Temporal patterns decomposition and Legendre projection for long-term time series forecasting
Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It...
Uložené v:
| Vydané v: | The Journal of supercomputing Ročník 80; číslo 16; s. 23407 - 23441 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It requires forecasting methods to accurately capture long-term temporal dependencies from complex sequences with intertwined temporal patterns. For LTSF tasks, existing works propose variants of recurrent neural networks, convolutional neural networks, and transformers to catch temporal dependencies. However, these methods usually suffer from the insufficient ability to capture long-term temporal dependencies and excessively high complexity, resulting in unreliable forecasting performance. Therefore, we propose an LTSF method based on temporal patterns decomposition and Legendre projection (TPDLP). Firstly, we use temporal patterns decomposition to handle complex temporal patterns to perform decomposed refinement forecasting. Subsequently, we use high-order Legendre polynomial projection with a signal transfer module based on multilayer perceptron networks to capture long-term temporal dependencies, thereby achieving LTSF. Furthermore, we introduce targeted data normalization to alleviate the impact of distribution shifts on sequence forecasting. Through extensive experimentation with six popular real-world datasets, our TPDLP model shows an average relative improvement of 15.8% compared to the best baseline in terms of performance, measured by prediction error. In addition, it also demonstrates superior efficiency, which showcases its utility in real-world applications. Code is available at this repository:
https://github.com/JoeDoex/TPDLP
. |
|---|---|
| AbstractList | Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It requires forecasting methods to accurately capture long-term temporal dependencies from complex sequences with intertwined temporal patterns. For LTSF tasks, existing works propose variants of recurrent neural networks, convolutional neural networks, and transformers to catch temporal dependencies. However, these methods usually suffer from the insufficient ability to capture long-term temporal dependencies and excessively high complexity, resulting in unreliable forecasting performance. Therefore, we propose an LTSF method based on temporal patterns decomposition and Legendre projection (TPDLP). Firstly, we use temporal patterns decomposition to handle complex temporal patterns to perform decomposed refinement forecasting. Subsequently, we use high-order Legendre polynomial projection with a signal transfer module based on multilayer perceptron networks to capture long-term temporal dependencies, thereby achieving LTSF. Furthermore, we introduce targeted data normalization to alleviate the impact of distribution shifts on sequence forecasting. Through extensive experimentation with six popular real-world datasets, our TPDLP model shows an average relative improvement of 15.8% compared to the best baseline in terms of performance, measured by prediction error. In addition, it also demonstrates superior efficiency, which showcases its utility in real-world applications. Code is available at this repository:
https://github.com/JoeDoex/TPDLP
. Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It requires forecasting methods to accurately capture long-term temporal dependencies from complex sequences with intertwined temporal patterns. For LTSF tasks, existing works propose variants of recurrent neural networks, convolutional neural networks, and transformers to catch temporal dependencies. However, these methods usually suffer from the insufficient ability to capture long-term temporal dependencies and excessively high complexity, resulting in unreliable forecasting performance. Therefore, we propose an LTSF method based on temporal patterns decomposition and Legendre projection (TPDLP). Firstly, we use temporal patterns decomposition to handle complex temporal patterns to perform decomposed refinement forecasting. Subsequently, we use high-order Legendre polynomial projection with a signal transfer module based on multilayer perceptron networks to capture long-term temporal dependencies, thereby achieving LTSF. Furthermore, we introduce targeted data normalization to alleviate the impact of distribution shifts on sequence forecasting. Through extensive experimentation with six popular real-world datasets, our TPDLP model shows an average relative improvement of 15.8% compared to the best baseline in terms of performance, measured by prediction error. In addition, it also demonstrates superior efficiency, which showcases its utility in real-world applications. Code is available at this repository: https://github.com/JoeDoex/TPDLP. |
| Author | Su, Yuming Khalil, Alaa Abd El-Raouf Mohamed Rong, Huan Osibo, Benjamin Kwapong Liu, Jianxin Ma, Tinghuai Wahab, Mohamed Magdy Abdel |
| Author_xml | – sequence: 1 givenname: Jianxin surname: Liu fullname: Liu, Jianxin organization: School of Computer and Software, Nanjing University of Information Science and Technology – sequence: 2 givenname: Tinghuai surname: Ma fullname: Ma, Tinghuai email: thma@nuist.edu.cn organization: School of Computer and Software, Nanjing University of Information Science and Technology, School of Computer Engineering, Jiangsu Ocean University – sequence: 3 givenname: Yuming surname: Su fullname: Su, Yuming organization: School of Computer and Software, Nanjing University of Information Science and Technology – sequence: 4 givenname: Huan surname: Rong fullname: Rong, Huan organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology – sequence: 5 givenname: Alaa Abd El-Raouf Mohamed surname: Khalil fullname: Khalil, Alaa Abd El-Raouf Mohamed organization: Central Laboratory for Agricultural Climate (CLAC), Agricultural Research Center (ARC) – sequence: 6 givenname: Mohamed Magdy Abdel surname: Wahab fullname: Wahab, Mohamed Magdy Abdel organization: Faculty of Science, Cairo University – sequence: 7 givenname: Benjamin Kwapong surname: Osibo fullname: Osibo, Benjamin Kwapong organization: School of Computer and Software, Nanjing University of Information Science and Technology |
| BookMark | eNp9kE1LxDAQhoOs4Lr6BzwVPEfz1aY5yuIXLHhZjxJiOild2qQm2YP_3nZXEDzsaWDmfWaG5xItfPCA0A0ld5QQeZ8oZUxiwgQmFaccizO0pKXkmIhaLNCSKEZwXQp2gS5T2hFCBJd8iT62MIwhmr4YTc4QfSoasGHqpS53wRfGN8UGWvBNhGKMYQf20HchFn3wLZ6gocjdAEWC2EGaJ2BNyp1vr9C5M32C69-6Qu9Pj9v1C968Pb-uHzbYcqoytqI0EmprmQBiqGhqIqTjlaptCdZ-KlDUydJRXnGQljiqFBesAlANLZ3jK3R73Ds9-LWHlPUu7KOfTmrOyqpUfNo4pdgxZWNIKYLTY-wGE781JXrWqI8a9aRRHzTqGar_QbbLZlaQo-n60yg_omm641uIf1-doH4AO4qKgg |
| CitedBy_id | crossref_primary_10_23887_jpp_v58i1_89657 |
| Cites_doi | 10.48550/arXiv.2001.04451 10.48550/arXiv.1905.10437 10.1109/TITS.2020.2984813 10.1109/TKDE.2021.3056502 10.1016/j.ijforecast.2019.07.001 10.1109/ICCV48922.2021.00986 10.1016/j.eswa.2022.116517 10.1016/j.renene.2019.08.018 10.1007/s11227-022-05001-5 10.1109/ICCV48922.2021.00676 10.1016/j.engappai.2023.106042 10.1109/TAFFC.2019.2932061 10.1016/j.apenergy.2020.114977 10.1609/aaai.v37i6.25845 10.1049/cit2.12157 10.1016/j.knosys.2019.03.011 10.1007/s11227-023-05112-7 10.1016/j.patcog.2023.109423 10.1007/978-3-031-10989-8_28 10.1007/978-3-030-58452-8_13 10.1109/TNNLS.2019.2946414 10.1016/j.eswa.2020.113565 10.1016/j.renene.2019.01.031 10.1609/aaai.v35i12.17325 10.1007/s00521-022-07889-9 10.1145/3209978.3210006 10.1109/LSP.2022.3217975 10.48550/arXiv.2207.01186 10.1016/j.ijforecast.2021.03.012 10.1007/s00521-023-08871-9 10.1007/s00521-021-06871-1 10.1016/j.asoc.2023.110867 10.1145/3394486.3403118 10.1162/neco.1997.9.8.1735 10.1137/1.9781611975031.69 10.1016/j.neucom.2019.12.129 10.1016/j.ijforecast.2022.03.001 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-024-06313-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 23441 |
| ExternalDocumentID | 10_1007_s11227_024_06313_4 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No.62102187; No.62102187; No.62102187; No.62102187; No.62102187 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: No.2021YFE014400; No.2021YFE014400; No.2021YFE014400; No.2021YFE014400; No.2021YFE014400 funderid: http://dx.doi.org/10.13039/501100012166 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-c45a7e8cc24e0a14d8047f3698c5eccb9e91f75f1363e7c0f1993426ee9d15ff3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263427800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 02 05:02:58 EST 2025 Sat Nov 29 04:27:48 EST 2025 Tue Nov 18 22:35:59 EST 2025 Fri Feb 21 02:38:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Long-term temporal dependencies Long-term time series forecasting Legendre polynomial projection Neural networks Temporal patterns decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c45a7e8cc24e0a14d8047f3698c5eccb9e91f75f1363e7c0f1993426ee9d15ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256593804 |
| PQPubID | 2043774 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_3256593804 crossref_primary_10_1007_s11227_024_06313_4 crossref_citationtrail_10_1007_s11227_024_06313_4 springer_journals_10_1007_s11227_024_06313_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20241100 2024-11-00 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Wang, Liu, Du, Yang, Dong (CR54) 2023; 121 Şahinuç, Koç (CR44) 2022; 29 CR38 CR36 CR35 Salinas, Flunkert, Gasthaus, Januschowski (CR23) 2020; 36 CR33 Nicholson, Wilms, Bien, Matteson (CR15) 2020; 21 Yi, Tian, He, Fan, Hu, Xu (CR29) 2023; 79 Radojičić, Kredatus (CR40) 2020; 159 CR8 Olivares, Challu, Marcjasz, Weron, Dubrawski (CR13) 2023; 39 CR7 Hochreiter, Schmidhuber (CR17) 1997; 9 CR9 Li, Zhang, Yu, Xu (CR26) 2023; 138 CR48 Guan, Zhao, Yuan, Long, Li (CR3) 2023; 80 Han, Yang, Wei, Gong, Qian (CR34) 2023; 80 CR42 CR41 Miao, Han, Yao, Lu, Chen, Wang, Zhang (CR1) 2020; 408 Shamshirband, Nodoushan, Adolf, Manaf, Mosavi, Chau (CR47) 2019; 13 Nasiri, Ebadzadeh (CR55) 2023; 148 Lim, Arık, Loeff, Pfister (CR14) 2021; 37 Wankhade, Annavarapu, Abraham (CR32) 2023; 79 Jallal, Gonzalez-Vidal, Skarmeta, Chabaa, Zeroual (CR2) 2020; 268 CR19 CR18 CR12 CR10 CR53 CR52 Zhao, Zhang, Tao, Li, Liao, Tian, Philips (CR45) 2022; 35 CR51 CR50 Wang, Li, Fu, Tang (CR39) 2019; 31 Ma, Zhong, Li, Ma, Cui, Wang (CR4) 2020; 22 Chen, Li, Huang, Zhao (CR43) 2023; 35 Singh, Mohapatra (CR46) 2019; 136 Ma, Rong, Hao, Cao, Tian, Al-Rodhaan (CR31) 2022; 13 Gao, Zhang, Li, Bian, Wan (CR11) 2022; 34 Guo, Lin, Wan, Li, Cong (CR27) 2022; 34 CR28 CR25 CR24 CR22 CR21 Cai, Jia, Feng, Li, Hsu, Lee (CR16) 2020; 146 CR20 Zhou, Ma, Rong, Qian, Tian, Al-Nabhan (CR30) 2022; 195 Júnior, Oliveira, Mattos Neto (CR6) 2019; 175 Lange, Brunton, Kutz (CR37) 2021; 22 Rathipriya, Abdul Rahman, Dhamodharavadhani, Meero, Yoganandan (CR5) 2023; 35 Zheng, Jia, Lv, Luo, Zhao, Ye (CR49) 2023; 8 6313_CR38 X Zheng (6313_CR49) 2023; 8 6313_CR36 L Chen (6313_CR43) 2023; 35 6313_CR35 6313_CR33 B Guan (6313_CR3) 2023; 80 S Hochreiter (6313_CR17) 1997; 9 WB Nicholson (6313_CR15) 2020; 21 ZL Li (6313_CR26) 2023; 138 S Singh (6313_CR46) 2019; 136 KG Olivares (6313_CR13) 2023; 39 6313_CR28 6313_CR25 6313_CR24 6313_CR21 6313_CR22 MA Jallal (6313_CR2) 2020; 268 6313_CR20 H Cai (6313_CR16) 2020; 146 C Gao (6313_CR11) 2022; 34 H Nasiri (6313_CR55) 2023; 148 D Salinas (6313_CR23) 2020; 36 X Wang (6313_CR54) 2023; 121 Y Yi (6313_CR29) 2023; 79 6313_CR18 6313_CR19 S Guo (6313_CR27) 2022; 34 H Lange (6313_CR37) 2021; 22 6313_CR12 6313_CR10 B Lim (6313_CR14) 2021; 37 6313_CR52 6313_CR53 6313_CR50 6313_CR51 D Radojičić (6313_CR40) 2020; 159 H Zhou (6313_CR30) 2022; 195 X Ma (6313_CR4) 2020; 22 R Rathipriya (6313_CR5) 2023; 35 M Wankhade (6313_CR32) 2023; 79 K-C Miao (6313_CR1) 2020; 408 X Zhao (6313_CR45) 2022; 35 6313_CR48 F Şahinuç (6313_CR44) 2022; 29 6313_CR41 R Wang (6313_CR39) 2019; 31 6313_CR42 DSdOS Júnior (6313_CR6) 2019; 175 J Han (6313_CR34) 2023; 80 6313_CR8 S Shamshirband (6313_CR47) 2019; 13 6313_CR7 T Ma (6313_CR31) 2022; 13 6313_CR9 |
| References_xml | – ident: CR22 – volume: 36 start-page: 1181 issue: 3 year: 2020 end-page: 1191 ident: CR23 article-title: DeepAR: probabilistic forecasting with autoregressive recurrent networks publication-title: Int J Forecast – ident: CR51 – ident: CR12 – volume: 146 start-page: 2112 year: 2020 end-page: 2123 ident: CR16 article-title: Gaussian process regression for numerical wind speed prediction enhancement publication-title: Renew Energy – volume: 39 start-page: 884 issue: 2 year: 2023 end-page: 900 ident: CR13 article-title: Neural basis expansion analysis with exogenous variables: forecasting electricity prices with NBEATSx publication-title: Int J Forecast – ident: CR35 – ident: CR8 – volume: 37 start-page: 1748 issue: 4 year: 2021 end-page: 1764 ident: CR14 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int J Forecast – volume: 121 start-page: 106042 year: 2023 ident: CR54 article-title: CLformer: locally grouped auto-correlation and convolutional transformer for long-term multivariate time series forecasting publication-title: Eng Appl Artif Intell – ident: CR25 – volume: 80 start-page: 1 year: 2023 end-page: 39 ident: CR3 article-title: Price prediction in China stock market: an integrated method based on time series clustering and image feature extraction publication-title: J Supercomput – ident: CR42 – volume: 35 start-page: 21291 issue: 28 year: 2023 end-page: 21307 ident: CR43 article-title: A lightweight model using frequency, trend and temporal attention for long sequence time-series prediction publication-title: Neural Comput Appl – volume: 34 start-page: 8737 issue: 11 year: 2022 end-page: 8754 ident: CR11 article-title: Self-attention-based time-variant neural networks for multi-step time series forecasting publication-title: Neural Comput Appl – ident: CR21 – volume: 35 start-page: 1 year: 2022 end-page: 13 ident: CR45 article-title: Fractional Fourier image transformer for multimodal remote sensing data classification publication-title: IEEE Trans Neural Netw Learn – volume: 175 start-page: 72 year: 2019 end-page: 86 ident: CR6 article-title: An intelligent hybridization of Arima with machine learning models for time series forecasting publication-title: Knowl-Based Syst – ident: CR19 – volume: 34 start-page: 5415 year: 2022 end-page: 5428 ident: CR27 article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting publication-title: IEEE Trans Knowl Data Eng – volume: 138 start-page: 109423 year: 2023 ident: CR26 article-title: Dynamic graph structure learning for multivariate time series forecasting publication-title: Pattern Recognit – volume: 148 start-page: 110867 year: 2023 ident: CR55 article-title: Multi-step-ahead stock price prediction using recurrent fuzzy neural network and variational mode decomposition publication-title: Appl Soft Comput – volume: 159 start-page: 113565 year: 2020 ident: CR40 article-title: The impact of stock market price Fourier transform analysis on the gated recurrent unit classifier model publication-title: Expert Syst Appl – ident: CR50 – ident: CR9 – volume: 31 start-page: 3814 issue: 10 year: 2019 end-page: 3827 ident: CR39 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Trans Neural Netw Learn – volume: 195 start-page: 116517 year: 2022 ident: CR30 article-title: MDMN: multi-task and domain adaptation based multi-modal network for early rumor detection publication-title: Expert Syst Appl – volume: 136 start-page: 758 year: 2019 end-page: 768 ident: CR46 article-title: Repeated wavelet transform based Arima model for very short-term wind speed forecasting publication-title: Renew Energy – ident: CR36 – volume: 13 start-page: 60 issue: 1 year: 2022 end-page: 74 ident: CR31 article-title: A novel sentiment polarity detection framework for Chinese publication-title: IEEE Trans Affect Comput – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR17 article-title: Long short-term memory publication-title: Neural Comput – ident: CR18 – volume: 22 start-page: 1881 issue: 1 year: 2021 end-page: 1918 ident: CR37 article-title: From Fourier to Koopman: spectral methods for long-term time series prediction publication-title: J Mach Learn Res – ident: CR53 – volume: 29 start-page: 2258 year: 2022 end-page: 2262 ident: CR44 article-title: Fractional Fourier transform meets transformer encoder publication-title: IEEE Signal Process Lett – ident: CR10 – ident: CR33 – volume: 79 start-page: 11452 issue: 10 year: 2023 end-page: 11477 ident: CR32 article-title: MAPA BiLSTM-BERT: multi-aspects position aware attention for aspect level sentiment analysis publication-title: J Supercomput – volume: 80 start-page: 1 year: 2023 end-page: 22 ident: CR34 article-title: ST-YOLOX: a lightweight and accurate object detection network based on Swin transformer publication-title: J Supercomput – ident: CR48 – volume: 408 start-page: 285 year: 2020 end-page: 291 ident: CR1 article-title: Application of LSTM for short term fog forecasting based on meteorological elements publication-title: Neurocomputing – ident: CR38 – ident: CR52 – volume: 22 start-page: 4813 issue: 8 year: 2020 end-page: 4824 ident: CR4 article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models publication-title: IEEE Trans Intell Transp – volume: 8 start-page: 946 year: 2023 end-page: 962 ident: CR49 article-title: Short-time wind speed prediction based on Legendre multi-wavelet neural network publication-title: CAAI Trans Intell Technol – volume: 35 start-page: 1945 issue: 2 year: 2023 end-page: 1957 ident: CR5 article-title: Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model publication-title: Neural Comput Appl – volume: 79 start-page: 8611 issue: 8 year: 2023 end-page: 8633 ident: CR29 article-title: DBT: multimodal emotion recognition based on dual-branch transformer publication-title: J Supercomput – volume: 21 start-page: 6690 issue: 1 year: 2020 end-page: 6741 ident: CR15 article-title: High dimensional forecasting via interpretable vector autoregression publication-title: J Mach Learn Res – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR24 – volume: 13 start-page: 91 issue: 1 year: 2019 end-page: 101 ident: CR47 article-title: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters publication-title: Eng Appl Comput Fluid – ident: CR20 – volume: 268 start-page: 114977 year: 2020 ident: CR2 article-title: A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction publication-title: Appl Energy – ident: 6313_CR8 doi: 10.48550/arXiv.2001.04451 – ident: 6313_CR10 – ident: 6313_CR12 doi: 10.48550/arXiv.1905.10437 – volume: 22 start-page: 4813 issue: 8 year: 2020 ident: 6313_CR4 publication-title: IEEE Trans Intell Transp doi: 10.1109/TITS.2020.2984813 – volume: 34 start-page: 5415 year: 2022 ident: 6313_CR27 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3056502 – volume: 36 start-page: 1181 issue: 3 year: 2020 ident: 6313_CR23 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2019.07.001 – ident: 6313_CR35 doi: 10.1109/ICCV48922.2021.00986 – ident: 6313_CR24 – volume: 195 start-page: 116517 year: 2022 ident: 6313_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116517 – volume: 146 start-page: 2112 year: 2020 ident: 6313_CR16 publication-title: Renew Energy doi: 10.1016/j.renene.2019.08.018 – volume: 79 start-page: 8611 issue: 8 year: 2023 ident: 6313_CR29 publication-title: J Supercomput doi: 10.1007/s11227-022-05001-5 – ident: 6313_CR36 doi: 10.1109/ICCV48922.2021.00676 – ident: 6313_CR20 – volume: 121 start-page: 106042 year: 2023 ident: 6313_CR54 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106042 – volume: 13 start-page: 60 issue: 1 year: 2022 ident: 6313_CR31 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2019.2932061 – volume: 268 start-page: 114977 year: 2020 ident: 6313_CR2 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114977 – ident: 6313_CR38 – ident: 6313_CR7 – ident: 6313_CR53 doi: 10.1609/aaai.v37i6.25845 – volume: 8 start-page: 946 year: 2023 ident: 6313_CR49 publication-title: CAAI Trans Intell Technol doi: 10.1049/cit2.12157 – volume: 175 start-page: 72 year: 2019 ident: 6313_CR6 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.03.011 – volume: 79 start-page: 11452 issue: 10 year: 2023 ident: 6313_CR32 publication-title: J Supercomput doi: 10.1007/s11227-023-05112-7 – volume: 35 start-page: 1 year: 2022 ident: 6313_CR45 publication-title: IEEE Trans Neural Netw Learn – volume: 138 start-page: 109423 year: 2023 ident: 6313_CR26 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109423 – ident: 6313_CR42 doi: 10.1007/978-3-031-10989-8_28 – ident: 6313_CR33 doi: 10.1007/978-3-030-58452-8_13 – ident: 6313_CR48 – volume: 31 start-page: 3814 issue: 10 year: 2019 ident: 6313_CR39 publication-title: IEEE Trans Neural Netw Learn doi: 10.1109/TNNLS.2019.2946414 – volume: 159 start-page: 113565 year: 2020 ident: 6313_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113565 – volume: 136 start-page: 758 year: 2019 ident: 6313_CR46 publication-title: Renew Energy doi: 10.1016/j.renene.2019.01.031 – volume: 13 start-page: 91 issue: 1 year: 2019 ident: 6313_CR47 publication-title: Eng Appl Comput Fluid – volume: 22 start-page: 1881 issue: 1 year: 2021 ident: 6313_CR37 publication-title: J Mach Learn Res – ident: 6313_CR50 – ident: 6313_CR9 doi: 10.1609/aaai.v35i12.17325 – volume: 35 start-page: 1945 issue: 2 year: 2023 ident: 6313_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07889-9 – ident: 6313_CR22 doi: 10.1145/3209978.3210006 – volume: 29 start-page: 2258 year: 2022 ident: 6313_CR44 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2022.3217975 – ident: 6313_CR52 doi: 10.48550/arXiv.2207.01186 – volume: 37 start-page: 1748 issue: 4 year: 2021 ident: 6313_CR14 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2021.03.012 – ident: 6313_CR19 – ident: 6313_CR41 – volume: 35 start-page: 21291 issue: 28 year: 2023 ident: 6313_CR43 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08871-9 – volume: 34 start-page: 8737 issue: 11 year: 2022 ident: 6313_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06871-1 – volume: 80 start-page: 1 year: 2023 ident: 6313_CR34 publication-title: J Supercomput – volume: 148 start-page: 110867 year: 2023 ident: 6313_CR55 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110867 – volume: 21 start-page: 6690 issue: 1 year: 2020 ident: 6313_CR15 publication-title: J Mach Learn Res – volume: 80 start-page: 1 year: 2023 ident: 6313_CR3 publication-title: J Supercomput – ident: 6313_CR28 doi: 10.1145/3394486.3403118 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 6313_CR17 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 6313_CR21 – ident: 6313_CR51 doi: 10.1137/1.9781611975031.69 – volume: 408 start-page: 285 year: 2020 ident: 6313_CR1 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.129 – ident: 6313_CR25 – ident: 6313_CR18 – volume: 39 start-page: 884 issue: 2 year: 2023 ident: 6313_CR13 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2022.03.001 |
| SSID | ssj0004373 |
| Score | 2.370629 |
| Snippet | Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 23407 |
| SubjectTerms | Accuracy Artificial neural networks Compilers Computer Science Decomposition Efficiency Forecasting Fuzzy logic Interpreters Multilayer perceptrons Neural networks Polynomials Processor Architectures Programming Languages Recurrent neural networks Sequences Task complexity Time series |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9KHTgxfnJ06n5OBNA0uT9OMo4vAwhugcu0jp8iHC6MY6_f2-tKlFUUGvTfpo33fyvgDOQ8YSi8qRSmlCKoTKUA8KQafMMpaJWE7LLN_xIBoO48kkufNFYUWd7V6HJEtN3RS7sSCIKNoUimYVoYt12EBzF7uBDfcP46Yakldx5QQPRrEUgS-V-R7GZ3PU-JhfwqKltem3__edO7DtvUtyVbHDLqyZfA_a9eQG4gV5H55GVUeqGVmU_TXzgmjjsst9ChfJck0GBplLLw3xtzXuObq4ZDbPn6nT6MQNpieOh03hVozKCpdFfQCP_ZvR9S31gxaoQglcUSVkFplYqUCYXsaERnJFlodJrCSSeJqYhNlIWsZDbiLVsy7rD027MYlm0lp-CK18npsjILF2Le9Dq4VVQvMAj1-B80KyaRhZJlUHWI3vVPku5G4Yxixt-ic7_KWIv7TEXyo6cPHxzqLqwfHr7m5NxtTLY5Fy9OxkwvG_OnBZk61Z_hna8d-2n8BW4ChfFit2obVavppT2FRvq5dieVby6Ts3uOCj priority: 102 providerName: Springer Nature |
| Title | Temporal patterns decomposition and Legendre projection for long-term time series forecasting |
| URI | https://link.springer.com/article/10.1007/s11227-024-06313-4 https://www.proquest.com/docview/3256593804 |
| Volume | 80 |
| WOSCitedRecordID | wos001263427800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4R6KGXBvoQKSHaA7eyKmvv-nFCgIiQQFGUpAhVqixnH1WlyAlx2t_PjL2uBRK5cNmDH6u1Z3ZmdvebbwBOIiFSh8aRK2UjLqXO0Q5KyefCCZHLRM0rlO_9XTwaJQ8P6dhvuJUeVtnYxMpQm6WmPfLvIfpmlYbY0fnqkVPVKDpd9SU0OrBHLAmigu5N27zIsD5hTnGJlCgZ-KSZOnVOBEHM0UNxdNI4VvncMbXR5osD0srvDLtvHfE-fPARJ7uoVeQAdmzxEbpNNQfmJ_cn-DWrWaoWbFVxbhYlM5YQ5x7WxfLCsDuLCmfWlvkdHLqOYS9bLIvfnKw8o2L1jPTalnTH6rwkZPVn-DG8nl3dcF98gWuclRuupcpjm2gdSHuWC2nwO2IXRmmiFYp9ntpUuFg5EUahjfWZIyQguntrUyOUc-EX2C2WhT0ElhiiwY-ckU5LEwa4JAsoMsnnUeyE0j0QzZ_PtGcmpwIZi6zlVCZpZSitrJJWJnvw7f87q5qXY-vT_UZEmZ-jZdbKpwenjZDb26_39nV7b0fwPiC9qhIW-7C7Wf-1x_BO_9v8KdcD2Lu8Ho0nA-jcxnxQ6Su2Y_UT28n0_glzqe9U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qLRJcaFmqTinFBziBRb3FyQEhBK1azTDiMKBeUMh4qSoNmelkAPGn-I28l4WISu2tB65x_CTb31vstwE8S4TIIgpHbkxIuNauQDmoNZ-KKEShUzOto3w_j-x4nJ6eZh_X4HeXC0NhlZ1MrAW1nzt6I3-lUDebTCGhN4sLTl2jyLvatdBoYDEMv37ila16ffIez_e5lEeHk3fHvO0qwB3CbcWdNoUNqXNSh4NCaI8kbVRJljqD65lmIRPRmihUooJ1B5FC3FCPhZB5YWJUSPcWbGiVWuKroeV9HqZqPNoZXslSo2WbpNOk6gkpLUeNyNEowL3R_yrC3rq95JCt9dzR5v-2Q1twr7Wo2duGBe7DWigfwGbXrYK1wushfJk0VbhmbFHXFC0r5gNF1Ldha6woPRsFZCi_DKx9oaLvaNaz2bw846TF2Or8W2DEt6GikeCKiiLHH8GnG1nkNqyX8zLsAEs9lflPotfRaa8kXjklWV7FNLFRGDcA0Z107trK69QAZJb3NaMJHTmiI6_RkesBvPg7Z9HUHbn2770OEnkrg6q8x8MAXnag6oevprZ7PbWncOd48mGUj07Gw8dwVxKm6-TMPVhfLb-HJ3Db_VidV8v9mjsYfL1psP0BQlJIHA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pmFLm_TjUdShOMbAOfYioc2HCKMba_XvN-mHVVFBfG3StL275C7N734HcOoREmqzOGLGlIcpFZFZBynFMdGERDRgcY7yHff9wSCYTMLhhyz-HO1eHUkWOQ2WpSnJOnOpO3XiG3EcHxv_go2LNU-iy7BCLZDe7tfvx3VmpFucMYdmkxQw6pRpM9-P8dk11fHmlyPS3PP0mv9_503YKKNOdFGYyRYsqWQbmlVFB1RO8B14HBVMVVM0z3k3kxRJZVHnJbQLRYlEfWWMTi4UKv_i2Osm9EXTWfKE7UqPbMF6ZG1bpbZFiSi16OpdeOhdjy5vcFmAAQszMzMsKIt8FQjhUNWNCJVGjb52vTAQzKg-DlVItM80cT1X-aKrLRrQuHylQkmY1u4eNJJZovYBBdJS4XtaUi2odB2zLXNsdBLFnq8JEy0gley5KNnJbZGMKa95la38uJEfz-XHaQvO3u-ZF9wcv_ZuVyrl5TxNuWsiPha65rtacF6psG7-ebSDv3U_gbXhVY_3bwd3h7DuWCPI8xnb0MgWL-oIVsVr9pwujnPzfQOSvexr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+patterns+decomposition+and+Legendre+projection+for+long-term+time+series+forecasting&rft.jtitle=The+Journal+of+supercomputing&rft.au=Liu%2C+Jianxin&rft.au=Ma%2C+Tinghuai&rft.au=Su%2C+Yuming&rft.au=Rong%2C+Huan&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=16&rft.spage=23407&rft.epage=23441&rft_id=info:doi/10.1007%2Fs11227-024-06313-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |