Span-based relational graph transformer network for aspect–opinion pair extraction

Aspect extraction and opinion extraction are two fundamental subtasks in aspect-based sentiment analysis. Many methods extract aspect terms or opinion terms but ignore the relationships between them. However, such relationships are crucial for downstream tasks, such as sentiment classification and c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge and information systems Ročník 64; číslo 5; s. 1305 - 1322
Hlavní autori: Li, You, Wang, Chaoqiang, Lin, Yuming, Lin, Yongdong, Chang, Liang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.05.2022
Springer Nature B.V
Predmet:
ISSN:0219-1377, 0219-3116
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aspect extraction and opinion extraction are two fundamental subtasks in aspect-based sentiment analysis. Many methods extract aspect terms or opinion terms but ignore the relationships between them. However, such relationships are crucial for downstream tasks, such as sentiment classification and commodity recommendation. Recently, methods have been proposed to extract both terms jointly; however, they fail to extract them as pairs. In this paper, we explore the aspect–opinion pair extraction task that aims to extract aspect and opinion terms in pairs. To carry out this task, we propose a span-based relational graph transformer network that consists of a span generator, a span classifier, and a relation detector. The span generator enumerates all possible spans to generate the candidates for aspect or opinion terms and filters non-aspects or non-opinions terms, while the relation classifier extracts aspect–opinion pairs. We propose a relational graph convolutional network to capture the dependent relationships between aspect and opinion terms. Extensive experiments show that the proposed model achieves the state-of-the-art performance using four benchmark datasets.
AbstractList Aspect extraction and opinion extraction are two fundamental subtasks in aspect-based sentiment analysis. Many methods extract aspect terms or opinion terms but ignore the relationships between them. However, such relationships are crucial for downstream tasks, such as sentiment classification and commodity recommendation. Recently, methods have been proposed to extract both terms jointly; however, they fail to extract them as pairs. In this paper, we explore the aspect–opinion pair extraction task that aims to extract aspect and opinion terms in pairs. To carry out this task, we propose a span-based relational graph transformer network that consists of a span generator, a span classifier, and a relation detector. The span generator enumerates all possible spans to generate the candidates for aspect or opinion terms and filters non-aspects or non-opinions terms, while the relation classifier extracts aspect–opinion pairs. We propose a relational graph convolutional network to capture the dependent relationships between aspect and opinion terms. Extensive experiments show that the proposed model achieves the state-of-the-art performance using four benchmark datasets.
Author Wang, Chaoqiang
Lin, Yongdong
Li, You
Lin, Yuming
Chang, Liang
Author_xml – sequence: 1
  givenname: You
  surname: Li
  fullname: Li, You
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology
– sequence: 2
  givenname: Chaoqiang
  surname: Wang
  fullname: Wang, Chaoqiang
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology
– sequence: 3
  givenname: Yuming
  orcidid: 0000-0001-6850-5222
  surname: Lin
  fullname: Lin, Yuming
  email: ymlin@guet.edu.cn
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology
– sequence: 4
  givenname: Yongdong
  surname: Lin
  fullname: Lin, Yongdong
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology
– sequence: 5
  givenname: Liang
  surname: Chang
  fullname: Chang, Liang
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology
BookMark eNp9kE1OwzAQhS1UJNrCBVhFYh3w2IntLFHFn1SJBWVtOc6kpKRJsFMBO-7ADTkJblMJiUVXMyO97-nNm5BR0zZIyDnQS6BUXnmgAGlMGYspCJnG6oiMKYMs5gBitN-BS3lCJt6vKAUpAMZk8dSZJs6NxyJyWJu-ahtTR0tnupeod6bxZevW6KIG-_fWvUbhjIzv0PY_X99tVzUBiDpTuQg_gt5uDU7JcWlqj2f7OSXPtzeL2X08f7x7mF3PY8sh62OblKq0KCxDa7ilJWTcFiZloEpkmMsUOFKpchSJ4iFy-LTgaZbwIhcqTfiUXAy-nWvfNuh7vWo3LuT3mgnBFc2YkEGlBpV1rfcOS22rfvdoyFvVGqjeOuuhQx061LsOtQoo-4d2rlob93kY4gPkg7hZovtLdYD6Ba51h9U
CitedBy_id crossref_primary_10_1007_s10844_023_00811_2
crossref_primary_10_1109_ACCESS_2025_3555744
crossref_primary_10_1007_s10115_024_02313_1
crossref_primary_10_1007_s10462_024_10906_z
Cites_doi 10.1109/MIS.2016.31
10.1162/coli_a_00034
10.1142/S0218488520500294
10.1109/TKDE.2014.2339850
10.1016/j.inffus.2018.03.007
10.2200/S00416ED1V01Y201204HLT016
10.1016/j.knosys.2021.107643
10.1007/s12559-021-09948-0
10.1016/j.neucom.2021.09.057
10.1109/TASLP.2018.2875170
10.18653/v1/2020.acl-main.582
10.18653/v1/P18-1202
10.18653/v1/P19-1051
10.18653/v1/S16-1174
10.18653/v1/2020.emnlp-main.719
10.1609/aaai.v34i05.6469
10.1609/aaai.v31i1.10974
10.18653/v1/D19-1466
10.18653/v1/2020.acl-main.296
10.18653/v1/2020.coling-main.158
10.18653/v1/D15-1168
10.1145/3340531.3412003
10.3115/v1/S14-2004
10.18653/v1/P17-1036
10.1109/HICSS.2016.144
10.3115/v1/P14-1030
10.18653/v1/N19-1259
10.18653/v1/P18-2094
10.18653/v1/2020.findings-emnlp.234
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10115-022-01675-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 1322
ExternalDocumentID 10_1007_s10115_022_01675_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61966009
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Guangxi Province
  grantid: 2020GXNSFAA159012; 2018GXNSFDA281049
  funderid: http://dx.doi.org/10.13039/501100004607
– fundername: National Natural Science Foundation of China
  grantid: U1811264; 62062027
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-c4f8fce6c2eca3c0f193cda5218fe2eb7513e078be6483001007d35943db68543
IEDL.DBID K7-
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781256500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 14:36:57 EST 2025
Sat Nov 29 02:29:25 EST 2025
Tue Nov 18 20:55:01 EST 2025
Fri Feb 21 02:47:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sentiment analysis
Relational graph convolution
Aspect–opinion pair extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c4f8fce6c2eca3c0f193cda5218fe2eb7513e078be6483001007d35943db68543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6850-5222
PQID 2663809267
PQPubID 43394
PageCount 18
ParticipantIDs proquest_journals_2663809267
crossref_citationtrail_10_1007_s10115_022_01675_8
crossref_primary_10_1007_s10115_022_01675_8
springer_journals_10_1007_s10115_022_01675_8
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Liu, Xu, Zhao (CR3) 2015; 27
Kumar, Trueman, Cambria (CR20) 2021; 13
CR17
CR16
CR15
Liu (CR18) 2012; 5
CR14
Wang, Ho, Cambria (CR22) 2020; 28
CR13
Li, Shao, Ji, Cambria (CR24) 2022; 467
CR34
CR11
CR33
CR10
Yu, Jiang, Xia (CR12) 2019; 27
CR32
CR31
CR30
CR2
Valdivia, Luzón, Cambria, Herrera (CR21) 2018; 44
CR4
CR6
CR5
CR8
CR7
Liang, Su, Gui, Cambria, Xu (CR19) 2022; 235
CR28
CR9
CR27
CR26
CR25
CR23
Cambria (CR1) 2016; 31
Qiu, Liu, Bu (CR29) 2011; 37
K Liu (1675_CR3) 2015; 27
1675_CR16
1675_CR17
1675_CR10
B Liang (1675_CR19) 2022; 235
1675_CR32
1675_CR11
1675_CR33
1675_CR30
E Cambria (1675_CR1) 2016; 31
1675_CR31
1675_CR14
G Qiu (1675_CR29) 2011; 37
1675_CR15
J Yu (1675_CR12) 2019; 27
1675_CR34
1675_CR13
W Li (1675_CR24) 2022; 467
Z Wang (1675_CR22) 2020; 28
1675_CR27
1675_CR28
1675_CR6
AJ Kumar (1675_CR20) 2021; 13
1675_CR5
B Liu (1675_CR18) 2012; 5
1675_CR4
1675_CR25
1675_CR9
1675_CR26
1675_CR8
1675_CR23
1675_CR7
A Valdivia (1675_CR21) 2018; 44
1675_CR2
References_xml – volume: 31
  start-page: 102
  issue: 2
  year: 2016
  end-page: 107
  ident: CR1
  article-title: Affect computing and sentiment analysis
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2016.31
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR30
– ident: CR10
– ident: CR33
– volume: 37
  start-page: 9
  issue: 1
  year: 2011
  end-page: 27
  ident: CR29
  article-title: Opinion word expansion and target extraction through double propagation
  publication-title: Comput Linguist
  doi: 10.1162/coli_a_00034
– ident: CR6
– ident: CR8
– ident: CR25
– ident: CR27
– volume: 28
  start-page: 683
  issue: 4
  year: 2020
  end-page: 697
  ident: CR22
  article-title: Multi-level fine-scaled sentiment sensing with ambivalence handling
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
  doi: 10.1142/S0218488520500294
– ident: CR23
– volume: 27
  start-page: 636
  issue: 3
  year: 2015
  end-page: 650
  ident: CR3
  article-title: Co-extracting opinion targets and opinion words from online reviews based on the word alignment model
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2339850
– volume: 44
  start-page: 126
  year: 2018
  end-page: 135
  ident: CR21
  article-title: Consensus vote models for detecting and filtering neutrality in sentiment analysis
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.03.007
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  end-page: 167
  ident: CR18
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth Lect Hum Lang Technol
  doi: 10.2200/S00416ED1V01Y201204HLT016
– ident: CR15
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 235
  start-page: 107643
  year: 2022
  ident: CR19
  article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional network
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107643
– ident: CR32
– ident: CR34
– volume: 13
  start-page: 1423
  year: 2021
  end-page: 1432
  ident: CR20
  article-title: A convolutional stacked bidirectional LSTM with a multiplicative attention mechanism for aspect category and sentiment detection
  publication-title: Cogn Comput
  doi: 10.1007/s12559-021-09948-0
– ident: CR5
– volume: 467
  start-page: 73
  year: 2022
  end-page: 82
  ident: CR24
  article-title: BiERU: bidirectional emotional recurrent unit for conversational sentiment analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.057
– ident: CR7
– ident: CR28
– volume: 27
  start-page: 168
  issue: 1
  year: 2019
  end-page: 177
  ident: CR12
  article-title: Global inference for aspect and opinion terms co-extraction based on multi-task neural networks
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2018.2875170
– ident: CR26
– ident: 1675_CR30
  doi: 10.18653/v1/2020.acl-main.582
– ident: 1675_CR11
  doi: 10.18653/v1/P18-1202
– ident: 1675_CR16
  doi: 10.18653/v1/P19-1051
– volume: 28
  start-page: 683
  issue: 4
  year: 2020
  ident: 1675_CR22
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
  doi: 10.1142/S0218488520500294
– ident: 1675_CR26
  doi: 10.18653/v1/S16-1174
– ident: 1675_CR8
  doi: 10.18653/v1/2020.emnlp-main.719
– ident: 1675_CR7
  doi: 10.1609/aaai.v34i05.6469
– ident: 1675_CR13
  doi: 10.1609/aaai.v31i1.10974
– ident: 1675_CR27
– ident: 1675_CR31
  doi: 10.18653/v1/D19-1466
– ident: 1675_CR14
  doi: 10.18653/v1/2020.acl-main.296
– volume: 37
  start-page: 9
  issue: 1
  year: 2011
  ident: 1675_CR29
  publication-title: Comput Linguist
  doi: 10.1162/coli_a_00034
– ident: 1675_CR10
  doi: 10.18653/v1/2020.coling-main.158
– ident: 1675_CR33
– ident: 1675_CR9
  doi: 10.18653/v1/D15-1168
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 1675_CR18
  publication-title: Synth Lect Hum Lang Technol
  doi: 10.2200/S00416ED1V01Y201204HLT016
– ident: 1675_CR23
  doi: 10.1145/3340531.3412003
– volume: 13
  start-page: 1423
  year: 2021
  ident: 1675_CR20
  publication-title: Cogn Comput
  doi: 10.1007/s12559-021-09948-0
– volume: 235
  start-page: 107643
  year: 2022
  ident: 1675_CR19
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107643
– volume: 467
  start-page: 73
  year: 2022
  ident: 1675_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.057
– ident: 1675_CR2
  doi: 10.3115/v1/S14-2004
– volume: 27
  start-page: 168
  issue: 1
  year: 2019
  ident: 1675_CR12
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2018.2875170
– ident: 1675_CR28
– ident: 1675_CR4
  doi: 10.18653/v1/P17-1036
– ident: 1675_CR15
  doi: 10.1109/HICSS.2016.144
– ident: 1675_CR25
  doi: 10.3115/v1/P14-1030
– volume: 31
  start-page: 102
  issue: 2
  year: 2016
  ident: 1675_CR1
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2016.31
– ident: 1675_CR32
– ident: 1675_CR6
  doi: 10.18653/v1/N19-1259
– ident: 1675_CR34
– volume: 27
  start-page: 636
  issue: 3
  year: 2015
  ident: 1675_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2339850
– ident: 1675_CR5
  doi: 10.18653/v1/P18-2094
– ident: 1675_CR17
  doi: 10.18653/v1/2020.findings-emnlp.234
– volume: 44
  start-page: 126
  year: 2018
  ident: 1675_CR21
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.03.007
SSID ssj0017611
Score 2.3182423
Snippet Aspect extraction and opinion extraction are two fundamental subtasks in aspect-based sentiment analysis. Many methods extract aspect terms or opinion terms...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1305
SubjectTerms Classifiers
Computer Science
Data mining
Data Mining and Knowledge Discovery
Database Management
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Recommender systems
Regular Paper
Sentiment analysis
Transformers
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109eDF9RNXV8nBmwbaJm3To4iLB1nEXWVvJU1TWJAq3erZ_-A_9Jc4SdNdFRX0WJoJZZLJeyUzbwCOPURhiVuFBkGSUS60pEKGBZUhD2TBIjSzIq5X8XAoJpPk2hWFzdps9_ZK0p7UH4rdkL1Qk31uUudDKpZhBeFOmHC8Gd3N7w7wx9z2ycNYpEZPz5XKfD_HZzhacMwv16IWbQbd_33nBqw7dknOmu2wCUu63IJu27mBuEDehvEIDwFqECwnlUuHQzurXk3qlsuiRdlkiRN8JNJWZb69vJoaKzQgj3JaETzcq6Y4YgduBxfj80vq-itQhYFXU8ULUSgdqUAryZRXIJlTuURAF4UOdBaHPtNIITIdccHM36MX5yxMOMuzSISc7UKnfCj1HhCdGVGfHKGuYFzmOEGRCy0yLjKfa9_rgd-6OVVOfNz0wLhPF7LJxm0pui21bktFD07mNo-N9Mavo_vt6qUuDGcpsg8mvCSI4h6ctqu1eP3zbPt_G34Aa4FdcJMI2YdOXT3pQ1hVz_V0Vh3Z7fkOXNPfXg
  priority: 102
  providerName: Springer Nature
Title Span-based relational graph transformer network for aspect–opinion pair extraction
URI https://link.springer.com/article/10.1007/s10115-022-01675-8
https://www.proquest.com/docview/2663809267
Volume 64
WOSCitedRecordID wos000781256500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7U9eDFt7g-lhy8abBN0jZ7EpVdBHVZfOulpGkKgqxrd_Xsf_Af-kucZNNdFPTiJVDaCSXzTDLzDcBOgF5YoahQxpoZFdIoKlVUUBUJpgoeI5kDcT1LOh15d9fs-gO3gU-rrGyiM9T5s7Zn5PvoSLgMmixODvov1HaNsrervoXGNNRCxkIr56cJHd8i4BbddcxDraQWWc8XzfjSOYyFqM1lt4n4EZXfHdMk2vxxQer8Tnvhv3-8CPM-4iSHIxFZginTW4aFqpsD8cq9AleXaBio9Wo5KX2KHNI5RGsyrOJbpOiNMscJPhLlKjU_3z9s3RUSkL56LAka_HJUMLEK1-3W1fEJ9T0XqEZlHFItClloE2tmtOI6KDDA07lCJy8Lw0yWRCE3GFZkJhaS2x1lkOQ8agqeZ7GMBF-Dmd5zz6wDMZkF-snR_RVcqBwnKHJpZCZkFgoTBnUIqwVPtQckt30xntIJlLJlUopMSh2TUlmH3TFNfwTH8efXWxVnUq-ag3TCljrsVbydvP59to2_Z9uEOebEySZDbsHMsHw12zCr34aPg7IB08ntfQNqR61O96LhxBTH8-AYx270gOPF5c0XQ4Hu2Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV58i-szBz1psJukbXoQER8orovgCt5qmqawIOvaXRVv_gf_hz_KX-IkbV0U9ObBY2lnoM2X-SadF8CGhyysECqUsSihQhpFpfIzqnzBVMYDFHNNXBthsymvr6OLIXiramFsWmVlE52hTu-0_Ue-g0TCpRexINzr3lM7NcpGV6sRGgUszszzEx7Zerunh7i-m4wdH7UOTmg5VYBqhFufapHJTJtAM6MV116GLoxOFdKYzAwzSejXuUHiTEwgJLdnJi9MuR8JniaB9AVHvcMwKgRuB5sq6B18Ri3CwM37RdqMqO3kVxbplKV66HtRmztvE_99Kr8S4cC7_RaQdTx3PPXfvtA0TJYeNdkvtsAMDJnOLExV0ypIabzmoHWJho9a1k5JXqYAopzr2E36lf-OEp0iM57gJVGuEvX95dXWlaEA6ap2TpDQ8qIgZB6u_uTdFmCkc9cxi0BMYhsZpUjvGRcqRQVZKo1MhEzqwtS9GtSrBY512XDdzv24jQetoi0oYgRF7EARyxpsfcp0i3Yjvz69UiEhLk1PLx7AoAbbFZYGt3_WtvS7tnUYP2mdN-LGafNsGSaYg7JN_FyBkX7-YFZhTD_22718zW0KAjd_jbEPWNBF8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BRYgLlD91gRYf4AQWWdtJnENVIeiqCLRaCZAQl-A4trRStSzZbRE33oG34XH6JB07DisqlRsHjlEyIyX-PN9MPD8A2xGysEKoUMayggppFJUqtlTFginLExTzTVxP025XXl5mvSl4amphXFplYxO9oS5vtPtHvo9EwmWUsSTdtyEtonfU-Ta8pW6ClDtpbcZp1BA5Mfd3GL6Nvh4f4VrvMNb5fn74g4YJA1Qj9MZUCyutNolmRiuuI4vujC4VUpq0hpkijdvcIIkWJhGSu_gpSkseZ4KXRSJjwVHvNHxIMcZ0gV8vvno-wUgTP_sXKTSjrqtfKNgJZXvoh1GXR--KAGIqX5LixNP953DWc15n8T1_rY-wEDxtclBvjSWYMoNlWGymWJBg1Fbg_AwNInVsXpIqpAainO_kTcaNX48SgzpjnuAlUb5C9c_Do6s3QwEyVP2K4PtXdaHIKly8ybutwczgZmA-ATGFa3BUIu1bLlSJCmwpjSyELNrCtKMWtJvFznVoxO7mgfzMJy2kHUByBEjuAZLLFuw-ywzrNiSvPr3ZoCIPJmmUTyDRgr0GV5Pb_9e2_rq2LZhDaOWnx92TDZhnHtUuH3QTZsbVL_MZZvXvcX9UffH7g8D1W0PsLwpbTwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Span-based+relational+graph+transformer+network+for+aspect%E2%80%93opinion+pair+extraction&rft.jtitle=Knowledge+and+information+systems&rft.au=Li%2C+You&rft.au=Wang%2C+Chaoqiang&rft.au=Lin%2C+Yuming&rft.au=Lin%2C+Yongdong&rft.date=2022-05-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=64&rft.issue=5&rft.spage=1305&rft.epage=1322&rft_id=info:doi/10.1007%2Fs10115-022-01675-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_022_01675_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon