Hash Bit Selection for Nearest Neighbor Search

To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 26; číslo 11; s. 5367 - 5380
Hlavní autori: Liu, Xianglong, He, Junfeng, Chang, Shih-Fu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.11.2017
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
AbstractList To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
Author Xianglong Liu
Shih-Fu Chang
Junfeng He
Author_xml – sequence: 1
  givenname: Xianglong
  orcidid: 0000-0001-8425-4195
  surname: Liu
  fullname: Liu, Xianglong
– sequence: 2
  givenname: Junfeng
  surname: He
  fullname: He, Junfeng
– sequence: 3
  givenname: Shih-Fu
  surname: Chang
  fullname: Chang, Shih-Fu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28436872$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1PwzAQxS1URD9gR0JCGVkSfI6d2CNUQCtVgNTuluOcaVCalDgd-O9xaWFgYLrT0--d7r0xGTRtg4RcAk0AqLpdzV8TRiFPWKaEVOKEjEBxiCnlbBB2KvI4B66GZOz9O6XABWRnZMgkTzOZsxFJZsavo_uqj5ZYo-2rtolc20XPaDr0fZjV27oIwjIIdn1OTp2pPV4c54SsHh9W01m8eHmaT-8WsU1B9bGFEoR1HIXkCi11wmEqDS-E4gY4mJI5yei3Qg2ooqTOKpRgbJkBSyfk5nB227Ufu_CH3lTeYl2bBtud1yBViCJ5ngX0-ojuig2WettVG9N96p-IAcgOgO1a7zt02la92QftO1PVGqjed6lDl3rfpT52GYz0j_Hn9j-Wq4OlQsRfPFeUZxlLvwBAmnzS
CODEN IIPRE4
CitedBy_id crossref_primary_10_1186_s13640_019_0428_5
crossref_primary_10_1049_iet_ipr_2017_0770
crossref_primary_10_1007_s10489_022_03546_9
crossref_primary_10_1007_s11042_023_17810_8
crossref_primary_10_1016_j_knosys_2022_108757
crossref_primary_10_1186_s13640_019_0442_7
crossref_primary_10_1109_TIP_2019_2903661
crossref_primary_10_1109_TCYB_2018_2816791
crossref_primary_10_1109_TIP_2017_2781422
crossref_primary_10_1109_TMM_2020_3004962
crossref_primary_10_1007_s11263_020_01331_0
crossref_primary_10_1109_TNNLS_2020_3018790
crossref_primary_10_1109_TNNLS_2021_3068500
crossref_primary_10_1109_TCYB_2021_3102941
crossref_primary_10_1016_j_image_2019_115650
crossref_primary_10_1016_j_patrec_2017_11_018
crossref_primary_10_1109_TKDE_2023_3297195
crossref_primary_10_1109_TNNLS_2020_2965992
crossref_primary_10_1016_j_ins_2021_03_006
crossref_primary_10_1109_TIP_2019_2891967
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_1016_j_patcog_2020_107409
crossref_primary_10_1007_s11280_018_0540_y
crossref_primary_10_1109_TBDATA_2022_3161905
crossref_primary_10_1016_j_neucom_2018_06_096
crossref_primary_10_1109_TCYB_2020_2964993
crossref_primary_10_1016_j_patcog_2020_107370
crossref_primary_10_1016_j_patrec_2019_01_013
crossref_primary_10_1016_j_patcog_2020_107338
crossref_primary_10_1109_TIP_2017_2729896
crossref_primary_10_1109_TMM_2020_2991513
crossref_primary_10_1109_TIP_2018_2818008
crossref_primary_10_1016_j_patrec_2019_04_017
Cites_doi 10.1109/TCYB.2013.2289351
10.1109/TIP.2015.2505180
10.1109/CVPR.2006.130
10.1145/2540990
10.1109/TPAMI.2007.250608
10.1145/361002.361007
10.1109/CVPR.2015.7298598
10.1016/j.neucom.2014.09.033
10.1109/CVPR.2015.7298947
10.1109/TPAMI.2009.190
10.1145/1991996.1992003
10.1145/276698.276876
10.1109/ICCV.2009.5459466
10.1145/997817.997857
10.1109/CVPR.2011.5995432
10.1017/CBO9780511806292
10.1109/CVPR.2011.5995709
10.1109/TCYB.2015.2474742
10.1109/CVPR.2013.174
10.1109/TMM.2015.2419973
10.1109/TPAMI.2010.57
10.1109/ICCV.2013.377
10.1145/2502081.2502100
10.1109/CVPR.2013.388
10.1109/72.977291
10.1109/TCYB.2013.2281366
10.1016/j.patcog.2013.08.022
10.1145/2072298.2072354
10.1109/TIP.2016.2593344
10.1109/CVPR.2011.5995518
10.1007/s13735-012-0003-7
10.1145/2911451.2911502
10.1109/CVPR.2013.206
10.1145/1835804.1835946
10.1137/1.9781611973440.20
10.1109/CVPR.2010.5539994
10.1145/1646396.1646452
10.1109/CVPR.2013.378
10.1109/TPAMI.2012.48
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2695895
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5380
ExternalDocumentID 28436872
10_1109_TIP_2017_2695895
7904662
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Foundation of State Key Laboratory of Software Development Environment
  grantid: 2015ZX-04
– fundername: National Natural Science Foundation of China
  grantid: 61402026
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
ID FETCH-LOGICAL-c319t-c1d15cf4e5849ec0f5fe38a4b594a141ad2f8208a4b50a19bd0fc9e81acd6123
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407969200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 19:52:55 EDT 2025
Thu Apr 03 07:05:31 EDT 2025
Tue Nov 18 21:18:39 EST 2025
Sat Nov 29 03:21:06 EST 2025
Tue Aug 26 17:01:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c1d15cf4e5849ec0f5fe38a4b594a141ad2f8208a4b50a19bd0fc9e81acd6123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8425-4195
PMID 28436872
PQID 1891458476
PQPubID 23479
PageCount 14
ParticipantIDs ieee_primary_7904662
crossref_primary_10_1109_TIP_2017_2695895
pubmed_primary_28436872
proquest_miscellaneous_1891458476
crossref_citationtrail_10_1109_TIP_2017_2695895
PublicationCentury 2000
PublicationDate 2017-Nov.
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref56
ref59
kong (ref62) 2012
ref58
ref14
ref53
ref52
liu (ref4) 2014
ref54
ref10
he (ref34) 2012
xia (ref21) 2015
pelillo (ref57) 2009
ref19
liu (ref51) 2017
liu (ref11) 2017
kulis (ref16) 2009
wang (ref39) 2015
ref45
ref47
ref42
ref44
erin liong (ref41) 2015
liu (ref18) 2011
heo (ref28) 2012
liu (ref55) 2010
ref8
ref3
ref6
ref5
ref40
liu (ref20) 2014
ref35
ref37
ref36
ref31
ref30
ref33
norouzi (ref43) 2011
lee (ref38) 2012
ref32
he (ref2) 2012
ref1
liu (ref26) 2012
goodman (ref12) 2004
weiss (ref15) 2008
wang (ref17) 2010
gong (ref7) 2015
sun (ref50) 2010; 32
ref24
he (ref49) 2005
ref23
ref25
ref64
ref63
ref22
ref65
ref27
wang (ref9) 2016
ref29
wang (ref46) 2016
guyon (ref48) 2003; 3
ref60
ref61
References_xml – start-page: 1
  year: 2011
  ident: ref18
  article-title: Hashing with graphs
  publication-title: Proc ICML
– ident: ref5
  doi: 10.1109/TCYB.2013.2289351
– ident: ref10
  doi: 10.1109/TIP.2015.2505180
– ident: ref58
  doi: 10.1109/CVPR.2006.130
– ident: ref31
  doi: 10.1145/2540990
– ident: ref54
  doi: 10.1109/TPAMI.2007.250608
– ident: ref1
  doi: 10.1145/361002.361007
– start-page: 2475
  year: 2015
  ident: ref41
  article-title: Deep hashing for compact binary codes learning
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref6
  doi: 10.1109/CVPR.2015.7298598
– start-page: 2957
  year: 2012
  ident: ref28
  article-title: Spherical hashing
  publication-title: Proc CVPR
– ident: ref32
  doi: 10.1016/j.neucom.2014.09.033
– start-page: 1127
  year: 2012
  ident: ref34
  article-title: On the difficulty of nearest neighbor search
  publication-title: Proc ICML
– ident: ref40
  doi: 10.1109/CVPR.2015.7298947
– start-page: 5
  year: 2012
  ident: ref62
  article-title: Double-bit quantization for hashing
  publication-title: Proc AAAI
– volume: 32
  start-page: 1610
  year: 2010
  ident: ref50
  article-title: Local-learning-based feature selection for high-dimensional data analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.190
– start-page: 671
  year: 2010
  ident: ref55
  article-title: Robust graph mode seeking by graph shift
  publication-title: Proc ICML
– start-page: 1753
  year: 2008
  ident: ref15
  article-title: Spectral hashing
  publication-title: Proc NIPS
– ident: ref60
  doi: 10.1145/1991996.1992003
– start-page: 1127
  year: 2010
  ident: ref17
  article-title: Sequential projection learning for hashing with compact codes
  publication-title: Proc ICML
– ident: ref13
  doi: 10.1145/276698.276876
– ident: ref27
  doi: 10.1109/ICCV.2009.5459466
– start-page: 1042
  year: 2009
  ident: ref16
  article-title: Learning to hash with binary reconstructive embeddings
  publication-title: Proc NIPS
– ident: ref14
  doi: 10.1145/997817.997857
– start-page: 1
  year: 2005
  ident: ref49
  publication-title: Laplacian score for feature selection
– ident: ref24
  doi: 10.1109/CVPR.2011.5995432
– ident: ref56
  doi: 10.1017/CBO9780511806292
– ident: ref61
  doi: 10.1109/CVPR.2011.5995709
– ident: ref33
  doi: 10.1109/TCYB.2015.2474742
– ident: ref59
  doi: 10.1109/CVPR.2013.174
– ident: ref8
  doi: 10.1109/TMM.2015.2419973
– ident: ref63
  doi: 10.1109/TPAMI.2010.57
– ident: ref45
  doi: 10.1109/ICCV.2013.377
– ident: ref44
  doi: 10.1145/2502081.2502100
– ident: ref25
  doi: 10.1109/CVPR.2013.388
– start-page: 1102
  year: 2016
  ident: ref46
  article-title: Affinity preserving quantization for hashing: A vector quantization approach to learning compact binary codes
  publication-title: Proc AAAI
– ident: ref35
  doi: 10.1109/72.977291
– ident: ref3
  doi: 10.1109/TCYB.2013.2281366
– start-page: 2074
  year: 2012
  ident: ref26
  article-title: Supervised hashing with kernels
  publication-title: Proc CVPR
– start-page: 4183
  year: 2017
  ident: ref51
  article-title: Boosting complementary hash tables for fast nearest neighbor search
  publication-title: Proc AAAI
– start-page: 2298
  year: 2015
  ident: ref39
  article-title: Hamming compatible quantization for hashing
  publication-title: Proc AAAI
– start-page: 1
  year: 2014
  ident: ref4
  article-title: Collaborative hashin
  publication-title: Proc IEEE CVPR
– ident: ref30
  doi: 10.1016/j.patcog.2013.08.022
– start-page: 712
  year: 2009
  ident: ref57
  article-title: What is a cluster? perspectives from game theory
  publication-title: Proc of the PASCAL
– ident: ref29
  doi: 10.1145/2072298.2072354
– start-page: 3332
  year: 2015
  ident: ref21
  article-title: Sparse projections for high-dimensional binary codes
  publication-title: Proc IEEE CVPR
– year: 2004
  ident: ref12
  publication-title: Nearest Neighbors High-Dimensional Spaces Handbook Discrete Computer Geometry
– start-page: 3419
  year: 2014
  ident: ref20
  article-title: Discrete graph hashing
  publication-title: Proc NIPS
– ident: ref22
  doi: 10.1109/TIP.2016.2593344
– ident: ref23
  doi: 10.1109/CVPR.2011.5995518
– start-page: 214
  year: 2012
  ident: ref38
  article-title: Quadra-embedding: Binary code embedding with low quantization error
  publication-title: Proc ACCV
– start-page: 2181
  year: 2016
  ident: ref9
  article-title: To project more or to quantize more: Minimize reconstruction bias for learning compact binary codes
  publication-title: Proc IJCAI
– start-page: 1
  year: 2017
  ident: ref11
  article-title: Deep sketch hashing: Fast free-hand sketch-based image retrieval
  publication-title: Proc IEEE CVPR
– ident: ref47
  doi: 10.1007/s13735-012-0003-7
– ident: ref37
  doi: 10.1145/2911451.2911502
– ident: ref36
  doi: 10.1109/CVPR.2013.206
– ident: ref52
  doi: 10.1145/1835804.1835946
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref48
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref65
  doi: 10.1137/1.9781611973440.20
– ident: ref42
  doi: 10.1109/CVPR.2010.5539994
– start-page: 19
  year: 2015
  ident: ref7
  article-title: Web scale photo hash clustering on a single machine
  publication-title: Proc IEEE CVPR
– ident: ref64
  doi: 10.1145/1646396.1646452
– start-page: 3005
  year: 2012
  ident: ref2
  article-title: Mobile product search with bag of hash bits and boundary reranking
  publication-title: Proc CVPR
– ident: ref19
  doi: 10.1109/CVPR.2013.378
– start-page: 353
  year: 2011
  ident: ref43
  article-title: Minimal loss hashing for compact binary codes
  publication-title: Proc ICML
– ident: ref53
  doi: 10.1109/TPAMI.2012.48
SSID ssj0014516
Score 2.4192731
Snippet To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5367
SubjectTerms Algorithm design and analysis
Binary codes
bit complementarity
bit reliability
Dynamic programming
hash bit selection
Heuristic algorithms
locality-sensitive hashing
Nearest neighbor search
Nearest neighbor searches
normalized dominant set
Optimization
Reliability
Title Hash Bit Selection for Nearest Neighbor Search
URI https://ieeexplore.ieee.org/document/7904662
https://www.ncbi.nlm.nih.gov/pubmed/28436872
https://www.proquest.com/docview/1891458476
Volume 26
WOSCitedRecordID wos000407969200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7M4YM-ON281Muo4Itgt2Zrm-RRxTFBxsAheytpkuJANlk7f78n6QUFFXxqKUlb8p2TfqcnOR_AlVKBiIY08ZRKqBdIDFCYJKnHRDDUxgioVYl4eaKTCZvP-bQBN_VeGK21XXyme-bU5vLVSm7Mr7I-5RjNmQl3i1Ja7NWqMwZGcNZmNkPqUaT9VUrS5_3Z49Ss4aK9QcRDxo1YDU7Kw4jRwbevkZVX-Z1p2i_OqPW_d92HvZJZureFKRxAQy_b0CpZplv6cNaG3S8lCDvQG4vs1b1b5O6zVcRBmFzkse7E1LbNcjxi9I524hbrkg9hNnqY3Y-9UkPBk-hcuSeJIqFMA41Eg2vpp2GqhwhEEvJAkIAINUiRBNgrviA8UX4quWZESGUqsxxBc7la6hNwGfp2wAdEGg7FI5IInooEu2oknZFPHehXQxnLsr64kbl4i22c4fMYcYgNDnGJgwPXdY_3orbGH207ZozrduXwOnBZoRWjX5hkh1jq1SaLCePE5oAjB44LGOvOFfqnP9_0DHbMo4sdh-fQzNcbfQHb8iNfZOsuGt-cda3xfQK21NCk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD4MFdQH75d6reCLYLemS5vmUcWx4RwDh_hW0iRFQTaxnb_fk_SCggo-tZSklHznJN_pSc4HcK4UFVGXpZ5SKfOoxAAlliTzYkG72hgBsyoRj0M2GsVPT3zcgsvmLIzW2m4-021za3P5aibn5ldZh3GM5syEuxhSGpDytFaTMzCSsza3GTKPIfGvk5I-70wGY7OLi7WDiIcxN3I1OC13o5gF39YjK7DyO9e0a05v_X9fuwFrFbd0r0pj2ISWnm7BesUz3cqL8y1Y_VKEcBvafZE_u9cvhftgNXEQKBeZrDsy1W3zAq8Yv6OluOXO5B2Y9G4nN32vUlHwJLpX4UmiSCgzqpFqcC39LMx0F6FIQ04FoUSoIEMaYJ_4gvBU-ZnkOiZCKlObZRcWprOp3gc3Ru-mPCDSsCgekVTwTKTYVSPtjHzmQKceykRWFcaN0MVrYiMNnyeIQ2JwSCocHLhoeryV1TX-aLttxrhpVw2vA2c1Wgl6hkl3iKmezfOExJzYLHDkwF4JY9O5Rv_g55eewnJ_cj9MhoPR3SGsmM8ozx8ewULxPtfHsCQ_ipf8_cSa4CfTRNMD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hash+Bit+Selection+for+Nearest+Neighbor+Search&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Xianglong&rft.au=He%2C+Junfeng&rft.au=Chang%2C+Shih-Fu&rft.date=2017-11-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=26&rft.issue=11&rft.spage=5367&rft.epage=5380&rft_id=info:doi/10.1109%2FTIP.2017.2695895&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2695895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon