817919710.1016/j.neunet.2021.02.01233676328 Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation Naoneel (2021) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection(2020). Accessed: 30 Sep 2021 ChengJYangWHuangMHuangWJiangJZhouYYangRZhaoJFengYFengQRetrieval of brain tumors by adaptive spatial pooling and fisher vector representationPloS one2016116e015711210.1371/journal.pone.0157112272730914894628 Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (07) Bodapati JD, Shareef SN, Naralasetti V, Mundukur NB (2021) Msenet: Multi-modal squeeze-and-excitation network for brain tumor severity prediction. International Journal of Pattern Recognition and Artificial Intelligence, 2157005 Bodapati JD, Shaik NS, Naralasetti V (2021) Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. Journal of Ambient Intelligence and Humanized Computing Bodapati JD, Naik D, Suvarna B, Naralasetti V (2022) A deep learning framework with cross pooled soft attention for facial expression recognition. Journal of The Institution of Engineers (India):, Series B, 1–11 SajjadMKhanSMuhammadKWuWUllahABaikSWMulti-grade brain tumor classification using deep cnn with extensive data augmentationJ Comput Sci20193017418210.1016/j.jocs.2018.12.003 KhanMAAshrafIAlhaisoniMDamaševičiusRSchererRRehmanABukhariSACMultimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologistsDiagnostics202010856510.3390/diagnostics10080565327817957459797 GhaffariMSowmyaAOliverRAutomated brain tumor segmentation using multimodal brain scans: A survey based on models submitted to the brats 2012–2018 challengesIEEE Rev Biomed Eng20191315616810.1109/RBME.2019.294686831613783 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate ThayumanavanMRamasamyAAn efficient approach for brain tumor detection and segmentation in mr brain images using random forest classifierConcurr Eng202129326627410.1177/1063293X211010542 BodapatiJDShaikNSNaralasettiVMundukurNBJoint training of two-channel deep neural network for brain tumor classificationSIViP202115475376010.1007/s11760-020-01793-2 BodapatiJDVijayAVeeranjaneyuluNBrain tumor detection using deep features in the latent spaceIngé,nierie des Systèmes d’Information2020252 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 BadžaMMBarjaktarovićMČClassification of brain tumors from mri images using a convolutional neural networkAppl Sci2020106199910.3390/app10061999 Deepak S, Ameer P (2020) Automated categorization of brain tumor from mri using cnn features and svm. Journal of Ambient Intelligence and Humanized Computing Bodapati JD, Shaik NS, Naralasetti V (2021) Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. SIViP, 1–8 JD Bodapati (15557_CR19) 2020; 25 15557_CR25 15557_CR24 M Ghaffari (15557_CR28) 2019; 13 JD Bodapati (15557_CR18) 2020; 9 15557_CR21 15557_CR20 S Deepak (15557_CR26) 2021; 12 15557_CR16 R Ranjbarzadeh (15557_CR40) 2021; 11 J Cheng (15557_CR22) 2015; 10 15557_CR14 MM Badža (15557_CR6) 2020; 10 15557_CR13 Y Kim (15557_CR32) 2021; 138 15557_CR12 15557_CR11 15557_CR10 S Asif (15557_CR5) 2022; 10 ZNK Swati (15557_CR44) 2019; 75 TK Halder (15557_CR29) 2022; 14 AK Anaraki (15557_CR3) 2019; 39 JD Bodapati (15557_CR15) 2021; 15 V Sasank (15557_CR42) 2021; 80 MI Sharif (15557_CR43) 2020; 129 15557_CR47 15557_CR46 JD Bodapati (15557_CR17) 2022; 103 J Cheng (15557_CR23) 2016; 11 X Xie (15557_CR49) 2018; 8 15557_CR2 15557_CR1 15557_CR39 15557_CR38 R Mehrotra (15557_CR34) 2020; 2 V Naralasetti (15557_CR37) 2021; 38 15557_CR7 15557_CR9 H BİNGOL (15557_CR8) 2021; 16 L Wang (15557_CR48) 2019; 100 Y Zhao (15557_CR50) 2019; 23 15557_CR36 15557_CR35 MA Khan (15557_CR31) 2020; 10 15557_CR33 M Sajjad (15557_CR41) 2019; 30 15557_CR30 MP Arakeri (15557_CR4) 2015; 9 M Thayumanavan (15557_CR45) 2021; 29 15557_CR27 |
| References_xml | – reference: BodapatiJDVeeranjaneyuluNShareefSNHakakSBilalMMaddikuntaPKRJoOBlended multi-modal deep convnet features for diabetic retinopathy severity predictionElectron20209691410.3390/electronics9060914 – reference: Bodapati JD (2021) Sae-pd-seq: sequence autoencoder-based pre-training of decoder for sequence learning tasks. SIViP, 1–7 – reference: ThayumanavanMRamasamyAAn efficient approach for brain tumor detection and segmentation in mr brain images using random forest classifierConcurr Eng202129326627410.1177/1063293X211010542 – reference: Bodapati JD, Shaik NS, Naralasetti V (2021) Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. Journal of Ambient Intelligence and Humanized Computing – reference: Paul JS, Plassard AJ, Landman BA, Fabbri D (2017) Deep learning for brain tumor classification. In: Medical Imaging 2017: Biomedical applications in molecular, structural, and functional imaging. vol 10137, International society for optics and photonics, p 1013710 – reference: GhaffariMSowmyaAOliverRAutomated brain tumor segmentation using multimodal brain scans: A survey based on models submitted to the brats 2012–2018 challengesIEEE Rev Biomed Eng20191315616810.1109/RBME.2019.294686831613783 – reference: ZhaoYLiHWanSSekuboyinaAHuXTettehGPiraudMMenzeBKnowledge-aided convolutional neural network for small organ segmentationIEEE J Biomed Health Infor20192341363137310.1109/JBHI.2019.2891526 – reference: Mohammed (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/mohamedmetwalysherif/braintumordataset. Accessed: 10 Mar 2022 – reference: BİNGOLHALATASBClassification of brain tumor images using deep learning methodsTurk J Sci Technol2021161137143 – reference: Bodapati JD, Rohith V (2021) Chxcapsnet: Deep capsule network with transfer learning for evaluating pneumonia in paediatric chest radiographs. Measurement, 110491 – reference: ChengJYangWHuangMHuangWJiangJZhouYYangRZhaoJFengYFengQRetrieval of brain tumors by adaptive spatial pooling and fisher vector representationPloS one2016116e015711210.1371/journal.pone.0157112272730914894628 – reference: Deepak S, Ameer P (2020) Automated categorization of brain tumor from mri using cnn features and svm. Journal of Ambient Intelligence and Humanized Computing – reference: BodapatiJDShaikNSNaralasettiVMundukurNBJoint training of two-channel deep neural network for brain tumor classificationSIViP202115475376010.1007/s11760-020-01793-2 – reference: XieXA k-nearest neighbor technique for brain tumor segmentation using minkowski distanceJ Med Imaging Health Infor20188218018510.1166/jmihi.2018.2285 – reference: AnarakiAKAyatiMKazemiFMagnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithmsBiocybern Biomed Eng2019391637410.1016/j.bbe.2018.10.004 – reference: Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation – reference: SasankVVenkateswarluSBrain tumor classification using modified kernel based softplus extreme learning machineMultimed Tools Appl2021809135131353410.1007/s11042-020-10423-5 – reference: Deepika K, Bodapati JD, Srihitha RK (2019) An efficient automatic brain tumor classification using lbp features and svm-based classifier. In: Proceedings of International conference on computational intelligence and data engineering, Springer, pp 163–170 – reference: Bodapati JD, Shareef SN, Naralasetti V, Mundukur NB (2021) Msenet: Multi-modal squeeze-and-excitation network for brain tumor severity prediction. International Journal of Pattern Recognition and Artificial Intelligence, 2157005 – reference: KimYOhnIKimDFast convergence rates of deep neural networks for classificationNeural Netw202113817919710.1016/j.neunet.2021.02.01233676328 – reference: Bodapati JD, Shaik NS, Naralasetti V (2021) Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. SIViP, 1–8 – reference: MehrotraRAnsariMAgrawalRAnandRA transfer learning approach for ai-based classification of brain tumorsMach Learn Appl20202100003 – reference: DeepakSAmeerPAutomated categorization of brain tumor from mri using cnn features and svmJ Ambient Intell Humanized Comput20211288357836910.1007/s12652-020-02568-w – reference: Cheng J (2021) Brain tumor dataset. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427(2017). Accessed: 10 Apr 2021 – reference: KhanMAAshrafIAlhaisoniMDamaševičiusRSchererRRehmanABukhariSACMultimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologistsDiagnostics202010856510.3390/diagnostics10080565327817957459797 – reference: SajjadMKhanSMuhammadKWuWUllahABaikSWMulti-grade brain tumor classification using deep cnn with extensive data augmentationJ Comput Sci20193017418210.1016/j.jocs.2018.12.003 – reference: BodapatiJDSrilakshmiUVeeranjaneyuluNFernet: a deep cnn architecture for facial expression recognition in the wildJ Inst Eng (India):, Ser B20221032439448 – reference: Bodapati JD, Naik D, Suvarna B, Naralasetti V (2022) A deep learning framework with cross pooled soft attention for facial expression recognition. Journal of The Institution of Engineers (India):, Series B, 1–11 – reference: BadžaMMBarjaktarovićMČClassification of brain tumors from mri images using a convolutional neural networkAppl Sci2020106199910.3390/app10061999 – reference: Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR (2019) Brain tumor classification using convolutional neural network. In: World Congress on medical physics and biomedical engineering 2018. Springer, pp 183–189 – reference: Naoneel (2021) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection(2020). Accessed: 30 Sep 2021 – reference: Bodapati JD (2022) Stacked convolutional auto-encoder representations with spatial attention for efficient diabetic retinopathy diagnosis. Multimed Tools Appl, 1–24 – reference: SwatiZNKZhaoQKabirMAliFAliZAhmedSLuJBrain tumor classification for mr images using transfer learning and fine-tuningComput Med Imaging Graph201975344610.1016/j.compmedimag.2019.05.00131150950 – reference: SharifMILiJPKhanMASaleemMAActive deep neural network features selection for segmentation and recognition of brain tumors using mri imagesPattern Recogn Lett20201291811892020PaReL.129..181S10.1016/j.patrec.2019.11.019 – reference: Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (07) – reference: HalderTKSarkarKMandalASarkarSA novel histogram feature for brain tumor detectionInt J Inf Technol202214418831892 – reference: AsifSYiWAinQUHouJYiTSiJImproving effectiveness of different deep transfer learning-based models for detecting brain tumors from mr imagesIEEE Access202210347163473010.1109/ACCESS.2022.3153306 – reference: RanjbarzadehRKasgariABGhoushchiSJAnariSNaseriMBendechacheMBrain tumor segmentation based on deep learning and an attention mechanism using mri multi-modalities brain imagesSci Rep202111111710.1038/s41598-021-90428-8 – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 – reference: Wang H, Zhang D, Ding S, Gao Z, Feng J, Wan S (2021) Rib segmentation algorithm for x-ray image based on unpaired sample augmentation and multi-scale network. Neural Comput Applic, 1–15 – reference: BodapatiJDVijayAVeeranjaneyuluNBrain tumor detection using deep features in the latent spaceIngé,nierie des Systèmes d’Information2020252 – reference: NaralasettiVShaikRKKatepalliGBodapatiJDDeep learning models for pneumonia identification and classification based on x-ray imagesTraitement du Signal202138310.18280/ts.380337 – reference: ArakeriMPReddyGRMComputer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance imagesSIViP20159240942510.1007/s11760-013-0456-z – reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate – reference: Br35H (2022) Kaggle dataset for brain tumor recognition. https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection. Accessed: 10 Mar 2022 – reference: Pashaei A, Sajedi H, Jazayeri N (2018) Brain tumor classification via convolutional neural network and extreme learning machines. In: 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), pp 314–319 – reference: WangLZhenHFangXWanSDingWGuoYA unified two-parallel-branch deep neural network for joint gland contour and segmentation learningFutur Gener Comput Syst201910031632410.1016/j.future.2019.05.035 – reference: Afshar P, Mohammadi A, Plataniotis KN (2018) Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, pp 3129–3133 – reference: ChengJHuangWCaoSYangRYangWYunZWangZFengQEnhanced performance of brain tumor classification via tumor region augmentation and partitionPloS one20151010e014038110.1371/journal.pone.0140381264478614598126 – reference: Ismael MR, Abdel-Qader I (2018) Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE international conference on electro/information technology (EIT), IEEE, pp 0252–0257 – volume: 12 start-page: 8357 issue: 8 year: 2021 ident: 15557_CR26 publication-title: J Ambient Intell Humanized Comput doi: 10.1007/s12652-020-02568-w – ident: 15557_CR20 – volume: 75 start-page: 34 year: 2019 ident: 15557_CR44 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.05.001 – volume: 11 start-page: e0157112 issue: 6 year: 2016 ident: 15557_CR23 publication-title: PloS one doi: 10.1371/journal.pone.0157112 – volume: 10 start-page: 1999 issue: 6 year: 2020 ident: 15557_CR6 publication-title: Appl Sci doi: 10.3390/app10061999 – ident: 15557_CR16 doi: 10.1142/S0218001421570056 – ident: 15557_CR25 doi: 10.1007/s12652-020-02568-w – volume: 25 start-page: 2 year: 2020 ident: 15557_CR19 publication-title: Ingé,nierie des Systèmes d’Information – ident: 15557_CR7 – volume: 23 start-page: 1363 issue: 4 year: 2019 ident: 15557_CR50 publication-title: IEEE J Biomed Health Infor doi: 10.1109/JBHI.2019.2891526 – volume: 8 start-page: 180 issue: 2 year: 2018 ident: 15557_CR49 publication-title: J Med Imaging Health Infor doi: 10.1166/jmihi.2018.2285 – volume: 30 start-page: 174 year: 2019 ident: 15557_CR41 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – ident: 15557_CR47 doi: 10.1007/s00521-021-06546-x – ident: 15557_CR33 doi: 10.18653/v1/D15-1166 – volume: 39 start-page: 63 issue: 1 year: 2019 ident: 15557_CR3 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.10.004 – ident: 15557_CR13 doi: 10.1007/s12652-020-02727-z – volume: 100 start-page: 316 year: 2019 ident: 15557_CR48 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.05.035 – ident: 15557_CR24 doi: 10.1109/CVPR.2017.195 – volume: 80 start-page: 13513 issue: 9 year: 2021 ident: 15557_CR42 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10423-5 – volume: 38 start-page: 3 year: 2021 ident: 15557_CR37 publication-title: Traitement du Signal doi: 10.18280/ts.380337 – ident: 15557_CR38 doi: 10.1109/ICCKE.2018.8566571 – volume: 9 start-page: 914 issue: 6 year: 2020 ident: 15557_CR18 publication-title: Electron doi: 10.3390/electronics9060914 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 15557_CR40 publication-title: Sci Rep doi: 10.1038/s41598-021-90428-8 – volume: 29 start-page: 266 issue: 3 year: 2021 ident: 15557_CR45 publication-title: Concurr Eng doi: 10.1177/1063293X211010542 – ident: 15557_CR9 doi: 10.1007/s11760-021-01877-7 – ident: 15557_CR35 – ident: 15557_CR39 doi: 10.1117/12.2254195 – ident: 15557_CR11 doi: 10.1007/s40031-022-00746-2 – volume: 10 start-page: e0140381 issue: 10 year: 2015 ident: 15557_CR22 publication-title: PloS one doi: 10.1371/journal.pone.0140381 – volume: 14 start-page: 1883 issue: 4 year: 2022 ident: 15557_CR29 publication-title: Int J Inf Technol – ident: 15557_CR30 doi: 10.1109/EIT.2018.8500308 – ident: 15557_CR27 doi: 10.1007/978-981-13-6459-4_17 – ident: 15557_CR21 – ident: 15557_CR12 doi: 10.1016/j.measurement.2021.110491 – volume: 10 start-page: 565 issue: 8 year: 2020 ident: 15557_CR31 publication-title: Diagnostics doi: 10.3390/diagnostics10080565 – ident: 15557_CR14 doi: 10.1007/s11760-020-01816-y – volume: 129 start-page: 181 year: 2020 ident: 15557_CR43 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.019 – volume: 10 start-page: 34716 year: 2022 ident: 15557_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153306 – volume: 103 start-page: 439 issue: 2 year: 2022 ident: 15557_CR17 publication-title: J Inst Eng (India):, Ser B – volume: 16 start-page: 137 issue: 1 year: 2021 ident: 15557_CR8 publication-title: Turk J Sci Technol – ident: 15557_CR36 – volume: 13 start-page: 156 year: 2019 ident: 15557_CR28 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2019.2946868 – ident: 15557_CR2 doi: 10.1109/ICIP.2018.8451379 – volume: 2 start-page: 100003 year: 2020 ident: 15557_CR34 publication-title: Mach Learn Appl – ident: 15557_CR1 doi: 10.1007/978-981-10-9035-6_33 – volume: 138 start-page: 179 year: 2021 ident: 15557_CR32 publication-title: Neural Netw doi: 10.1016/j.neunet.2021.02.012 – volume: 9 start-page: 409 issue: 2 year: 2015 ident: 15557_CR4 publication-title: SIViP doi: 10.1007/s11760-013-0456-z – volume: 15 start-page: 753 issue: 4 year: 2021 ident: 15557_CR15 publication-title: SIViP doi: 10.1007/s11760-020-01793-2 – ident: 15557_CR10 doi: 10.1007/s11042-022-12811-5 – ident: 15557_CR46 |
| SSID | ssj0016524 |
| Score | 2.4018953 |
| Snippet | Learning discriminate representations from images plays crucial role in medical image analysis. The attention mechanism, on the other hand, leads to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22099 |
| SubjectTerms | Artificial neural networks Brain cancer Brain research Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Datasets Image analysis Machine learning Magnetic resonance imaging Medical imaging Multimedia Multimedia Information Systems Neural networks Noise reduction Representations Special Purpose and Application-Based Systems Success Support vector machines Tumors |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG0TKh-PEbBVQMaAKQam6RbbjoEqQVElKfwJ_Gzt1WkCABHPsxPGd753tu3cAp5xRwTnHFkkcaWHpS0uBsGMJLxbMD0POqlyY4W3Q74ejEb0zSWFFHe1eX0lWlnqZ7OboVBKFMZbCQD-wZquwpuAu1AUb7h-Gi7sD4rvYpMd83-8zBC39yi9XoRXC9Jr_G9s2bBmPEnXnKrADKzJtQbOu1oDM4m3B5gfqwV14G0xfsrw7Y7nsy_ICXUk5QRXDZZ2NlCJTUeIJ6cNapIk4q9BIpJEvRsoU5YVEOmzdqK8ahbJi2VgfPyA2LTNNkhmrMSjHGHFdiwKV-qtoEbWUpXvw2LseXN5YpiiDEp9DS0v4Ng-EHbhuLLAkhFK153LdgFGWCBo4lEqmHQPO1ebXppowjhI_8W2ZECY87O1DI81SeQAo4K7tJjThjIQYc0wliZW3GsfUC5knwjY4tZwiYRjLdeGM52jJtaznPVLzHlXzHs3acLboM5nzdfzaulOLPzJrt4iUA6TPeVzba8N5Le7l45_fdvi35kewof4fzwPaOtAo86k8hnXxWo6L_KTS6Xc8FfaL priority: 102 providerName: Springer Nature |
| Title | TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition |
| URI | https://link.springer.com/article/10.1007/s11042-023-15557-w https://www.proquest.com/docview/2930093203 |
| Volume | 83 |
| WOSCitedRecordID | wos001051759100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlkM5UCggtiwrH7gVi3w75oKW0gqp7XZVSilcIttxUKU22Waz7E_gbzOTdXYBqb30YilK4jia8byxPfMG4I1W0mitI54UvuWRjS1HEPa5CXOj4jTVqs2FOT8So1F6cSHHbsNt6sIqO5vYGuq8MrRH_g5hiVbfgRd-mNxwqhpFp6uuhMYabJBnQyF9x97e8hQhiV1R29TjiIy-S5pZpM75lJiCiMURUWPB5_8C08rb_O-AtMWdg637jvgJPHYeJxsuVOQpPLDlNmx11RyYm9zb8OgvasJn8Ptsdl3Vw7mq7cg279knayesZcDsspVK5ipO_GS0mcuIqLMNnWSEjDlDU1VPLaOwdqfeOAq0ctUlbU8wNWsqItHMcQzoODNNtSpYQ19ly6imqnwOXw_2z_Y-c1e0AcXry4ab2NPCeCIIchPZJJES12RBIJRUhZHCl9Iqchy0xsWxJ4lQTiZxEXu2SJQJo_AFrJdVaV8CEzrwgkIWWiVpFOlI2iRHbzbPZZiq0KQ98DuJZcYxmlNhjatsxcVMUs5Qylkr5Wzeg93lO5MFn8edT_c70WZubk-zlVx78LZTjtXt23vbubu3V7CJ_xstAtz6sN7UM_saHppfzeW0HsCa-PZ9ABsf90fjU7w6FHzQaju1wQm24_gHtqdfzv8Aoc0H7A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcKBQQCwV8gBNYzYcTx0gIVZSq1S4rDgvqLdiOgypBsmSzrPgF_Bt-IzOJswtI9NYD5yR24jzP89gzbwCeGK2sMUbwtAwdFy5xHEk45DYurE6yzOguF-bDRE6n2empercFP4dcGAqrHGxiZ6iL2tIe-T7SEnnfURC_mn_lVDWKTleHEho9LMbu-wpdtsXLk0P8v0-j6OjN7PUx91UFsP9QtdwmgZE2kFFUWOHSVCl0GqJIaqVLq2SolNPEbMag9xYoUjxTaVImgStTbWMRY7uX4LKIM0nzaiz5-tQiTXwR3SzgyMShT9LpU_VCSoRBhuTI4Inkqz-JcLO6_etAtuO5o53_bYRuwg2_omYH_RS4BVuu2oWdoVoF88ZrF67_Jr14G37Mll_q5mClGzd17Qt26NycdQqfQzZWxXxFjU-MNqsZCZF2oaGMmL9gaIqbhWMUtu-nL74FWvH6jLZfmF62NYmEFvgO6BgwQ7U4WEu9snXUVl3dgfcXMjh3YbuqK3cPmDRREJWqNDrNhDBCubTA1XpRqDjTsc1GEA4Iya1XbKfCIZ_zjdY0oSpHVOUdqvLVCJ6tn5n3eiXn3r03QCn3tmuRb3A0gucDGDeX_93a_fNbewxXj2dvJ_nkZDp-ANfw20UfzLcH222zdA_hiv3Wni2aR92sYvDxokH6Cxn1WzU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghA9UCggtrTgA5zAauJ8GgmhqsuKqtVqDwVVXILtOKgSJEs221V_Qf9Tfx0zibMLSPTWA-ckjuM8z3jsmfcAXmoljdY65HHhWx7ayHJ0wj43QW5UlKZatbUwn4-T8Tg9PZWTNbjqa2EorbK3ia2hzitDe-R76JYo-hZesFe4tIjJcPR--pOTghSdtPZyGh1EjuzFAsO32bvDIf7rV0KMPpwcfOROYQD74suGm8jTifESIXIT2jiWEgMIIRIlVWFk4ktpFXk5rTGS8ySxn8k4KiLPFrEyQRhgu7fgdoIxJqUTTqIvyxOMOHKCuqnH0Sv7rmCnK9vzqSgGvSVHbx4lfPGnU1ytdP86nG193mjzfx6tB3DfrbTZfjc1HsKaLbdgs1exYM6obcHGb5SMj-DyZP6jqvcXqrZj27xlQ2unrGX-7Ku0SuaUNr4x2sRmRFDapowyWhHkDE10PbOM0vndtMZeoHWvzmhbhql5UxF5aI59wICBadLoYA29lS2zuaryMXy6kcF5AutlVdqnwBItPFHIQqs4DUMdShvnuIrPcxmkKjDpAPweLZlxTO4kKPI9W3FQE8IyRFjWIixbDOD18plpx2Ny7d07PawyZ9Nm2QpTA3jTA3N1-d-tbV_f2gu4i9jMjg_HR8_gHn562OX47cB6U8_tLtwx583ZrH7eTjAGX28ao78AKPJkWQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TumorAwareNet%3A+Deep+representation+learning+with+attention+based+sparse+convolutional+denoising+autoencoder+for+brain+tumor+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bodapati%2C+Jyostna+Devi&rft.au=Balaji%2C+Bharadwaj+Bagepalli&rft.date=2024-03-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=8&rft.spage=22099&rft.epage=22117&rft_id=info:doi/10.1007%2Fs11042-023-15557-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15557_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |