The design of regional medical cloud computing information platform based on deep learning
In order to solve the imbalance of medical resources in different regions, a regional medical cloud computing information platform based on reactive algorithm is constructed. First, an application-oriented elastic scaling algorithm based on long short-term memory network and back propagation neural...
Uloženo v:
| Vydáno v: | International journal of system assurance engineering and management Ročník 12; číslo 4; s. 757 - 764 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New Delhi
Springer India
01.08.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0975-6809, 0976-4348 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to solve the imbalance of medical resources in different regions, a regional medical cloud computing information platform based on reactive algorithm is constructed. First, an application-oriented elastic scaling algorithm based on long short-term memory network and back propagation neural network (BPNN) is proposed. Then, based on cloud computing, a medical cloud data mining platform using Hadoop ecosystem is proposed. Finally, Visual Studio is used to develop regional medical cloud computing information platform, and the performance of the platform is tested. The experimental results show that the improved neural network algorithm has a loss and MAPE (mean absolute percentage error) value of 930 and 0.00031, respectively in the actual workload prediction, which is better than the algorithm before optimization. Moreover, it has the best fitting effect with the actual curve in the prediction of response time. In the strategy scheduling experiment, the loss of the model is 1.40222, the MAPE value is 0.34021, and the convergence time is 23 s, which is better than the test results of the model based on linear regression and BPNN. The experimental results suggest that the regional medical cloud computing information platform can solve the problem of unfair regional medical resources in the medical field to a certain extent. |
|---|---|
| AbstractList | In order to solve the imbalance of medical resources in different regions, a regional medical cloud computing information platform based on reactive algorithm is constructed. First, an application-oriented elastic scaling algorithm based on long short-term memory network and back propagation neural network (BPNN) is proposed. Then, based on cloud computing, a medical cloud data mining platform using Hadoop ecosystem is proposed. Finally, Visual Studio is used to develop regional medical cloud computing information platform, and the performance of the platform is tested. The experimental results show that the improved neural network algorithm has a loss and MAPE (mean absolute percentage error) value of 930 and 0.00031, respectively in the actual workload prediction, which is better than the algorithm before optimization. Moreover, it has the best fitting effect with the actual curve in the prediction of response time. In the strategy scheduling experiment, the loss of the model is 1.40222, the MAPE value is 0.34021, and the convergence time is 23 s, which is better than the test results of the model based on linear regression and BPNN. The experimental results suggest that the regional medical cloud computing information platform can solve the problem of unfair regional medical resources in the medical field to a certain extent. In order to solve the imbalance of medical resources in different regions, a regional medical cloud computing information platform based on reactive algorithm is constructed. First, an application-oriented elastic scaling algorithm based on long short-term memory network and back propagation neural network (BPNN) is proposed. Then, based on cloud computing, a medical cloud data mining platform using Hadoop ecosystem is proposed. Finally, Visual Studio is used to develop regional medical cloud computing information platform, and the performance of the platform is tested. The experimental results show that the improved neural network algorithm has a loss and MAPE (mean absolute percentage error) value of 930 and 0.00031, respectively in the actual workload prediction, which is better than the algorithm before optimization. Moreover, it has the best fitting effect with the actual curve in the prediction of response time. In the strategy scheduling experiment, the loss of the model is 1.40222, the MAPE value is 0.34021, and the convergence time is 23 s, which is better than the test results of the model based on linear regression and BPNN. The experimental results suggest that the regional medical cloud computing information platform can solve the problem of unfair regional medical resources in the medical field to a certain extent. |
| Author | Zhang, Kaidong |
| Author_xml | – sequence: 1 givenname: Kaidong orcidid: 0000-0002-8294-8537 surname: Zhang fullname: Zhang, Kaidong email: kdzhang@bjtu.edu.cn organization: School of Computer and Information Technology, Beijing Jiaotong University |
| BookMark | eNp9kE9PwyAYh4mZiXPuC3gi8VwFSgs9msV_iYmXefFCGLzULm2p0B789rLVxMTDTi-Q5yHv73eJFr3vAaFrSm4pIeIu0pxWMiOMZoQSUWT0DC1JJcqM51wujuciKyWpLtA6xj0hhDLKGSdL9LH9BGwhNnWPvcMB6sb3usUd2MakaVo_WWx8N0xj09e46Z0PnR4ThYdWj4cb3ukIFqcXCzDgFnToE3uFzp1uI6x_5wq9Pz5sN8_Z69vTy-b-NTNp7TEzXAsqnBO7XMOOU-kEL4klzEIB1mgJZckN55AzZzSpwGkrXUrmJK8E1_kK3cz_DsF_TRBHtfdTSCGiYgWvKl5yyRIlZ8oEH2MAp0wzHnOMQTetokQdylRzmSqVqY5lKppU9k8dQtPp8H1aymcpJrivIfxtdcL6ATwyigk |
| CitedBy_id | crossref_primary_10_1007_s13198_024_02574_7 crossref_primary_10_1088_1361_6501_ad56b8 |
| Cites_doi | 10.1002/ima.22424 10.1007/s10766-017-0524-z 10.1186/s12912-018-0279-x 10.1109/TCC.2017.2769645 10.1016/j.comcom.2020.02.005 10.1007/s10916-020-01579-6 10.1088/1757-899X/750/1/012164 10.1007/s10766-017-0513-2 10.1007/s11042-019-08511-2 10.1111/head.13426 10.1007/s00521-020-04839-1 10.1007/s11831-020-09420-6 10.1007/s00521-020-05107-y |
| ContentType | Journal Article |
| Copyright | The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021 The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021. |
| Copyright_xml | – notice: The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021 – notice: The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13198-021-01075-1 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 0976-4348 |
| EndPage | 764 |
| ExternalDocumentID | 10_1007_s13198_021_01075_1 |
| GroupedDBID | -EM 06D 0R~ 203 29~ 2JY 30V 406 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY CSCUP DNIVK DPUIP EBLON EIOEI ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HG6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J PT4 R89 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7R Z7X Z7Z Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-c4a717ff7b3aeb418f7460d02de5edca8e664c44e32fca09efad8f434f84974a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625598500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0975-6809 |
| IngestDate | Wed Sep 17 23:58:41 EDT 2025 Sat Nov 29 04:20:35 EST 2025 Tue Nov 18 20:25:02 EST 2025 Fri Feb 21 02:48:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Cloud computing Regional medical Data mining Reactive algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c4a717ff7b3aeb418f7460d02de5edca8e664c44e32fca09efad8f434f84974a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8294-8537 |
| PQID | 2549946482 |
| PQPubID | 2043907 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2549946482 crossref_citationtrail_10_1007_s13198_021_01075_1 crossref_primary_10_1007_s13198_021_01075_1 springer_journals_10_1007_s13198_021_01075_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationTitle | International journal of system assurance engineering and management |
| PublicationTitleAbbrev | Int J Syst Assur Eng Manag |
| PublicationYear | 2021 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | CR2 Dodick, Tepper, Lipton (CR5) 2018; 58 CR3 Hariss, Noura, Samhat (CR6) 2020; 79 Muhuri, Chatterjee, Yuan (CR12) 2020; 11 Abualigah (CR1) 2020; 32 Sung, Jang, Jeong (CR14) 2020; 153 Hwang, Lin (CR8) 2020; 44 Arulanthu, Perumal (CR4) 2020; 30 Lin, Su, Meng (CR11) 2018; 46 Liang (CR10) 2020; 750 Rathore, Son, Ahmad (CR13) 2018; 46 Homeyer, Hoffmann, Hingst (CR7) 2018; 17 Li, Yang, Dai (CR9) 2020; 8 P Arulanthu (1075_CR4) 2020; 30 K Hariss (1075_CR6) 2020; 79 H Lin (1075_CR11) 2018; 46 N Liang (1075_CR10) 2020; 750 HG Hwang (1075_CR8) 2020; 44 L Abualigah (1075_CR1) 2020; 32 1075_CR3 PS Muhuri (1075_CR12) 2020; 11 Y Sung (1075_CR14) 2020; 153 S Homeyer (1075_CR7) 2018; 17 1075_CR2 H Li (1075_CR9) 2020; 8 MM Rathore (1075_CR13) 2018; 46 DW Dodick (1075_CR5) 2018; 58 |
| References_xml | – volume: 30 start-page: 815 issue: 3 year: 2020 end-page: 827 ident: CR4 article-title: An intelligent IoT with cloud centric medical decision support system for chronic kidney disease prediction publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22424 – volume: 46 start-page: 762 issue: 4 year: 2018 end-page: 775 ident: CR11 article-title: Combining Hadoop with MPI to solve metagenomics problems that are both data- and compute-intensive publication-title: Int J Parallel Prog doi: 10.1007/s10766-017-0524-z – volume: 17 start-page: 13 issue: 1 year: 2018 ident: CR7 article-title: Effects of interprofessional education for medical and nursing students: enablers, barriers and expectations for optimizing future interprofessional collaboration—a qualitative study publication-title: Bmc Nurs doi: 10.1186/s12912-018-0279-x – volume: 8 start-page: 484 issue: 2 year: 2020 end-page: 494 ident: CR9 article-title: Achieving secure and efficient dynamic searchable symmetric encryption over medical cloud data publication-title: IEEE Transac Cloud Comput doi: 10.1109/TCC.2017.2769645 – ident: CR3 – ident: CR2 – volume: 153 start-page: 342 year: 2020 end-page: 348 ident: CR14 article-title: Malware classification algorithm using advanced Word2vec-based Bi-LSTM for ground control stations publication-title: Comput Commun doi: 10.1016/j.comcom.2020.02.005 – volume: 44 start-page: 1 issue: 6 year: 2020 end-page: 9 ident: CR8 article-title: Evaluating people's concern about their health information privacy based on power-responsibility equilibrium model: A case of Taiwan publication-title: J Med Syst doi: 10.1007/s10916-020-01579-6 – volume: 750 start-page: 012164 issue: 1 year: 2020 ident: CR10 article-title: Security transmission and storage of internet of things information based on Blockchain publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/750/1/012164 – volume: 46 start-page: 630 issue: 3 year: 2018 end-page: 646 ident: CR13 article-title: Real-time big data stream processing using GPU with spark over Hadoop ecosystem publication-title: Int J Paralllel Prog doi: 10.1007/s10766-017-0513-2 – volume: 79 start-page: 12139 issue: 17 year: 2020 end-page: 12164 ident: CR6 article-title: An efficient fully homomorphic symmetric encryption algorithm publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08511-2 – volume: 11 start-page: 243 issue: 5 year: 2020 ident: CR12 article-title: Using a Long short-term memory recurrent neural network (lstm-rnn) to classify network attacks publication-title: Information (Switzerland) – volume: 58 start-page: 1358 issue: 9 year: 2018 end-page: 1372 ident: CR5 article-title: Improving medical communication in migraine management: a modified Delphi study to develop a digital migraine tracker publication-title: Headache J Head Face Pain doi: 10.1111/head.13426 – volume: 32 start-page: 12381 issue: 2 year: 2020 end-page: 12401 ident: CR1 article-title: Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04839-1 – volume: 79 start-page: 12139 issue: 17 year: 2020 ident: 1075_CR6 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08511-2 – volume: 750 start-page: 012164 issue: 1 year: 2020 ident: 1075_CR10 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/750/1/012164 – volume: 32 start-page: 12381 issue: 2 year: 2020 ident: 1075_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04839-1 – ident: 1075_CR3 doi: 10.1007/s11831-020-09420-6 – volume: 44 start-page: 1 issue: 6 year: 2020 ident: 1075_CR8 publication-title: J Med Syst doi: 10.1007/s10916-020-01579-6 – volume: 58 start-page: 1358 issue: 9 year: 2018 ident: 1075_CR5 publication-title: Headache J Head Face Pain doi: 10.1111/head.13426 – volume: 17 start-page: 13 issue: 1 year: 2018 ident: 1075_CR7 publication-title: Bmc Nurs doi: 10.1186/s12912-018-0279-x – volume: 11 start-page: 243 issue: 5 year: 2020 ident: 1075_CR12 publication-title: Information (Switzerland) – volume: 153 start-page: 342 year: 2020 ident: 1075_CR14 publication-title: Comput Commun doi: 10.1016/j.comcom.2020.02.005 – volume: 30 start-page: 815 issue: 3 year: 2020 ident: 1075_CR4 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22424 – volume: 46 start-page: 762 issue: 4 year: 2018 ident: 1075_CR11 publication-title: Int J Parallel Prog doi: 10.1007/s10766-017-0524-z – volume: 8 start-page: 484 issue: 2 year: 2020 ident: 1075_CR9 publication-title: IEEE Transac Cloud Comput doi: 10.1109/TCC.2017.2769645 – ident: 1075_CR2 doi: 10.1007/s00521-020-05107-y – volume: 46 start-page: 630 issue: 3 year: 2018 ident: 1075_CR13 publication-title: Int J Paralllel Prog doi: 10.1007/s10766-017-0513-2 |
| SSID | ssj0001214240 |
| Score | 2.2062187 |
| Snippet | In order to solve the imbalance of medical resources in different regions, a regional medical cloud computing information platform based on reactive algorithm... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 757 |
| SubjectTerms | Algorithms Artificial neural networks Back propagation networks Cloud computing Data mining Deep learning Engineering Engineering Economics Logistics Machine learning Marketing Neural networks Optimization Organization Original Article Quality Control Regional development Regression models Reliability Response time Safety and Risk Visual programming languages |
| Title | The design of regional medical cloud computing information platform based on deep learning |
| URI | https://link.springer.com/article/10.1007/s13198-021-01075-1 https://www.proquest.com/docview/2549946482 |
| Volume | 12 |
| WOSCitedRecordID | wos000625598500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0976-4348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001214240 issn: 0975-6809 databaseCode: RSV dateStart: 20100301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPejBt1itkoM3Dex20yR7FLF4kCK-KF6WZJKIUNvSbv39JmnWraKCHnc3CWFmNpNJZr4PoRPNpVIJGEIlJIR6apOcASXeuQJzq2NmArr-Ne_1RL-f38SisGmV7V5dSYaVui52c9YiiE8pcDEE7xAX8yw7dyc8YcPt3ePCyYqv3gqHK7lrxkSSx2qZ74f57JHqbeaXm9HgcLob_5vqJlqPG0x8PreILbRkhttobQF2cAc9OdvAOqRu4JHFnpvB78fx6_zSBsNgNNMYAt-D64AjuKpXIR4PZOmfsHd_Grs32pgxjuQTz7vooXt5f3FFIscCATfHkgCVLqCzlqtMGkVTYTlliU7a2nSMBikMYxQoNVnbgkxyY6UWlmbUCupCEZntocZwNDT7CAsFwmPzmJwbynlHZQAGJDCrFE-VbaK0knMBEYDc82AMiho62cutcHIrgtyKtIlOP_qM5_Abv7ZuVeor4q84LUIETBkV7SY6q9RVf_55tIO_NT9Eq-2gcZ8c2EKNcjIzR2gF3sqX6eQ4mOg7CurgKA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBfXBb3E6NQ--aaFrsyZ9FHFMnEN0yvAlJJdEhLmNrfPvN8laO0UFfWx7CeHumsvl7n6H0ImiQsoQdEAEhAFxrU3SBEjgjCskdneMtUfXb9NOh_V66W1eFDYpst2LkKTfqctiN6stLHApBdaHoI3A-jyLxFosh5h_d_84d7Piqrf85UpqyRIWpnm1zPfTfLZI5THzS2TUG5zm-v-WuoHW8gMmPp9pxCZa0IMttDoHO7iNnqxuYOVTN_DQYNebwZ3H8essaIOhP5wqDL7fgx2Ac3BVJ0I86ovMPWFn_hS2b5TWI5w3n3jeQQ_Ny-5FK8h7LARg15gFQIR16IyhMhZakjozlCShCiOlG1qBYDpJCBCi48iACFNthGKGxMQwYl0REe-iymA40HsIMwnMYfPolGpCaUPGABoEJEZKWpemiuoFnznkAOSuD0afl9DJjm_c8o17vvF6FZ1-jBnN4Dd-pa4V4uP5rzjh3gMmCWFRFZ0V4io__zzb_t_Ij9Fyq3vT5u2rzvUBWom89F2iYA1VsvFUH6IleMteJuMjr67vlVvjDA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRfTgW6xWzcGbLt1HmmSPohbFUgo-KF6WZJKIUNul3fr7TdKtraKCeNzdSQgzk51MZuYbhE4UE1KGoAMiIAyIa22SUiCBM65A7d8x0R5dv8Xabd7tpp25Kn6f7T4NSU5qGhxKU7-o58rUZ4VvVnN44NILrD_BGoH1fxaJS6R3_vrd49wti6vk8hctqSWjPEzLypnvp_lsnWZHzi9RUm98muv_X_YGWisPnvh8oimbaEH3t9DqHBzhNnqyOoOVT-nAA4NdzwZ3Tsevk2AOht5grDD4PhB2AC5BV51ocd4ThXvCziwqbN8orXNcNqV43kEPzav7i-ug7L0QgF1jEQAR1tEzhslEaEkibhihoQpjpRtageCaUgKE6CQ2IMJUG6G4IQkxnFgXRSS7qNIf9PUewlwCd5g9OmWaMNaQCYAGAdRIySJpqiia8jyDEpjc9cfoZTNIZce3zPIt83zLoio6_RiTT2A5fqWuTUWZlVt0lHnPmFDC4yo6m4pu9vnn2fb_Rn6MljuXzax10749QCuxF77LH6yhSjEc60O0BG_Fy2h45DX3HTp26_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+design+of+regional+medical+cloud+computing+information+platform+based+on+deep+learning&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Zhang+Kaidong&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=12&rft.issue=4&rft.spage=757&rft.epage=764&rft_id=info:doi/10.1007%2Fs13198-021-01075-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon |