Intuitionistic fuzzy information-driven total Bregman divergence fuzzy clustering with multiple local information constraints for image segmentation

Aiming at the shortcoming of existing robust intuitionistic fuzzy clustering and its variant algorithms in the presence of high noise, we will explore a novel intuitionistic fuzzy clustering-related segmentation algorithm with strong robustness. To enhance the anti-noise robustness and segmentation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Visual computer Ročník 39; číslo 1; s. 149 - 181
Hlavní autoři: Wu, Chengmao, Huang, Congcong, Zhang, Jiajia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Témata:
ISSN:0178-2789, 1432-2315
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aiming at the shortcoming of existing robust intuitionistic fuzzy clustering and its variant algorithms in the presence of high noise, we will explore a novel intuitionistic fuzzy clustering-related segmentation algorithm with strong robustness. To enhance the anti-noise robustness and segmentation accuracy of intuitionistic fuzzy clustering-related algorithms, an intuitionistic fuzzy information-driven total Bregman divergence fuzzy clustering with multiple local information constraints is proposed in this paper. In this algorithm, a modified total Bregman divergence with spatial information constraints is firstly constructed to replace existing squared Euclidean distance in intuitionistic fuzzy clustering, which can further enhance the ability of noise suppression. By introducing an intuitionistic fuzzy weighted local information into the objective function of intuitionistic fuzzy c-means clustering, its noise sensitivity can be reduced and image details can be preserved effectively. Combining neighborhood spatial information, neighborhood gray information with the normalized variance of neighborhood pixels, a local similarity measure between the current pixel and its neighborhood pixels is constructed to better describe the influence degree of neighborhood pixels on the current pixel, and it is adaptively embedded into modified total Bregman divergence-based intuitionistic fuzzy clustering. In the end, a robust total Bregman divergence-based fuzzy weighted local information clustering algorithm motivated by intuitionistic fuzzy information of the image is obtained to solve the problem of robust image segmentation, and its convergence is strictly proved by the Zangwill theorem. Many experimental results show that the segmentation accuracy ACC of the proposed algorithm can be as high as more than 90%, and the misclassification rate ME can be as low as less than 28%. Therefore, the proposed algorithm has better segmentation performance and robustness than the existing state-of-the-art intuitionistic fuzzy clustering-related segmentation algorithm in the presence of noise.
AbstractList Aiming at the shortcoming of existing robust intuitionistic fuzzy clustering and its variant algorithms in the presence of high noise, we will explore a novel intuitionistic fuzzy clustering-related segmentation algorithm with strong robustness. To enhance the anti-noise robustness and segmentation accuracy of intuitionistic fuzzy clustering-related algorithms, an intuitionistic fuzzy information-driven total Bregman divergence fuzzy clustering with multiple local information constraints is proposed in this paper. In this algorithm, a modified total Bregman divergence with spatial information constraints is firstly constructed to replace existing squared Euclidean distance in intuitionistic fuzzy clustering, which can further enhance the ability of noise suppression. By introducing an intuitionistic fuzzy weighted local information into the objective function of intuitionistic fuzzy c-means clustering, its noise sensitivity can be reduced and image details can be preserved effectively. Combining neighborhood spatial information, neighborhood gray information with the normalized variance of neighborhood pixels, a local similarity measure between the current pixel and its neighborhood pixels is constructed to better describe the influence degree of neighborhood pixels on the current pixel, and it is adaptively embedded into modified total Bregman divergence-based intuitionistic fuzzy clustering. In the end, a robust total Bregman divergence-based fuzzy weighted local information clustering algorithm motivated by intuitionistic fuzzy information of the image is obtained to solve the problem of robust image segmentation, and its convergence is strictly proved by the Zangwill theorem. Many experimental results show that the segmentation accuracy ACC of the proposed algorithm can be as high as more than 90%, and the misclassification rate ME can be as low as less than 28%. Therefore, the proposed algorithm has better segmentation performance and robustness than the existing state-of-the-art intuitionistic fuzzy clustering-related segmentation algorithm in the presence of noise.
Author Zhang, Jiajia
Wu, Chengmao
Huang, Congcong
Author_xml – sequence: 1
  givenname: Chengmao
  orcidid: 0000-0002-5881-4723
  surname: Wu
  fullname: Wu, Chengmao
  organization: School of Electronic Engineering, Xi’an University of Posts and Telecommunications
– sequence: 2
  givenname: Congcong
  orcidid: 0000-0002-2971-8978
  surname: Huang
  fullname: Huang, Congcong
  email: huangcongcong_1234@163.com
  organization: School of Electronic Engineering, Xi’an University of Posts and Telecommunications
– sequence: 3
  givenname: Jiajia
  orcidid: 0000-0002-3144-4179
  surname: Zhang
  fullname: Zhang, Jiajia
  organization: School of Electronic Engineering, Xi’an University of Posts and Telecommunications
BookMark eNp9kE1OwzAQhS1UJErhAqwssQ7YcRo7S6j4qVSJDawt13GCq8QOtgNqz8GBcZpKIBZdWNY8zTcz752DibFGAXCF0Q1GiN56hAjFCUqHR3CRsBMwxRlJk1jNJ2CKMGVJSllxBs6936BY06yYgu-lCb0O2hrtg5aw6ne7LdSmsq4Vg5yUTn8qA4MNooH3TtWtMLCMmquVkepAyKb3QTltavilwzts-yborlGwsTJyfwZCaY0PTmgTPIwq1K2oFfRxsDJh33IBTivReHV5-Gfg7fHhdfGcrF6elou7VSKjxZDILMsJy9YVzQVLGZWFwlQQtqZ5NCrmWVXkEolK0HIuCaoULkqxZqikOGOZRGQGrse5nbMfvfKBb2zvTFzJ0yIGVqQ5w7ErHbuks947VfHOxZvdlmPEh_T5mD6P6fN9-pxFiP2DpB7NDdab4ygZUd8NeSr3e9UR6gc_3aCK
CitedBy_id crossref_primary_10_1007_s00371_022_02464_8
crossref_primary_10_32604_cmes_2023_025499
crossref_primary_10_1007_s00034_022_02175_4
crossref_primary_10_1016_j_asoc_2023_110460
crossref_primary_10_1016_j_compbiomed_2025_110458
crossref_primary_10_1038_s41598_023_47089_6
Cites_doi 10.1007/s41870-017-0039-2
10.3969/j.issn.1004-4132.2010.04.009
10.1109/91.227387
10.1007/s11042-018-5954-0
10.1016/j.asoc.2010.05.005
10.1016/S0019-9958(65)90241-X
10.1016/S0165-0114(86)80034-3
10.5772/intechopen.74514
10.1007/s40815-020-00824-x
10.1137/1.9781611972740.22
10.1504/IJBIDM.2008.017975
10.3969/j.issn.1000-1093.2019.09.014(inChinese)
10.1007/s00138-014-0606-5
10.1109/PROC.1979.11327
10.14311/CEJ.2018.04.0041
10.1016/j.dsp.2013.07.005
10.1109/tip.2011.2146190
10.1109/tpami.1980.4766964
10.1109/TFUZZ.2020.2973121
10.3390/e20040256
10.1109/TMI.2010.2086464
10.1109/42.996338
10.1080/01969727308546047
10.1007/978-3-319-49568-2_52
10.3233/JIFS-192005
10.1016/j.compag.2021.106237
10.1016/j.rcim.2019.03.001
10.3233/JIFS-169809
10.1007/s11222-015-9576-3
10.1109/TSMCB.2004.831165
10.1016/j.neucom.2021.04.094
10.1016/j.jneumeth.2010.03.004
10.1016/j.patcog.2006.07.011
10.1007/s00500-019-04169-y
10.1109/tpami.2012.44
10.1109/TIP.2012.2219547
10.1016/j.dsp.2019.102615
10.3389/fpls.2020.00510
10.1016/j.neucom.2018.05.116
10.1016/j.patcog.2011.02.009
10.3969/j.issn.1001-3695.2014.09.073(inChinese)
10.1016/j.patrec.2013.04.021
10.4108/eai.13-7-2018.159622
10.1109/TFUZZ.2018.2852289
10.1016/j.eswa.2014.01.003
10.1016/j.dsp.2018.01.008
10.1109/LSP.2013.2244080
10.1007/s10462-010-9155-0
10.1016/0041-5553(67)90040-7
10.1109/34.589206
10.1016/j.asoc.2015.12.022
10.1080/18756891.2013.865830
10.1080/03081077908547452
10.1109/TFUZZ.2013.2280141
10.1016/S0019-9958(80)90156-4
10.1109/JBHI.2018.2884208
10.1016/j.measurement.2021.109477
10.1142/S0218213015500165
10.1109/TIP.2010.2040763
10.1016/S1361-8415(00)00041-4
10.1016/j.asoc.2020.106468
10.1109/34.868688
10.1007/978-1-4757-0450-1
10.1049/iet-ipr.2018.5597
10.1007/s00500-014-1264-2
10.1007/s00034-012-9531-x
10.1016/S0165-0114(98)00244-9
10.1109/CIMCA.2005.1631233
10.1109/TBDATA.2016.2622288
10.1109/SMC.2016.7844622
10.1109/ICCV.2001.937655
10.1109/IEMBS.2003.1279866
10.1109/CCIP.2016.7802852
10.1109/ICComm.2016.7528317
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-021-02319-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 181
ExternalDocumentID 10_1007_s00371_021_02319_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61671377; 51709228
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shaanxi Natural Science Foundation of China
  grantid: 2016JM8034; 2017JM6107; 2018JM4018
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-c446384bf76a8287c9e17a38b76789a54f96c0afa7d5c30fe19dab80d71484c03
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717889400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2789
IngestDate Wed Nov 05 02:09:45 EST 2025
Sat Nov 29 02:23:28 EST 2025
Tue Nov 18 21:27:00 EST 2025
Fri Feb 21 02:46:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image segmentation
Local similarity measure
Intuitionistic fuzzy clustering
Intuitionistic fuzzy weighted local information factor
Total Bregman divergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c446384bf76a8287c9e17a38b76789a54f96c0afa7d5c30fe19dab80d71484c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2971-8978
0000-0002-3144-4179
0000-0002-5881-4723
PQID 2917892681
PQPubID 2043737
PageCount 33
ParticipantIDs proquest_journals_2917892681
crossref_primary_10_1007_s00371_021_02319_8
crossref_citationtrail_10_1007_s00371_021_02319_8
springer_journals_10_1007_s00371_021_02319_8
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Benaichouche, Oulhadj, Siarry (CR17) 2013; 23
Alipour, Shanbehzadeh (CR12) 2014; 25
Liu (CR54) 2011
Ahmed, Yamany, Mohamed (CR24) 2002; 21
Giordana, Pieczynski (CR73) 1997; 19
Wu, Yang (CR61) 2020; 97
Liu, Vemuri, Amari (CR55) 2012; 34
CR76
Zangwill (CR71) 1969
Tang, Chen, Wang (CR3) 2020; 11
Atanassov (CR29) 1986; 20
Pelekis, Iakovidis, Kotsifakos (CR28) 2008; 3
Chen, Zhang (CR25) 2004; 34
Bezdek (CR77) 1974; 3
Luo, Wang, Wang (CR10) 2016; 541
Kaur, Soni, Gosain (CR43) 2012; 11
Gong, Liang, Shi (CR70) 2013; 22
Kaur (CR37) 2017; 9
Wu, Zhang (CR69) 2020; 94
CR9
Verma, Agrawal (CR35) 2015; 24
Yager (CR32) 1980; 44
Cai, Chen, Zhang (CR27) 2007; 40
Wang, Chen, Pan (CR14) 2010; 188
Zhao, Zeng, Liu (CR42) 2020; 28
Xu, Wu (CR34) 2010; 21
Chen, Li, Wang (CR48) 2019; 13
CR80
Qiu, Xiao, Yu (CR21) 2013; 34
Verma, Agrawal, Sharan (CR47) 2015; 46
Wu, Sun (CR57) 2019; 40
Hua, Cheng, Wang (CR58) 2018; 75
Olabarriaga, Smeulders (CR20) 2001; 5
Bezdek (CR23) 1981
Kumar, Verma, Mehra (CR38) 2018; 78
Dante, Kinani, Rubio (CR53) 2020; 22
Bezdek (CR72) 1980; 2
Dante (CR40) 2020; 39
Kumar (CR78) 2019; 78
Tang, Lin, Wang (CR4) 2019; 59
Zhao, Liu, Fan (CR51) 2018; 312
Guo, Sengur (CR74) 2010; 32
Krinidis, Chatzis (CR19) 2010; 19
Balafar, Ramli, Saripan (CR16) 2010; 33
Hasnat, Alata, Tremeau (CR66) 2016; 26
CR15
Krishnapuram, Keller (CR36) 1993; 1
CR11
Huang, Lin, Wu (CR18) 2015; 19
Chaira (CR30) 2011; 11
Kumar, Agrawal, Verma (CR41) 2020; 24
Szmidt, Kacprzyk (CR64) 2000; 114
Chaira, Panwar (CR33) 2014; 7
Arora, Tushir (CR49) 2018; 35
Tsai, Lin (CR44) 2011; 44
Banerjee, Merugu, Dhillon (CR65) 2005; 6
Shi, Malik (CR2) 2000; 22
Yager (CR31) 1979; 5
Groen (CR68) 1996; 14
Despotović, Ansteenkiste, Philips (CR60) 2013; 20
Isidoro, Martins, Carvalho (CR6) 2021; 180
Gharib (CR75) 2018
Wang, Fan, Lou (CR45) 2014; 31
Zhao, Fan, Liu (CR50) 2018; 27
Fuchs, Kröger, Garbe (CR5) 2021; 453
Zhao, Fan, Liu (CR79) 2014; 41
Bregman (CR67) 1967; 7
Vemuri, Liu, Amari (CR56) 2011; 30
Zhang, Qin (CR8) 2018; 27
CR26
Li, Huang, Ding (CR13) 2011; 20
Chen, Tang, Zhou (CR7) 2021; 187
Bai, Zhang, Liu (CR52) 2019; 23
Coleman, Andrews (CR22) 1979; 67
CR63
Zadeh (CR62) 1965; 8
Arora, Tushir (CR39) 2019; 7
Hua, Fan, Cheng (CR59) 2018; 20
Lin (CR46) 2014; 22
Shivhare, Gupta (CR1) 2015; 4
KP Lin (2319_CR46) 2014; 22
LA Zadeh (2319_CR62) 1965; 8
W Cai (2319_CR27) 2007; 40
2319_CR76
J Arora (2319_CR49) 2018; 35
GB Coleman (2319_CR22) 1979; 67
T Chaira (2319_CR33) 2014; 7
E Szmidt (2319_CR64) 2000; 114
D Kumar (2319_CR78) 2019; 78
2319_CR80
S Chen (2319_CR25) 2004; 34
P Fuchs (2319_CR5) 2021; 453
C Wu (2319_CR61) 2020; 97
WI Zangwill (2319_CR71) 1969
H Verma (2319_CR47) 2015; 46
N Pelekis (2319_CR28) 2008; 3
X Chen (2319_CR48) 2019; 13
2319_CR26
J Shi (2319_CR2) 2000; 22
Z Wang (2319_CR45) 2014; 31
RR Gharib (2319_CR75) 2018
M Liu (2319_CR55) 2012; 34
M Gong (2319_CR70) 2013; 22
2319_CR63
T Chaira (2319_CR30) 2011; 11
P Kaur (2319_CR43) 2012; 11
J Arora (2319_CR39) 2019; 7
I Despotović (2319_CR60) 2013; 20
PD Groen (2319_CR68) 1996; 14
C Wu (2319_CR69) 2020; 94
LM Bregman (2319_CR67) 1967; 7
C Li (2319_CR13) 2011; 20
X Hua (2319_CR58) 2018; 75
C Qiu (2319_CR21) 2013; 34
S Alipour (2319_CR12) 2014; 25
H Verma (2319_CR35) 2015; 24
X Hua (2319_CR59) 2018; 20
A Banerjee (2319_CR65) 2005; 6
J Luo (2319_CR10) 2016; 541
2319_CR15
QZ Zhang (2319_CR8) 2018; 27
MA Balafar (2319_CR16) 2010; 33
CW Huang (2319_CR18) 2015; 19
KT Atanassov (2319_CR29) 1986; 20
X Bai (2319_CR52) 2019; 23
D Kumar (2319_CR38) 2018; 78
F Zhao (2319_CR79) 2014; 41
2319_CR11
RR Yager (2319_CR32) 1980; 44
2319_CR9
RR Yager (2319_CR31) 1979; 5
MV Dante (2319_CR40) 2020; 39
Y Guo (2319_CR74) 2010; 32
M Liu (2319_CR54) 2011
R Krishnapuram (2319_CR36) 1993; 1
P Kaur (2319_CR37) 2017; 9
S Krinidis (2319_CR19) 2010; 19
MN Ahmed (2319_CR24) 2002; 21
F Zhao (2319_CR50) 2018; 27
N Giordana (2319_CR73) 1997; 19
MY Chen (2319_CR7) 2021; 187
JC Bezdek (2319_CR23) 1981
YC Tang (2319_CR3) 2020; 11
P Shivhare (2319_CR1) 2015; 4
MA Hasnat (2319_CR66) 2016; 26
Z Xu (2319_CR34) 2010; 21
DM Tsai (2319_CR44) 2011; 44
D Kumar (2319_CR41) 2020; 24
SD Olabarriaga (2319_CR20) 2001; 5
F Zhao (2319_CR42) 2020; 28
JC Bezdek (2319_CR77) 1974; 3
F Zhao (2319_CR51) 2018; 312
JMGP Isidoro (2319_CR6) 2021; 180
MV Dante (2319_CR53) 2020; 22
JC Bezdek (2319_CR72) 1980; 2
BC Vemuri (2319_CR56) 2011; 30
C Wu (2319_CR57) 2019; 40
YC Tang (2319_CR4) 2019; 59
L Wang (2319_CR14) 2010; 188
AN Benaichouche (2319_CR17) 2013; 23
References_xml – volume: 9
  start-page: 345
  issue: 4
  year: 2017
  end-page: 351
  ident: CR37
  article-title: Intuitionistic fuzzy sets based credibilistic fuzzy C-means clustering for medical image segmentation
  publication-title: Int. J. Inf. Technol.
  doi: 10.1007/s41870-017-0039-2
– volume: 21
  start-page: 580
  issue: 4
  year: 2010
  end-page: 590
  ident: CR34
  article-title: Intuitionistic fuzzy c-means clustering algorithms J
  publication-title: . Syst. Eng. Electron.
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  end-page: 110
  ident: CR36
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 78
  start-page: 12663
  issue: 6
  year: 2019
  end-page: 12687
  ident: CR78
  article-title: A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image
  publication-title: Multimed. Tools and Appl.
  doi: 10.1007/s11042-018-5954-0
– volume: 11
  start-page: 1711
  issue: 2
  year: 2011
  end-page: 1717
  ident: CR30
  article-title: A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.005
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  end-page: 353
  ident: CR62
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 20
  start-page: 87
  issue: 1
  year: 1986
  end-page: 96
  ident: CR29
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(86)80034-3
– year: 2018
  ident: CR75
  article-title: Incorporating local data and KL membership divergence into hard c-means clustering for fuzzy and noise-robust data segmentation
  publication-title: Mach. Learn. Data Min.
  doi: 10.5772/intechopen.74514
– volume: 22
  start-page: 901
  issue: 3
  year: 2020
  end-page: 916
  ident: CR53
  article-title: Color-based image segmentation by means of a robust intuitionistic fuzzy c-means algorithm
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00824-x
– volume: 6
  start-page: 1705
  issue: 4
  year: 2005
  end-page: 1749
  ident: CR65
  article-title: Clustering with Bregman divergences
  publication-title: J. Mach. Learn. Res.
  doi: 10.1137/1.9781611972740.22
– volume: 3
  start-page: 45
  issue: 1
  year: 2008
  end-page: 65
  ident: CR28
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int. J. Bus. Intell. Data Min.
  doi: 10.1504/IJBIDM.2008.017975
– volume: 40
  start-page: 1890
  issue: 09
  year: 2019
  end-page: 1901
  ident: CR57
  article-title: Adaptive robust graph fuzzy clustering algorithm based on total divergence
  publication-title: Acta Armamentarii
  doi: 10.3969/j.issn.1000-1093.2019.09.014(inChinese)
– volume: 14
  start-page: 237
  issue: 4
  year: 1996
  end-page: 253
  ident: CR68
  article-title: An introduction to total least squares
  publication-title: Nieuw Archief voor Wiskunde
– volume: 25
  start-page: 1469
  issue: 6
  year: 2014
  end-page: 1488
  ident: CR12
  article-title: Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-014-0606-5
– volume: 67
  start-page: 773
  issue: 5
  year: 1979
  end-page: 785
  ident: CR22
  article-title: Image segmentation by clustering
  publication-title: P. IEEE
  doi: 10.1109/PROC.1979.11327
– volume: 27
  start-page: 513
  issue: 4
  year: 2018
  end-page: 524
  ident: CR8
  article-title: Application of machine vision technology in road detection
  publication-title: Civ. Eng. J.
  doi: 10.14311/CEJ.2018.04.0041
– volume: 23
  start-page: 1390
  issue: 5
  year: 2013
  end-page: 1400
  ident: CR17
  article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.07.005
– ident: CR80
– volume: 20
  start-page: 2007
  issue: 7
  year: 2011
  end-page: 2016
  ident: CR13
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2011.2146190
– volume: 2
  start-page: 1
  issue: 1
  year: 1980
  end-page: 8
  ident: CR72
  article-title: A convergence theorem for the fuzzy ISODATA clustering algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.1980.4766964
– volume: 28
  start-page: 1023
  issue: 6
  year: 2020
  end-page: 1034
  ident: CR42
  article-title: Semi-supervised approach to surrogate-assisted multi objective kernel intuitionistic fuzzy clustering algorithm for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2973121
– volume: 20
  start-page: 256
  issue: 4
  year: 2018
  ident: CR59
  article-title: Information geometry for radar target detection with total Jensen-Bregman divergence
  publication-title: Entropy
  doi: 10.3390/e20040256
– volume: 30
  start-page: 475
  issue: 2
  year: 2011
  end-page: 483
  ident: CR56
  article-title: Total Bregman divergence and its applications to DTI analysis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2086464
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  end-page: 199
  ident: CR24
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– ident: CR15
– volume: 3
  start-page: 58
  issue: 3
  year: 1974
  end-page: 73
  ident: CR77
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546047
– volume: 541
  start-page: 365
  year: 2016
  end-page: 370
  ident: CR10
  article-title: Automatic image segmentation of grape based on computer vision
  publication-title: Recent Dev. Intell. Syst. Interact. Appl.
  doi: 10.1007/978-3-319-49568-2_52
– volume: 39
  start-page: 1097
  issue: 1
  year: 2020
  end-page: 1108
  ident: CR40
  article-title: Redescending intuitionistic fuzzy clustering to brain magnetic resonance image segmentation
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-192005
– volume: 187
  year: 2021
  ident: CR7
  article-title: 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106237
– ident: CR11
– ident: CR9
– volume: 59
  start-page: 36
  year: 2019
  end-page: 46
  ident: CR4
  article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.03.001
– volume: 35
  start-page: 5255
  issue: 5
  year: 2018
  end-page: 5264
  ident: CR49
  article-title: Robust spatial intuitionistic fuzzy c-means with city-block distance clustering for image segmentation
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169809
– volume: 26
  start-page: 861
  issue: 4
  year: 2016
  end-page: 880
  ident: CR66
  article-title: Model-based hierarchical clustering with Bregman divergences and Fishers mixture model: application to depth image analysis
  publication-title: Stats Comput.
  doi: 10.1007/s11222-015-9576-3
– volume: 11
  start-page: 65
  issue: 3
  year: 2012
  end-page: 76
  ident: CR43
  article-title: Novel intuitionistic fuzzy c-means clustering for linearly and nonlinearly separable data
  publication-title: WSEAS Trans. Comput.
– volume: 34
  start-page: 1907
  issue: 4
  year: 2004
  end-page: 1916
  ident: CR25
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2004.831165
– volume: 453
  start-page: 85
  year: 2021
  end-page: 96
  ident: CR5
  article-title: Defect detection in CT scans of cast aluminum parts: a machine vision perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.094
– volume: 188
  start-page: 316
  issue: 2
  year: 2010
  end-page: 325
  ident: CR14
  article-title: Level set segmentation of brain magnetic resonance images based on local gaussian distribution fitting energy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.03.004
– ident: CR26
– volume: 40
  start-page: 825
  issue: 3
  year: 2007
  end-page: 838
  ident: CR27
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.07.011
– volume: 24
  start-page: 4003
  issue: 6
  year: 2020
  end-page: 4026
  ident: CR41
  article-title: Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04169-y
– volume: 34
  start-page: 2407
  issue: 12
  year: 2012
  end-page: 2419
  ident: CR55
  article-title: Shape retrieval using hierarchical total Bregman soft clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2012.44
– volume: 22
  start-page: 573
  issue: 2
  year: 2013
  end-page: 584
  ident: CR70
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2219547
– year: 2011
  ident: CR54
  publication-title: Total Bregman Divergence, a Robust Divergence Measure, and Its Applications
– volume: 97
  year: 2020
  ident: CR61
  article-title: Robust credibilistic fuzzy local information clustering with spatial information constraints
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.102615
– volume: 11
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR3
  article-title: Recognition and localization methods for vision-based fruit picking robots: a review
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2020.00510
– volume: 312
  start-page: 296
  year: 2018
  end-page: 309
  ident: CR51
  article-title: Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.116
– volume: 44
  start-page: 1750
  year: 2011
  end-page: 1760
  ident: CR44
  article-title: Fuzzy c-means based clustering for linearly and nonlinearly separable data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.02.009
– volume: 31
  start-page: 2864
  issue: 9
  year: 2014
  end-page: 2872
  ident: CR45
  article-title: Intuitionistic fuzzy c-mean clustering algorithm incorporating local information for image segmentation
  publication-title: Appl. Res. Comput.
  doi: 10.3969/j.issn.1001-3695.2014.09.073(inChinese)
– volume: 34
  start-page: 1329
  issue: 12
  year: 2013
  end-page: 1338
  ident: CR21
  article-title: A modified interval type-2 fuzzy c-means algorithm with application in MR image segmentation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.04.021
– volume: 7
  issue: 24
  year: 2019
  ident: CR39
  article-title: A new semi-supervised intuitionistic fuzzy c-means clustering
  publication-title: ICST Trans. Scalable Inf. Syst.
  doi: 10.4108/eai.13-7-2018.159622
– volume: 27
  start-page: 387
  issue: 2
  year: 2018
  end-page: 401
  ident: CR50
  article-title: Noise robust multi-objective evolutionary clustering image segmentation motivated by intuitionistic fuzzy information
  publication-title: IEEE T. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2852289
– volume: 41
  start-page: 4083
  issue: 9
  year: 2014
  end-page: 4093
  ident: CR79
  article-title: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non-local spatial information for image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.003
– volume: 75
  start-page: 232
  issue: 75
  year: 2018
  end-page: 241
  ident: CR58
  article-title: Geometric target detection based on total Bregman divergence
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.01.008
– volume: 20
  start-page: 295
  issue: 4
  year: 2013
  end-page: 298
  ident: CR60
  article-title: Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2244080
– volume: 4
  start-page: 153
  issue: 3
  year: 2015
  end-page: 157
  ident: CR1
  article-title: Review of image segmentation techniques including Pre & Post processing operations
  publication-title: Int. J. Eng. Adv. Technol.
– volume: 33
  start-page: 261
  issue: 3
  year: 2010
  end-page: 274
  ident: CR16
  article-title: Review of brain MRI image segmentation methods
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-010-9155-0
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  end-page: 217
  ident: CR67
  article-title: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 19
  start-page: 475
  issue: 5
  year: 1997
  ident: CR73
  article-title: Estimation of generalized multi-sensor hidden Markov chains and unsupervised image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.589206
– volume: 46
  start-page: 543
  issue: C
  year: 2015
  end-page: 557
  ident: CR47
  article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.022
– ident: CR63
– volume: 7
  start-page: 360
  issue: 2
  year: 2014
  end-page: 370
  ident: CR33
  article-title: An Atanassov’s intuitionistic fuzzy kernel clustering for medical image segmentation
  publication-title: Int. J. Comput. Int. Sys.
  doi: 10.1080/18756891.2013.865830
– volume: 5
  start-page: 221
  issue: 4
  year: 1979
  end-page: 229
  ident: CR31
  article-title: On the measure of fuzziness and negation Part I: membership in the unit interval
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081077908547452
– volume: 22
  start-page: 1074
  issue: 5
  year: 2014
  end-page: 1087
  ident: CR46
  article-title: A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2280141
– volume: 44
  start-page: 236
  issue: 3
  year: 1980
  end-page: 260
  ident: CR32
  article-title: On the measure of fuzziness and negation II. Lattices
  publication-title: Inf. Technol. Control
  doi: 10.1016/S0019-9958(80)90156-4
– volume: 23
  start-page: 2039
  issue: 5
  year: 2019
  end-page: 2051
  ident: CR52
  article-title: Intuitionistic center-free FCM clustering for MR brain image segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2884208
– year: 1969
  ident: CR71
  publication-title: Nonlinear Programming: A Unified Approach
– volume: 180
  year: 2021
  ident: CR6
  article-title: A high-frequency low-cost technique for measuring small-scale water level fluctuations using computer vision
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109477
– volume: 24
  start-page: 1550016 (1–24)
  issue: 5
  year: 2015
  ident: CR35
  article-title: Possibilistic intuitionistic fuzzy c-means clustering algorithm for MRI brain image segmentation
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213015500165
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  end-page: 1337
  ident: CR19
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– volume: 5
  start-page: 127
  issue: 2
  year: 2001
  end-page: 142
  ident: CR20
  article-title: Interaction in the segmentation of medical images: a survey
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00041-4
– volume: 94
  year: 2020
  ident: CR69
  article-title: Total Bregman divergence-based fuzzy local information c-means clustering for robust image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106468
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  ident: CR2
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 78
  start-page: 1
  issue: 6
  year: 2018
  end-page: 25
  ident: CR38
  article-title: A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5954-0
– year: 1981
  ident: CR23
  publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms
  doi: 10.1007/978-1-4757-0450-1
– volume: 13
  start-page: 607
  issue: 4
  year: 2019
  end-page: 614
  ident: CR48
  article-title: Rough intuitionistic type-2 fuzzy c-means clustering algorithm for MR image segmentation
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.5597
– ident: CR76
– volume: 19
  start-page: 459
  issue: 2
  year: 2015
  end-page: 470
  ident: CR18
  article-title: Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1264-2
– volume: 32
  start-page: 1699
  issue: 4
  year: 2010
  end-page: 1723
  ident: CR74
  article-title: A novel color image segmentation approach based on Neutrosophic set and modified fuzzy c-means
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-012-9531-x
– volume: 114
  start-page: 505
  issue: 3
  year: 2000
  end-page: 518
  ident: CR64
  article-title: Distances between intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00244-9
– volume: 11
  start-page: 1711
  issue: 2
  year: 2011
  ident: 2319_CR30
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.005
– volume: 21
  start-page: 580
  issue: 4
  year: 2010
  ident: 2319_CR34
  publication-title: . Syst. Eng. Electron.
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  ident: 2319_CR36
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 3
  start-page: 45
  issue: 1
  year: 2008
  ident: 2319_CR28
  publication-title: Int. J. Bus. Intell. Data Min.
  doi: 10.1504/IJBIDM.2008.017975
– volume: 22
  start-page: 1074
  issue: 5
  year: 2014
  ident: 2319_CR46
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2280141
– volume: 94
  year: 2020
  ident: 2319_CR69
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106468
– ident: 2319_CR63
  doi: 10.1109/CIMCA.2005.1631233
– volume-title: Nonlinear Programming: A Unified Approach
  year: 1969
  ident: 2319_CR71
– volume: 23
  start-page: 1390
  issue: 5
  year: 2013
  ident: 2319_CR17
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.07.005
– volume: 20
  start-page: 256
  issue: 4
  year: 2018
  ident: 2319_CR59
  publication-title: Entropy
  doi: 10.3390/e20040256
– volume: 4
  start-page: 153
  issue: 3
  year: 2015
  ident: 2319_CR1
  publication-title: Int. J. Eng. Adv. Technol.
– ident: 2319_CR80
  doi: 10.1109/TBDATA.2016.2622288
– volume: 541
  start-page: 365
  year: 2016
  ident: 2319_CR10
  publication-title: Recent Dev. Intell. Syst. Interact. Appl.
  doi: 10.1007/978-3-319-49568-2_52
– volume: 26
  start-page: 861
  issue: 4
  year: 2016
  ident: 2319_CR66
  publication-title: Stats Comput.
  doi: 10.1007/s11222-015-9576-3
– volume: 40
  start-page: 825
  issue: 3
  year: 2007
  ident: 2319_CR27
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.07.011
– volume: 44
  start-page: 236
  issue: 3
  year: 1980
  ident: 2319_CR32
  publication-title: Inf. Technol. Control
  doi: 10.1016/S0019-9958(80)90156-4
– volume: 9
  start-page: 345
  issue: 4
  year: 2017
  ident: 2319_CR37
  publication-title: Int. J. Inf. Technol.
  doi: 10.1007/s41870-017-0039-2
– volume: 41
  start-page: 4083
  issue: 9
  year: 2014
  ident: 2319_CR79
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.003
– volume: 3
  start-page: 58
  issue: 3
  year: 1974
  ident: 2319_CR77
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546047
– ident: 2319_CR15
  doi: 10.1109/SMC.2016.7844622
– volume-title: Total Bregman Divergence, a Robust Divergence Measure, and Its Applications
  year: 2011
  ident: 2319_CR54
– volume: 23
  start-page: 2039
  issue: 5
  year: 2019
  ident: 2319_CR52
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2884208
– ident: 2319_CR76
  doi: 10.1109/ICCV.2001.937655
– volume: 78
  start-page: 12663
  issue: 6
  year: 2019
  ident: 2319_CR78
  publication-title: Multimed. Tools and Appl.
  doi: 10.1007/s11042-018-5954-0
– ident: 2319_CR26
  doi: 10.1109/IEMBS.2003.1279866
– volume: 46
  start-page: 543
  issue: C
  year: 2015
  ident: 2319_CR47
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.022
– volume: 187
  year: 2021
  ident: 2319_CR7
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106237
– volume: 114
  start-page: 505
  issue: 3
  year: 2000
  ident: 2319_CR64
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00244-9
– volume: 78
  start-page: 1
  issue: 6
  year: 2018
  ident: 2319_CR38
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5954-0
– volume: 28
  start-page: 1023
  issue: 6
  year: 2020
  ident: 2319_CR42
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2973121
– volume: 32
  start-page: 1699
  issue: 4
  year: 2010
  ident: 2319_CR74
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-012-9531-x
– volume: 13
  start-page: 607
  issue: 4
  year: 2019
  ident: 2319_CR48
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.5597
– volume: 33
  start-page: 261
  issue: 3
  year: 2010
  ident: 2319_CR16
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-010-9155-0
– volume: 5
  start-page: 127
  issue: 2
  year: 2001
  ident: 2319_CR20
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00041-4
– volume: 19
  start-page: 459
  issue: 2
  year: 2015
  ident: 2319_CR18
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1264-2
– volume: 24
  start-page: 4003
  issue: 6
  year: 2020
  ident: 2319_CR41
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04169-y
– volume: 20
  start-page: 295
  issue: 4
  year: 2013
  ident: 2319_CR60
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2244080
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 2319_CR2
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 19
  start-page: 475
  issue: 5
  year: 1997
  ident: 2319_CR73
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.589206
– volume: 67
  start-page: 773
  issue: 5
  year: 1979
  ident: 2319_CR22
  publication-title: P. IEEE
  doi: 10.1109/PROC.1979.11327
– volume: 5
  start-page: 221
  issue: 4
  year: 1979
  ident: 2319_CR31
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081077908547452
– volume: 24
  start-page: 1550016 (1–24)
  issue: 5
  year: 2015
  ident: 2319_CR35
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213015500165
– volume: 44
  start-page: 1750
  year: 2011
  ident: 2319_CR44
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.02.009
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 2319_CR19
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– year: 2018
  ident: 2319_CR75
  publication-title: Mach. Learn. Data Min.
  doi: 10.5772/intechopen.74514
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 2319_CR62
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 22
  start-page: 901
  issue: 3
  year: 2020
  ident: 2319_CR53
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00824-x
– volume: 27
  start-page: 513
  issue: 4
  year: 2018
  ident: 2319_CR8
  publication-title: Civ. Eng. J.
  doi: 10.14311/CEJ.2018.04.0041
– volume: 35
  start-page: 5255
  issue: 5
  year: 2018
  ident: 2319_CR49
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169809
– volume: 22
  start-page: 573
  issue: 2
  year: 2013
  ident: 2319_CR70
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2219547
– volume: 25
  start-page: 1469
  issue: 6
  year: 2014
  ident: 2319_CR12
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-014-0606-5
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 2319_CR24
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 97
  year: 2020
  ident: 2319_CR61
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.102615
– volume: 34
  start-page: 1907
  issue: 4
  year: 2004
  ident: 2319_CR25
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2004.831165
– volume: 7
  issue: 24
  year: 2019
  ident: 2319_CR39
  publication-title: ICST Trans. Scalable Inf. Syst.
  doi: 10.4108/eai.13-7-2018.159622
– ident: 2319_CR11
  doi: 10.1109/CCIP.2016.7802852
– volume: 27
  start-page: 387
  issue: 2
  year: 2018
  ident: 2319_CR50
  publication-title: IEEE T. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2852289
– volume: 40
  start-page: 1890
  issue: 09
  year: 2019
  ident: 2319_CR57
  publication-title: Acta Armamentarii
  doi: 10.3969/j.issn.1000-1093.2019.09.014(inChinese)
– volume: 2
  start-page: 1
  issue: 1
  year: 1980
  ident: 2319_CR72
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.1980.4766964
– volume: 453
  start-page: 85
  year: 2021
  ident: 2319_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.094
– volume: 7
  start-page: 360
  issue: 2
  year: 2014
  ident: 2319_CR33
  publication-title: Int. J. Comput. Int. Sys.
  doi: 10.1080/18756891.2013.865830
– volume: 31
  start-page: 2864
  issue: 9
  year: 2014
  ident: 2319_CR45
  publication-title: Appl. Res. Comput.
  doi: 10.3969/j.issn.1001-3695.2014.09.073(inChinese)
– volume: 30
  start-page: 475
  issue: 2
  year: 2011
  ident: 2319_CR56
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2086464
– volume: 39
  start-page: 1097
  issue: 1
  year: 2020
  ident: 2319_CR40
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-192005
– volume: 75
  start-page: 232
  issue: 75
  year: 2018
  ident: 2319_CR58
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.01.008
– volume: 312
  start-page: 296
  year: 2018
  ident: 2319_CR51
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.116
– ident: 2319_CR9
  doi: 10.1109/ICComm.2016.7528317
– volume: 34
  start-page: 2407
  issue: 12
  year: 2012
  ident: 2319_CR55
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2012.44
– volume: 34
  start-page: 1329
  issue: 12
  year: 2013
  ident: 2319_CR21
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.04.021
– volume: 59
  start-page: 36
  year: 2019
  ident: 2319_CR4
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.03.001
– volume-title: Pattern Recognition with Fuzzy Objective Function Algorithms
  year: 1981
  ident: 2319_CR23
  doi: 10.1007/978-1-4757-0450-1
– volume: 11
  start-page: 65
  issue: 3
  year: 2012
  ident: 2319_CR43
  publication-title: WSEAS Trans. Comput.
– volume: 20
  start-page: 87
  issue: 1
  year: 1986
  ident: 2319_CR29
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(86)80034-3
– volume: 188
  start-page: 316
  issue: 2
  year: 2010
  ident: 2319_CR14
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.03.004
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 2319_CR67
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 14
  start-page: 237
  issue: 4
  year: 1996
  ident: 2319_CR68
  publication-title: Nieuw Archief voor Wiskunde
– volume: 11
  start-page: 1
  year: 2020
  ident: 2319_CR3
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2020.00510
– volume: 180
  year: 2021
  ident: 2319_CR6
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109477
– volume: 6
  start-page: 1705
  issue: 4
  year: 2005
  ident: 2319_CR65
  publication-title: J. Mach. Learn. Res.
  doi: 10.1137/1.9781611972740.22
– volume: 20
  start-page: 2007
  issue: 7
  year: 2011
  ident: 2319_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2011.2146190
SSID ssj0017749
Score 2.3506374
Snippet Aiming at the shortcoming of existing robust intuitionistic fuzzy clustering and its variant algorithms in the presence of high noise, we will explore a novel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computer Graphics
Computer Science
Divergence
Euclidean geometry
Fuzzy sets
Genetic algorithms
Image Processing and Computer Vision
Image segmentation
Neighborhoods
Noise reduction
Noise sensitivity
Original Article
Pixels
Robustness (mathematics)
Set theory
Spatial data
Statistical analysis
Vision systems
SummonAdditionalLinks – databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DTDwRhQK8sAGFnk1sScECAQLYgCpYon8CkKCFJoUCX4HP5g712kLEl1Ynfhk5S53n-277wg5SGIbZ6ZjmNKRYonRBVPKFCwyIjKpTYvUDptNZDc3vNsVt_7ArfJplY1PdI7a9DSekR9HsK_gIkp5ePL6xrBrFN6u-hYas2Q-jADrgz3fdh5GtwgAbRz8hZkMKz590YwrnXNcdQwTFJABTTD-MzCN0eavC1IXdy5X_rviVbLsESc9HZrIGpmx5TpZmuAh3CBf1xB5XO6Wo22mxeDz84N6TlUcZqaPXpHWPcDq9KxvH19kSQ3mdDgyTz9DPw-QdwFkUjzfpU22InURc1Ig1YhLsT1FXVEYpU8v4NhoBYJ9MVS5Se4vL-7Or5hv18A0fMCaadhZxjxRRZZKpNHXwoaZjLnKICAK2UkKkepAFhJsQ8dBYUNhpOKByWBLlugg3iJzZa-024SCGw2MNnGoOCCcSEmJ3VUDoUWqEh7KFgkbXeXac5njmp_zEQuz028O-s2dfnPeIoejOa9DJo-pb7cbpeb-r67ysUZb5Kgxi_Hjv6XtTJe2Sxaxi_3wZKdN5ur-wO6RBf1eP1X9fWfT36pxAZo
  priority: 102
  providerName: ProQuest
Title Intuitionistic fuzzy information-driven total Bregman divergence fuzzy clustering with multiple local information constraints for image segmentation
URI https://link.springer.com/article/10.1007/s00371-021-02319-8
https://www.proquest.com/docview/2917892681
Volume 39
WOSCitedRecordID wos000717889400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEC3cDnpwF8dlyMGbBnqb7uSooijCMLghXppsLYK2Mt0j6Hf4wVYy6XFBBb30IZ0UCZXUklS9AthKYhNnuqOpVJGkiVYFlVIXNNI80qlJi9QMi01k3S67uuI9nxRWNdHuzZOkk9SjZDeHLkdtSIHFLOOUjcOkBS-xdQtOzy5Hbwdo0DijN0T_yOZ5-lSZ72l8VkfvNuaXZ1GnbQ7n_jfPeZj11iXZHW6HBRgz5SLMNZUbiD_IizDzAYZwCV6PUfG40C2H2kyKwcvLM_GQqraZ6r4ViqR-QFOd7PXNzb0oibYhHQ7L049QdwMLu4A0ib3eJU2wInEK8yNBoqxZaqtT1BXBVnJ7j3KNVEjY50KVy3BxeHC-f0R9tQaqcJU1VehYxiyRRZYKi6KvuAkzETOZoT7kopMUPFWBKARuDRUHhQm5FpIFOkOPLFFBvAIT5UNpVoGgFA200nEoGRo4kRTCFlcNuOKpTFgoWhA2TMuVhzK3c77LRyDMjgk5MiF3TMhZC7ZHYx6HQB6_9t5o9kLuD3WVR-jaMh6lLGzBTsP7998_U1v7W_d1mLZF7YcXPRswUfcHZhOm1FN9W_XbMLl30O2dtmH8JKP47XWu2-4AvAHmdgD5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceKMuLeADnMBq4mQT-1AhXlVXLaseilRxCX4FVWqz7SYLan9Hf0d_IzNOsluQ6K0Hrk48cpzP4xl75huAV2nik9wNHTdWGJ46W3JjXMmFU8JlPisz3xabyMdjub-vdpfgos-FobDKXicGRe0mls7I1wX6FVKJTMbvjk84VY2i29W-hEYLi21_-gtdtnpj9An_72shNj_vfdziXVUBbhFuDbfoACUyNWWeaWJ7t8rHuU6kyVFvKz1MS5XZSJcaP8EmUelj5bSRkcvRc0htlKDcG3ATzQhFimB3-G1-a4GmVDC3caScMky7JJ2Qqhe48TgFRBDjmuLyz41wYd3-dSEb9rnN-__bDD2Ae51Fzd63S-AhLPnqEdy9xLP4GM5HuLOG2LRAS83K2dnZKes4Y6mZuylpfdZM0BdhH6b-x5GumKOYlUBW2vWwhzPilUCZjM6vWR-NyYJFcFkgs2R3U_mNpmbYyg6OUHGzGgV3yV7VE_h6LdPyFJarSeVXgOE2ETnrkthItOCE0Zqqx0bKqsykMtYDiHtsFLbjaqcxHxZzlumApwLxVAQ8FXIAb-Z9jlumkivfXutBVHRaqy4WCBrA2x6Gi8f_lvbsamkv4fbW3pedYmc03l6FOwJ7tadYa7DcTGf-OdyyP5uDevoirCcG368bnr8BgUVd8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxwxDLZaiqr2UChQsZRHDr1BxLyYSY70sQK1WiG1RdxGeSIkGNDuLFL5Hf3BtTOZZYtapKrXTGJlZCe2Y_szwLsid3llDyzXJtO8sMZzra3nmZWZLV3pS9c1m6hGI3F2Jk_mqvhDtnsfkuxqGgilqWn3b6zfnxW-BaQ5TukFhF8muXgKzwpCQyN__evpLI6Axk0wgFP0lajmM5bN_JnG76rp3t58ECINmme49P97XoZX0epkh52YvIYnrlmBpb6jA4sHfAVezsETrsLPY1RIIaUroDkzP727-8Ei1CoNczumy5K112jCs_djd36lGmYp1SNgfMYV5nJKcAxIk9GzL-uTGFlQpPMEmSFzlbpWtBOGo-ziCu87NkHCsUaqWYPvw0_fPhzx2MWBG_zLlht0OHNRaF-VitD1jXRppXKhK9STUh0UXpYmUV6hyJg88S6VVmmR2Ao9tcIk-RtYaK4btw4Mb9fEGpunWqDhk2mlqOlqIo0sdSFSNYC0Z2BtIsQ57fmynoEzBybUyIQ6MKEWA9idrbnpAD4enb3Zy0UdD_ukztDlFTIrRTqAvV4O7j__ndrGv03fgecnH4f1l-PR57fwgvred29Bm7DQjqduCxbNbXsxGW-HM_ALPAkJVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitionistic+fuzzy+information-driven+total+Bregman+divergence+fuzzy+clustering+with+multiple+local+information+constraints+for+image+segmentation&rft.jtitle=The+Visual+computer&rft.au=Wu%2C+Chengmao&rft.au=Huang%2C+Congcong&rft.au=Zhang%2C+Jiajia&rft.date=2023-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=1&rft.spage=149&rft.epage=181&rft_id=info:doi/10.1007%2Fs00371-021-02319-8&rft.externalDocID=10_1007_s00371_021_02319_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon