Temporal patterns decomposition and Legendre projection for long-term time series forecasting

Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 80; číslo 16; s. 23407 - 23441
Hlavní autori: Liu, Jianxin, Ma, Tinghuai, Su, Yuming, Rong, Huan, Khalil, Alaa Abd El-Raouf Mohamed, Wahab, Mohamed Magdy Abdel, Osibo, Benjamin Kwapong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2024
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It requires forecasting methods to accurately capture long-term temporal dependencies from complex sequences with intertwined temporal patterns. For LTSF tasks, existing works propose variants of recurrent neural networks, convolutional neural networks, and transformers to catch temporal dependencies. However, these methods usually suffer from the insufficient ability to capture long-term temporal dependencies and excessively high complexity, resulting in unreliable forecasting performance. Therefore, we propose an LTSF method based on temporal patterns decomposition and Legendre projection (TPDLP). Firstly, we use temporal patterns decomposition to handle complex temporal patterns to perform decomposed refinement forecasting. Subsequently, we use high-order Legendre polynomial projection with a signal transfer module based on multilayer perceptron networks to capture long-term temporal dependencies, thereby achieving LTSF. Furthermore, we introduce targeted data normalization to alleviate the impact of distribution shifts on sequence forecasting. Through extensive experimentation with six popular real-world datasets, our TPDLP model shows an average relative improvement of 15.8% compared to the best baseline in terms of performance, measured by prediction error. In addition, it also demonstrates superior efficiency, which showcases its utility in real-world applications. Code is available at this repository: https://github.com/JoeDoex/TPDLP .
AbstractList Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It requires forecasting methods to accurately capture long-term temporal dependencies from complex sequences with intertwined temporal patterns. For LTSF tasks, existing works propose variants of recurrent neural networks, convolutional neural networks, and transformers to catch temporal dependencies. However, these methods usually suffer from the insufficient ability to capture long-term temporal dependencies and excessively high complexity, resulting in unreliable forecasting performance. Therefore, we propose an LTSF method based on temporal patterns decomposition and Legendre projection (TPDLP). Firstly, we use temporal patterns decomposition to handle complex temporal patterns to perform decomposed refinement forecasting. Subsequently, we use high-order Legendre polynomial projection with a signal transfer module based on multilayer perceptron networks to capture long-term temporal dependencies, thereby achieving LTSF. Furthermore, we introduce targeted data normalization to alleviate the impact of distribution shifts on sequence forecasting. Through extensive experimentation with six popular real-world datasets, our TPDLP model shows an average relative improvement of 15.8% compared to the best baseline in terms of performance, measured by prediction error. In addition, it also demonstrates superior efficiency, which showcases its utility in real-world applications. Code is available at this repository: https://github.com/JoeDoex/TPDLP .
Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support for long-term warnings, planning, and decision-making. LTSF is more challenging than short-term forecasting due to its larger output length. It requires forecasting methods to accurately capture long-term temporal dependencies from complex sequences with intertwined temporal patterns. For LTSF tasks, existing works propose variants of recurrent neural networks, convolutional neural networks, and transformers to catch temporal dependencies. However, these methods usually suffer from the insufficient ability to capture long-term temporal dependencies and excessively high complexity, resulting in unreliable forecasting performance. Therefore, we propose an LTSF method based on temporal patterns decomposition and Legendre projection (TPDLP). Firstly, we use temporal patterns decomposition to handle complex temporal patterns to perform decomposed refinement forecasting. Subsequently, we use high-order Legendre polynomial projection with a signal transfer module based on multilayer perceptron networks to capture long-term temporal dependencies, thereby achieving LTSF. Furthermore, we introduce targeted data normalization to alleviate the impact of distribution shifts on sequence forecasting. Through extensive experimentation with six popular real-world datasets, our TPDLP model shows an average relative improvement of 15.8% compared to the best baseline in terms of performance, measured by prediction error. In addition, it also demonstrates superior efficiency, which showcases its utility in real-world applications. Code is available at this repository: https://github.com/JoeDoex/TPDLP.
Author Su, Yuming
Khalil, Alaa Abd El-Raouf Mohamed
Rong, Huan
Osibo, Benjamin Kwapong
Liu, Jianxin
Ma, Tinghuai
Wahab, Mohamed Magdy Abdel
Author_xml – sequence: 1
  givenname: Jianxin
  surname: Liu
  fullname: Liu, Jianxin
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Tinghuai
  surname: Ma
  fullname: Ma, Tinghuai
  email: thma@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, School of Computer Engineering, Jiangsu Ocean University
– sequence: 3
  givenname: Yuming
  surname: Su
  fullname: Su, Yuming
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Huan
  surname: Rong
  fullname: Rong, Huan
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology
– sequence: 5
  givenname: Alaa Abd El-Raouf Mohamed
  surname: Khalil
  fullname: Khalil, Alaa Abd El-Raouf Mohamed
  organization: Central Laboratory for Agricultural Climate (CLAC), Agricultural Research Center (ARC)
– sequence: 6
  givenname: Mohamed Magdy Abdel
  surname: Wahab
  fullname: Wahab, Mohamed Magdy Abdel
  organization: Faculty of Science, Cairo University
– sequence: 7
  givenname: Benjamin Kwapong
  surname: Osibo
  fullname: Osibo, Benjamin Kwapong
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
BookMark eNp9kE1LxDAQhoOs4Lr6BzwVPEfz1aY5yuIXLHhZjxJiOild2qQm2YP_3nZXEDzsaWDmfWaG5xItfPCA0A0ld5QQeZ8oZUxiwgQmFaccizO0pKXkmIhaLNCSKEZwXQp2gS5T2hFCBJd8iT62MIwhmr4YTc4QfSoasGHqpS53wRfGN8UGWvBNhGKMYQf20HchFn3wLZ6gocjdAEWC2EGaJ2BNyp1vr9C5M32C69-6Qu9Pj9v1C968Pb-uHzbYcqoytqI0EmprmQBiqGhqIqTjlaptCdZ-KlDUydJRXnGQljiqFBesAlANLZ3jK3R73Ds9-LWHlPUu7KOfTmrOyqpUfNo4pdgxZWNIKYLTY-wGE781JXrWqI8a9aRRHzTqGar_QbbLZlaQo-n60yg_omm641uIf1-doH4AO4qKgg
CitedBy_id crossref_primary_10_23887_jpp_v58i1_89657
Cites_doi 10.48550/arXiv.2001.04451
10.48550/arXiv.1905.10437
10.1109/TITS.2020.2984813
10.1109/TKDE.2021.3056502
10.1016/j.ijforecast.2019.07.001
10.1109/ICCV48922.2021.00986
10.1016/j.eswa.2022.116517
10.1016/j.renene.2019.08.018
10.1007/s11227-022-05001-5
10.1109/ICCV48922.2021.00676
10.1016/j.engappai.2023.106042
10.1109/TAFFC.2019.2932061
10.1016/j.apenergy.2020.114977
10.1609/aaai.v37i6.25845
10.1049/cit2.12157
10.1016/j.knosys.2019.03.011
10.1007/s11227-023-05112-7
10.1016/j.patcog.2023.109423
10.1007/978-3-031-10989-8_28
10.1007/978-3-030-58452-8_13
10.1109/TNNLS.2019.2946414
10.1016/j.eswa.2020.113565
10.1016/j.renene.2019.01.031
10.1609/aaai.v35i12.17325
10.1007/s00521-022-07889-9
10.1145/3209978.3210006
10.1109/LSP.2022.3217975
10.48550/arXiv.2207.01186
10.1016/j.ijforecast.2021.03.012
10.1007/s00521-023-08871-9
10.1007/s00521-021-06871-1
10.1016/j.asoc.2023.110867
10.1145/3394486.3403118
10.1162/neco.1997.9.8.1735
10.1137/1.9781611975031.69
10.1016/j.neucom.2019.12.129
10.1016/j.ijforecast.2022.03.001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-024-06313-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 23441
ExternalDocumentID 10_1007_s11227_024_06313_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No.62102187; No.62102187; No.62102187; No.62102187; No.62102187
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: No.2021YFE014400; No.2021YFE014400; No.2021YFE014400; No.2021YFE014400; No.2021YFE014400
  funderid: http://dx.doi.org/10.13039/501100012166
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-c45a7e8cc24e0a14d8047f3698c5eccb9e91f75f1363e7c0f1993426ee9d15ff3
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263427800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 02 05:02:58 EST 2025
Sat Nov 29 04:27:48 EST 2025
Tue Nov 18 22:35:59 EST 2025
Fri Feb 21 02:38:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Long-term temporal dependencies
Long-term time series forecasting
Legendre polynomial projection
Neural networks
Temporal patterns decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c45a7e8cc24e0a14d8047f3698c5eccb9e91f75f1363e7c0f1993426ee9d15ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256593804
PQPubID 2043774
PageCount 35
ParticipantIDs proquest_journals_3256593804
crossref_primary_10_1007_s11227_024_06313_4
crossref_citationtrail_10_1007_s11227_024_06313_4
springer_journals_10_1007_s11227_024_06313_4
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wang, Liu, Du, Yang, Dong (CR54) 2023; 121
Şahinuç, Koç (CR44) 2022; 29
CR38
CR36
CR35
Salinas, Flunkert, Gasthaus, Januschowski (CR23) 2020; 36
CR33
Nicholson, Wilms, Bien, Matteson (CR15) 2020; 21
Yi, Tian, He, Fan, Hu, Xu (CR29) 2023; 79
Radojičić, Kredatus (CR40) 2020; 159
CR8
Olivares, Challu, Marcjasz, Weron, Dubrawski (CR13) 2023; 39
CR7
Hochreiter, Schmidhuber (CR17) 1997; 9
CR9
Li, Zhang, Yu, Xu (CR26) 2023; 138
CR48
Guan, Zhao, Yuan, Long, Li (CR3) 2023; 80
Han, Yang, Wei, Gong, Qian (CR34) 2023; 80
CR42
CR41
Miao, Han, Yao, Lu, Chen, Wang, Zhang (CR1) 2020; 408
Shamshirband, Nodoushan, Adolf, Manaf, Mosavi, Chau (CR47) 2019; 13
Nasiri, Ebadzadeh (CR55) 2023; 148
Lim, Arık, Loeff, Pfister (CR14) 2021; 37
Wankhade, Annavarapu, Abraham (CR32) 2023; 79
Jallal, Gonzalez-Vidal, Skarmeta, Chabaa, Zeroual (CR2) 2020; 268
CR19
CR18
CR12
CR10
CR53
CR52
Zhao, Zhang, Tao, Li, Liao, Tian, Philips (CR45) 2022; 35
CR51
CR50
Wang, Li, Fu, Tang (CR39) 2019; 31
Ma, Zhong, Li, Ma, Cui, Wang (CR4) 2020; 22
Chen, Li, Huang, Zhao (CR43) 2023; 35
Singh, Mohapatra (CR46) 2019; 136
Ma, Rong, Hao, Cao, Tian, Al-Rodhaan (CR31) 2022; 13
Gao, Zhang, Li, Bian, Wan (CR11) 2022; 34
Guo, Lin, Wan, Li, Cong (CR27) 2022; 34
CR28
CR25
CR24
CR22
CR21
Cai, Jia, Feng, Li, Hsu, Lee (CR16) 2020; 146
CR20
Zhou, Ma, Rong, Qian, Tian, Al-Nabhan (CR30) 2022; 195
Júnior, Oliveira, Mattos Neto (CR6) 2019; 175
Lange, Brunton, Kutz (CR37) 2021; 22
Rathipriya, Abdul Rahman, Dhamodharavadhani, Meero, Yoganandan (CR5) 2023; 35
Zheng, Jia, Lv, Luo, Zhao, Ye (CR49) 2023; 8
6313_CR38
X Zheng (6313_CR49) 2023; 8
6313_CR36
L Chen (6313_CR43) 2023; 35
6313_CR35
6313_CR33
B Guan (6313_CR3) 2023; 80
S Hochreiter (6313_CR17) 1997; 9
WB Nicholson (6313_CR15) 2020; 21
ZL Li (6313_CR26) 2023; 138
S Singh (6313_CR46) 2019; 136
KG Olivares (6313_CR13) 2023; 39
6313_CR28
6313_CR25
6313_CR24
6313_CR21
6313_CR22
MA Jallal (6313_CR2) 2020; 268
6313_CR20
H Cai (6313_CR16) 2020; 146
C Gao (6313_CR11) 2022; 34
H Nasiri (6313_CR55) 2023; 148
D Salinas (6313_CR23) 2020; 36
X Wang (6313_CR54) 2023; 121
Y Yi (6313_CR29) 2023; 79
6313_CR18
6313_CR19
S Guo (6313_CR27) 2022; 34
H Lange (6313_CR37) 2021; 22
6313_CR12
6313_CR10
B Lim (6313_CR14) 2021; 37
6313_CR52
6313_CR53
6313_CR50
6313_CR51
D Radojičić (6313_CR40) 2020; 159
H Zhou (6313_CR30) 2022; 195
X Ma (6313_CR4) 2020; 22
R Rathipriya (6313_CR5) 2023; 35
M Wankhade (6313_CR32) 2023; 79
K-C Miao (6313_CR1) 2020; 408
X Zhao (6313_CR45) 2022; 35
6313_CR48
F Şahinuç (6313_CR44) 2022; 29
6313_CR41
R Wang (6313_CR39) 2019; 31
6313_CR42
DSdOS Júnior (6313_CR6) 2019; 175
J Han (6313_CR34) 2023; 80
6313_CR8
S Shamshirband (6313_CR47) 2019; 13
6313_CR7
T Ma (6313_CR31) 2022; 13
6313_CR9
References_xml – ident: CR22
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  end-page: 1191
  ident: CR23
  article-title: DeepAR: probabilistic forecasting with autoregressive recurrent networks
  publication-title: Int J Forecast
– ident: CR51
– ident: CR12
– volume: 146
  start-page: 2112
  year: 2020
  end-page: 2123
  ident: CR16
  article-title: Gaussian process regression for numerical wind speed prediction enhancement
  publication-title: Renew Energy
– volume: 39
  start-page: 884
  issue: 2
  year: 2023
  end-page: 900
  ident: CR13
  article-title: Neural basis expansion analysis with exogenous variables: forecasting electricity prices with NBEATSx
  publication-title: Int J Forecast
– ident: CR35
– ident: CR8
– volume: 37
  start-page: 1748
  issue: 4
  year: 2021
  end-page: 1764
  ident: CR14
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int J Forecast
– volume: 121
  start-page: 106042
  year: 2023
  ident: CR54
  article-title: CLformer: locally grouped auto-correlation and convolutional transformer for long-term multivariate time series forecasting
  publication-title: Eng Appl Artif Intell
– ident: CR25
– volume: 80
  start-page: 1
  year: 2023
  end-page: 39
  ident: CR3
  article-title: Price prediction in China stock market: an integrated method based on time series clustering and image feature extraction
  publication-title: J Supercomput
– ident: CR42
– volume: 35
  start-page: 21291
  issue: 28
  year: 2023
  end-page: 21307
  ident: CR43
  article-title: A lightweight model using frequency, trend and temporal attention for long sequence time-series prediction
  publication-title: Neural Comput Appl
– volume: 34
  start-page: 8737
  issue: 11
  year: 2022
  end-page: 8754
  ident: CR11
  article-title: Self-attention-based time-variant neural networks for multi-step time series forecasting
  publication-title: Neural Comput Appl
– ident: CR21
– volume: 35
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR45
  article-title: Fractional Fourier image transformer for multimodal remote sensing data classification
  publication-title: IEEE Trans Neural Netw Learn
– volume: 175
  start-page: 72
  year: 2019
  end-page: 86
  ident: CR6
  article-title: An intelligent hybridization of Arima with machine learning models for time series forecasting
  publication-title: Knowl-Based Syst
– ident: CR19
– volume: 34
  start-page: 5415
  year: 2022
  end-page: 5428
  ident: CR27
  article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting
  publication-title: IEEE Trans Knowl Data Eng
– volume: 138
  start-page: 109423
  year: 2023
  ident: CR26
  article-title: Dynamic graph structure learning for multivariate time series forecasting
  publication-title: Pattern Recognit
– volume: 148
  start-page: 110867
  year: 2023
  ident: CR55
  article-title: Multi-step-ahead stock price prediction using recurrent fuzzy neural network and variational mode decomposition
  publication-title: Appl Soft Comput
– volume: 159
  start-page: 113565
  year: 2020
  ident: CR40
  article-title: The impact of stock market price Fourier transform analysis on the gated recurrent unit classifier model
  publication-title: Expert Syst Appl
– ident: CR50
– ident: CR9
– volume: 31
  start-page: 3814
  issue: 10
  year: 2019
  end-page: 3827
  ident: CR39
  article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction
  publication-title: IEEE Trans Neural Netw Learn
– volume: 195
  start-page: 116517
  year: 2022
  ident: CR30
  article-title: MDMN: multi-task and domain adaptation based multi-modal network for early rumor detection
  publication-title: Expert Syst Appl
– volume: 136
  start-page: 758
  year: 2019
  end-page: 768
  ident: CR46
  article-title: Repeated wavelet transform based Arima model for very short-term wind speed forecasting
  publication-title: Renew Energy
– ident: CR36
– volume: 13
  start-page: 60
  issue: 1
  year: 2022
  end-page: 74
  ident: CR31
  article-title: A novel sentiment polarity detection framework for Chinese
  publication-title: IEEE Trans Affect Comput
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR17
  article-title: Long short-term memory
  publication-title: Neural Comput
– ident: CR18
– volume: 22
  start-page: 1881
  issue: 1
  year: 2021
  end-page: 1918
  ident: CR37
  article-title: From Fourier to Koopman: spectral methods for long-term time series prediction
  publication-title: J Mach Learn Res
– ident: CR53
– volume: 29
  start-page: 2258
  year: 2022
  end-page: 2262
  ident: CR44
  article-title: Fractional Fourier transform meets transformer encoder
  publication-title: IEEE Signal Process Lett
– ident: CR10
– ident: CR33
– volume: 79
  start-page: 11452
  issue: 10
  year: 2023
  end-page: 11477
  ident: CR32
  article-title: MAPA BiLSTM-BERT: multi-aspects position aware attention for aspect level sentiment analysis
  publication-title: J Supercomput
– volume: 80
  start-page: 1
  year: 2023
  end-page: 22
  ident: CR34
  article-title: ST-YOLOX: a lightweight and accurate object detection network based on Swin transformer
  publication-title: J Supercomput
– ident: CR48
– volume: 408
  start-page: 285
  year: 2020
  end-page: 291
  ident: CR1
  article-title: Application of LSTM for short term fog forecasting based on meteorological elements
  publication-title: Neurocomputing
– ident: CR38
– ident: CR52
– volume: 22
  start-page: 4813
  issue: 8
  year: 2020
  end-page: 4824
  ident: CR4
  article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models
  publication-title: IEEE Trans Intell Transp
– volume: 8
  start-page: 946
  year: 2023
  end-page: 962
  ident: CR49
  article-title: Short-time wind speed prediction based on Legendre multi-wavelet neural network
  publication-title: CAAI Trans Intell Technol
– volume: 35
  start-page: 1945
  issue: 2
  year: 2023
  end-page: 1957
  ident: CR5
  article-title: Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model
  publication-title: Neural Comput Appl
– volume: 79
  start-page: 8611
  issue: 8
  year: 2023
  end-page: 8633
  ident: CR29
  article-title: DBT: multimodal emotion recognition based on dual-branch transformer
  publication-title: J Supercomput
– volume: 21
  start-page: 6690
  issue: 1
  year: 2020
  end-page: 6741
  ident: CR15
  article-title: High dimensional forecasting via interpretable vector autoregression
  publication-title: J Mach Learn Res
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 13
  start-page: 91
  issue: 1
  year: 2019
  end-page: 101
  ident: CR47
  article-title: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters
  publication-title: Eng Appl Comput Fluid
– ident: CR20
– volume: 268
  start-page: 114977
  year: 2020
  ident: CR2
  article-title: A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction
  publication-title: Appl Energy
– ident: 6313_CR8
  doi: 10.48550/arXiv.2001.04451
– ident: 6313_CR10
– ident: 6313_CR12
  doi: 10.48550/arXiv.1905.10437
– volume: 22
  start-page: 4813
  issue: 8
  year: 2020
  ident: 6313_CR4
  publication-title: IEEE Trans Intell Transp
  doi: 10.1109/TITS.2020.2984813
– volume: 34
  start-page: 5415
  year: 2022
  ident: 6313_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3056502
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  ident: 6313_CR23
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.07.001
– ident: 6313_CR35
  doi: 10.1109/ICCV48922.2021.00986
– ident: 6313_CR24
– volume: 195
  start-page: 116517
  year: 2022
  ident: 6313_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116517
– volume: 146
  start-page: 2112
  year: 2020
  ident: 6313_CR16
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.08.018
– volume: 79
  start-page: 8611
  issue: 8
  year: 2023
  ident: 6313_CR29
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-05001-5
– ident: 6313_CR36
  doi: 10.1109/ICCV48922.2021.00676
– ident: 6313_CR20
– volume: 121
  start-page: 106042
  year: 2023
  ident: 6313_CR54
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106042
– volume: 13
  start-page: 60
  issue: 1
  year: 2022
  ident: 6313_CR31
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2019.2932061
– volume: 268
  start-page: 114977
  year: 2020
  ident: 6313_CR2
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114977
– ident: 6313_CR38
– ident: 6313_CR7
– ident: 6313_CR53
  doi: 10.1609/aaai.v37i6.25845
– volume: 8
  start-page: 946
  year: 2023
  ident: 6313_CR49
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/cit2.12157
– volume: 175
  start-page: 72
  year: 2019
  ident: 6313_CR6
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.03.011
– volume: 79
  start-page: 11452
  issue: 10
  year: 2023
  ident: 6313_CR32
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05112-7
– volume: 35
  start-page: 1
  year: 2022
  ident: 6313_CR45
  publication-title: IEEE Trans Neural Netw Learn
– volume: 138
  start-page: 109423
  year: 2023
  ident: 6313_CR26
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109423
– ident: 6313_CR42
  doi: 10.1007/978-3-031-10989-8_28
– ident: 6313_CR33
  doi: 10.1007/978-3-030-58452-8_13
– ident: 6313_CR48
– volume: 31
  start-page: 3814
  issue: 10
  year: 2019
  ident: 6313_CR39
  publication-title: IEEE Trans Neural Netw Learn
  doi: 10.1109/TNNLS.2019.2946414
– volume: 159
  start-page: 113565
  year: 2020
  ident: 6313_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113565
– volume: 136
  start-page: 758
  year: 2019
  ident: 6313_CR46
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.01.031
– volume: 13
  start-page: 91
  issue: 1
  year: 2019
  ident: 6313_CR47
  publication-title: Eng Appl Comput Fluid
– volume: 22
  start-page: 1881
  issue: 1
  year: 2021
  ident: 6313_CR37
  publication-title: J Mach Learn Res
– ident: 6313_CR50
– ident: 6313_CR9
  doi: 10.1609/aaai.v35i12.17325
– volume: 35
  start-page: 1945
  issue: 2
  year: 2023
  ident: 6313_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07889-9
– ident: 6313_CR22
  doi: 10.1145/3209978.3210006
– volume: 29
  start-page: 2258
  year: 2022
  ident: 6313_CR44
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2022.3217975
– ident: 6313_CR52
  doi: 10.48550/arXiv.2207.01186
– volume: 37
  start-page: 1748
  issue: 4
  year: 2021
  ident: 6313_CR14
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2021.03.012
– ident: 6313_CR19
– ident: 6313_CR41
– volume: 35
  start-page: 21291
  issue: 28
  year: 2023
  ident: 6313_CR43
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08871-9
– volume: 34
  start-page: 8737
  issue: 11
  year: 2022
  ident: 6313_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06871-1
– volume: 80
  start-page: 1
  year: 2023
  ident: 6313_CR34
  publication-title: J Supercomput
– volume: 148
  start-page: 110867
  year: 2023
  ident: 6313_CR55
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110867
– volume: 21
  start-page: 6690
  issue: 1
  year: 2020
  ident: 6313_CR15
  publication-title: J Mach Learn Res
– volume: 80
  start-page: 1
  year: 2023
  ident: 6313_CR3
  publication-title: J Supercomput
– ident: 6313_CR28
  doi: 10.1145/3394486.3403118
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 6313_CR17
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 6313_CR21
– ident: 6313_CR51
  doi: 10.1137/1.9781611975031.69
– volume: 408
  start-page: 285
  year: 2020
  ident: 6313_CR1
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.129
– ident: 6313_CR25
– ident: 6313_CR18
– volume: 39
  start-page: 884
  issue: 2
  year: 2023
  ident: 6313_CR13
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2022.03.001
SSID ssj0004373
Score 2.370629
Snippet Long-term time series forecasting (LTSF) means utilizing historical data to forecast future sequences that are relatively distant in time, providing support...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23407
SubjectTerms Accuracy
Artificial neural networks
Compilers
Computer Science
Decomposition
Efficiency
Forecasting
Fuzzy logic
Interpreters
Multilayer perceptrons
Neural networks
Polynomials
Processor Architectures
Programming Languages
Recurrent neural networks
Sequences
Task complexity
Time series
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9KHTgxfnJ06n5OBNA0uT9OMo4vAwhugcu0jp8iHC6MY6_f2-tKlFUUGvTfpo33fyvgDOQ8YSi8qRSmlCKoTKUA8KQafMMpaJWE7LLN_xIBoO48kkufNFYUWd7V6HJEtN3RS7sSCIKNoUimYVoYt12EBzF7uBDfcP46Yakldx5QQPRrEUgS-V-R7GZ3PU-JhfwqKltem3__edO7DtvUtyVbHDLqyZfA_a9eQG4gV5H55GVUeqGVmU_TXzgmjjsst9ChfJck0GBplLLw3xtzXuObq4ZDbPn6nT6MQNpieOh03hVozKCpdFfQCP_ZvR9S31gxaoQglcUSVkFplYqUCYXsaERnJFlodJrCSSeJqYhNlIWsZDbiLVsy7rD027MYlm0lp-CK18npsjILF2Le9Dq4VVQvMAj1-B80KyaRhZJlUHWI3vVPku5G4Yxixt-ic7_KWIv7TEXyo6cPHxzqLqwfHr7m5NxtTLY5Fy9OxkwvG_OnBZk61Z_hna8d-2n8BW4ChfFit2obVavppT2FRvq5dieVby6Ts3uOCj
  priority: 102
  providerName: Springer Nature
Title Temporal patterns decomposition and Legendre projection for long-term time series forecasting
URI https://link.springer.com/article/10.1007/s11227-024-06313-4
https://www.proquest.com/docview/3256593804
Volume 80
WOSCitedRecordID wos001263427800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4R6KGXBvoQKSHaA7eyKmvv-nFCgIiQQFGUpAhVqixnH1WlyAlx2t_PjL2uBRK5cNmDH6u1Z3ZmdvebbwBOIiFSh8aRK2UjLqXO0Q5KyefCCZHLRM0rlO_9XTwaJQ8P6dhvuJUeVtnYxMpQm6WmPfLvIfpmlYbY0fnqkVPVKDpd9SU0OrBHLAmigu5N27zIsD5hTnGJlCgZ-KSZOnVOBEHM0UNxdNI4VvncMbXR5osD0srvDLtvHfE-fPARJ7uoVeQAdmzxEbpNNQfmJ_cn-DWrWaoWbFVxbhYlM5YQ5x7WxfLCsDuLCmfWlvkdHLqOYS9bLIvfnKw8o2L1jPTalnTH6rwkZPVn-DG8nl3dcF98gWuclRuupcpjm2gdSHuWC2nwO2IXRmmiFYp9ntpUuFg5EUahjfWZIyQguntrUyOUc-EX2C2WhT0ElhiiwY-ckU5LEwa4JAsoMsnnUeyE0j0QzZ_PtGcmpwIZi6zlVCZpZSitrJJWJnvw7f87q5qXY-vT_UZEmZ-jZdbKpwenjZDb26_39nV7b0fwPiC9qhIW-7C7Wf-1x_BO_9v8KdcD2Lu8Ho0nA-jcxnxQ6Su2Y_UT28n0_glzqe9U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qLRJcaFmqTinFBziBRb3FyQEhBK1azTDiMKBeUMh4qSoNmelkAPGn-I28l4WISu2tB65x_CTb31vstwE8S4TIIgpHbkxIuNauQDmoNZ-KKEShUzOto3w_j-x4nJ6eZh_X4HeXC0NhlZ1MrAW1nzt6I3-lUDebTCGhN4sLTl2jyLvatdBoYDEMv37ila16ffIez_e5lEeHk3fHvO0qwB3CbcWdNoUNqXNSh4NCaI8kbVRJljqD65lmIRPRmihUooJ1B5FC3FCPhZB5YWJUSPcWbGiVWuKroeV9HqZqPNoZXslSo2WbpNOk6gkpLUeNyNEowL3R_yrC3rq95JCt9dzR5v-2Q1twr7Wo2duGBe7DWigfwGbXrYK1wushfJk0VbhmbFHXFC0r5gNF1Ldha6woPRsFZCi_DKx9oaLvaNaz2bw846TF2Or8W2DEt6GikeCKiiLHH8GnG1nkNqyX8zLsAEs9lflPotfRaa8kXjklWV7FNLFRGDcA0Z107trK69QAZJb3NaMJHTmiI6_RkesBvPg7Z9HUHbn2770OEnkrg6q8x8MAXnag6oevprZ7PbWncOd48mGUj07Gw8dwVxKm6-TMPVhfLb-HJ3Db_VidV8v9mjsYfL1psP0BQlJIHA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pmFLm_TjUdShOMbAOfYioc2HCKMba_XvN-mHVVFBfG3StL275C7N734HcOoREmqzOGLGlIcpFZFZBynFMdGERDRgcY7yHff9wSCYTMLhhyz-HO1eHUkWOQ2WpSnJOnOpO3XiG3EcHxv_go2LNU-iy7BCLZDe7tfvx3VmpFucMYdmkxQw6pRpM9-P8dk11fHmlyPS3PP0mv9_503YKKNOdFGYyRYsqWQbmlVFB1RO8B14HBVMVVM0z3k3kxRJZVHnJbQLRYlEfWWMTi4UKv_i2Osm9EXTWfKE7UqPbMF6ZG1bpbZFiSi16OpdeOhdjy5vcFmAAQszMzMsKIt8FQjhUNWNCJVGjb52vTAQzKg-DlVItM80cT1X-aKrLRrQuHylQkmY1u4eNJJZovYBBdJS4XtaUi2odB2zLXNsdBLFnq8JEy0gley5KNnJbZGMKa95la38uJEfz-XHaQvO3u-ZF9wcv_ZuVyrl5TxNuWsiPha65rtacF6psG7-ebSDv3U_gbXhVY_3bwd3h7DuWCPI8xnb0MgWL-oIVsVr9pwujnPzfQOSvexr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+patterns+decomposition+and+Legendre+projection+for+long-term+time+series+forecasting&rft.jtitle=The+Journal+of+supercomputing&rft.au=Liu%2C+Jianxin&rft.au=Ma%2C+Tinghuai&rft.au=Su%2C+Yuming&rft.au=Rong%2C+Huan&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=16&rft.spage=23407&rft.epage=23441&rft_id=info:doi/10.1007%2Fs11227-024-06313-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon