Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature Reduced Approach for IoT Networks
With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent cyber attacks in IoT networks, intrusion detection system (IDS) plays a crucial role. However, most of the existing IDS have dimensionality curse...
Uloženo v:
| Vydáno v: | Arabian journal for science and engineering (2011) Ročník 46; číslo 4; s. 3749 - 3778 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent cyber attacks in IoT networks, intrusion detection system (IDS) plays a crucial role. However, most of the existing IDS have dimensionality curse that reduces overall IoT systems efficiency. Hence, it is important to remove repetitive and irrelevant features while designing effective IDS. Motivated from aforementioned challenges, this paper presents an intelligent cyber attack detection system for IoT network using a novel hybrid feature reduced approach. This technique first performs feature ranking using correlation coefficient, random forest mean decrease accuracy and gain ratio to obtain three different feature sets. Then, features are combined using a suitably designed mechanism (AND operation), to obtain single optimized feature set. Finally, the obtained reduced feature set is fed to three well-known machine learning algorithms such as random forest, K-nearest neighbor and XGBoost for detection of cyber attacks. The efficiency of the proposed cyber attack detection framework is evaluated using NSL-KDD and two latest IoT-based datasets namely, BoT-IoT and DS2OS. Performance of the proposed framework is evaluated and compared with some recent state-of-the-art techniques found in literature, in terms of accuracy, detection rate (DR), precision and F1 score. Performance analysis using these three datasets shows that the proposed model has achieved DR up to 90%–100%, for most of the attack vectors that has close similarity to normal behaviors and accuracy above 99%. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2193-567X 1319-8025 2191-4281 |
| DOI: | 10.1007/s13369-020-05181-3 |