Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature Reduced Approach for IoT Networks

With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent cyber attacks in IoT networks, intrusion detection system (IDS) plays a crucial role. However, most of the existing IDS have dimensionality curse...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Arabian journal for science and engineering (2011) Ročník 46; číslo 4; s. 3749 - 3778
Hlavní autori: Kumar, Prabhat, Gupta, Govind P., Tripathi, Rakesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Predmet:
ISSN:2193-567X, 1319-8025, 2191-4281
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent cyber attacks in IoT networks, intrusion detection system (IDS) plays a crucial role. However, most of the existing IDS have dimensionality curse that reduces overall IoT systems efficiency. Hence, it is important to remove repetitive and irrelevant features while designing effective IDS. Motivated from aforementioned challenges, this paper presents an intelligent cyber attack detection system for IoT network using a novel hybrid feature reduced approach. This technique first performs feature ranking using correlation coefficient, random forest mean decrease accuracy and gain ratio to obtain three different feature sets. Then, features are combined using a suitably designed mechanism (AND operation), to obtain single optimized feature set. Finally, the obtained reduced feature set is fed to three well-known machine learning algorithms such as random forest, K-nearest neighbor and XGBoost for detection of cyber attacks. The efficiency of the proposed cyber attack detection framework is evaluated using NSL-KDD and two latest IoT-based datasets namely, BoT-IoT and DS2OS. Performance of the proposed framework is evaluated and compared with some recent state-of-the-art techniques found in literature, in terms of accuracy, detection rate (DR), precision and F1 score. Performance analysis using these three datasets shows that the proposed model has achieved DR up to 90%–100%, for most of the attack vectors that has close similarity to normal behaviors and accuracy above 99%.
AbstractList With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent cyber attacks in IoT networks, intrusion detection system (IDS) plays a crucial role. However, most of the existing IDS have dimensionality curse that reduces overall IoT systems efficiency. Hence, it is important to remove repetitive and irrelevant features while designing effective IDS. Motivated from aforementioned challenges, this paper presents an intelligent cyber attack detection system for IoT network using a novel hybrid feature reduced approach. This technique first performs feature ranking using correlation coefficient, random forest mean decrease accuracy and gain ratio to obtain three different feature sets. Then, features are combined using a suitably designed mechanism (AND operation), to obtain single optimized feature set. Finally, the obtained reduced feature set is fed to three well-known machine learning algorithms such as random forest, K-nearest neighbor and XGBoost for detection of cyber attacks. The efficiency of the proposed cyber attack detection framework is evaluated using NSL-KDD and two latest IoT-based datasets namely, BoT-IoT and DS2OS. Performance of the proposed framework is evaluated and compared with some recent state-of-the-art techniques found in literature, in terms of accuracy, detection rate (DR), precision and F1 score. Performance analysis using these three datasets shows that the proposed model has achieved DR up to 90%–100%, for most of the attack vectors that has close similarity to normal behaviors and accuracy above 99%.
Author Kumar, Prabhat
Tripathi, Rakesh
Gupta, Govind P.
Author_xml – sequence: 1
  givenname: Prabhat
  orcidid: 0000-0002-0723-0752
  surname: Kumar
  fullname: Kumar, Prabhat
  email: pkumar.phd2019.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology
– sequence: 2
  givenname: Govind P.
  surname: Gupta
  fullname: Gupta, Govind P.
  organization: Department of Information Technology, National Institute of Technology
– sequence: 3
  givenname: Rakesh
  surname: Tripathi
  fullname: Tripathi, Rakesh
  organization: Department of Information Technology, National Institute of Technology
BookMark eNp9kE1LAzEQhoMoqNU_4CngeTXZZHeTY6lfBVHQCt5CNpmtsW1Skyyl_97VCoIHTzOH95l3eI7Rvg8eEDqj5IIS0lwmylgtC1KSglRU0ILtoaOSSlrwUtD9750VVd28HqLTlFxLuGCyopQdoTwLGx0tvoLk5h6HDmuPpz7Dcunm4DOebFuIeJyzNoshlcFkFzx-3qYMK9wn5-f4bttGZ_EN6NxHwE9gewMWj9frGLR5w12IeBpm-AHyJsRFOkEHnV4mOP2ZI_Rycz2b3BX3j7fTyfi-MIzKXBgiBKuotVA1RDLTiFq2tLHasI6LrmO6sUyWTVtxa4hlumtBy7ptBdcG6pqN0Pnu7vDHRw8pq_fQRz9UqpJLyQnnlA-pcpcyMaQUoVPr6FY6bhUl6kuw2glWg2D1LVixARJ_IOOy_lKTo3bL_1G2Q9PQ4-cQf7_6h_oE6VOSxw
CitedBy_id crossref_primary_10_3103_S8756699025700189
crossref_primary_10_1109_TGCN_2022_3165692
crossref_primary_10_1109_ACCESS_2023_3336678
crossref_primary_10_1080_01969722_2022_2145649
crossref_primary_10_1016_j_cose_2024_103781
crossref_primary_10_3390_s21092985
crossref_primary_10_1155_2022_8049766
crossref_primary_10_3390_s22176436
crossref_primary_10_1016_j_csi_2023_103779
crossref_primary_10_1007_s00354_023_00210_9
crossref_primary_10_1016_j_advengsoft_2022_103408
crossref_primary_10_1007_s11042_024_20059_4
crossref_primary_10_1007_s11042_023_18013_x
crossref_primary_10_1109_JIOT_2021_3122021
crossref_primary_10_1155_2022_5724168
crossref_primary_10_3390_app13137774
crossref_primary_10_1002_cpe_7548
crossref_primary_10_1142_S2010324724400149
crossref_primary_10_1007_s41870_025_02550_9
crossref_primary_10_1007_s42979_023_02311_0
crossref_primary_10_1080_1206212X_2024_2443504
crossref_primary_10_1016_j_procs_2024_08_058
crossref_primary_10_3390_s23094467
crossref_primary_10_1007_s00521_023_08398_z
crossref_primary_10_1016_j_jpdc_2022_12_009
crossref_primary_10_1002_ett_4594
crossref_primary_10_1109_JIOT_2023_3294259
crossref_primary_10_1007_s10776_022_00586_3
crossref_primary_10_1007_s11760_024_03203_3
crossref_primary_10_1007_s10115_025_02343_3
crossref_primary_10_1016_j_compeleceng_2022_108410
crossref_primary_10_1016_j_jpdc_2022_01_030
crossref_primary_10_1007_s11227_024_06677_7
crossref_primary_10_1038_s41598_024_81147_x
crossref_primary_10_3390_s22207726
crossref_primary_10_3390_s23167233
crossref_primary_10_1016_j_procs_2023_01_014
crossref_primary_10_3233_WEB_230109A
crossref_primary_10_1109_ACCESS_2023_3276863
crossref_primary_10_1016_j_csa_2025_100088
crossref_primary_10_1177_18724981241302912
crossref_primary_10_1109_IOTM_002_2200195
crossref_primary_10_1109_ACCESS_2022_3215532
crossref_primary_10_1109_TII_2022_3177442
crossref_primary_10_3390_s25072288
crossref_primary_10_1016_j_knosys_2022_109762
crossref_primary_10_1109_TBDATA_2024_3372368
crossref_primary_10_3390_app12041990
crossref_primary_10_1016_j_procs_2024_04_072
crossref_primary_10_1007_s12652_022_04449_w
crossref_primary_10_3390_a15070239
crossref_primary_10_1109_MCE_2023_3296222
crossref_primary_10_1109_TITS_2021_3098636
crossref_primary_10_3390_electronics10091104
crossref_primary_10_1155_2022_1028175
crossref_primary_10_1155_2022_3823350
crossref_primary_10_1080_00051144_2024_2304369
crossref_primary_10_1007_s12083_025_02069_7
crossref_primary_10_1109_TITS_2021_3122368
crossref_primary_10_1080_09540091_2022_2149698
crossref_primary_10_3934_electreng_2025017
crossref_primary_10_1016_j_engappai_2024_109727
crossref_primary_10_1007_s40995_025_01851_9
crossref_primary_10_1007_s13369_024_08882_1
crossref_primary_10_3390_app13074625
crossref_primary_10_1007_s41870_024_02141_0
crossref_primary_10_1109_ACCESS_2025_3579777
crossref_primary_10_3233_IDT_240362
crossref_primary_10_1016_j_compeleceng_2023_108773
crossref_primary_10_1016_j_dajour_2023_100206
crossref_primary_10_1142_S0219649224500795
crossref_primary_10_1186_s40537_025_01146_1
crossref_primary_10_3390_app12094664
crossref_primary_10_1007_s41870_024_02129_w
crossref_primary_10_32604_csse_2023_036735
Cites_doi 10.1109/JIOT.2020.3033131
10.1155/2017/6817627
10.1007/s42979-020-00201-310.1007/s42979-020-00201-310:1007/s42979-020-00201-3
10.1155/2019/7130868
10.1007/s10489-020-01694-4
10.1016/j.eswa.2017.07.005
10.1016/j.jnca.2020.102630
10.1016/j.compeleceng.2013.11.024
10.1007/s10489-018-01408-x
10.1109/ACCESS.2019.2923640
10.1007/978-81-322-2695-6_45
10.1007/s42452-020-2414-z
10.3390/electronics9010144
10.1021/ci034160g
10.1016/j.knosys.2012.09.004
10.1109/ACCESS.2020.2972627
10.1109/ACCESS.2018.2868993
10.1109/CISDA.2009.5356528
10.26483/ijarcs.v10i2.6395
10.1049/iet-net.2018.5080
10.1016/j.future.2019.05.041
10.1007/978-981-13-1921-1_35
10.1016/j.future.2020.02.017
10.1016/j.comcom.2020.02.008
10.1016/j.compbiomed.2019.103375
10.1504/IJHPCN.2019.097503
10.3390/app9020238
10.1109/CCDC.2013.6560973
10.1504/IJHPCN.2019.106095
10.1016/j.jnca.2018.12.006
10.1109/ACCESS.2019.2928048
10.1007/978-3-030-14070-0_13
10.1109/GCCE46687.2019.9015465
10.1016/j.eswa.2014.11.009
10.1016/j.eswa.2019.04.017
10.1007/s10844-015-0388-x
10.1007/s10489-019-01436-1
10.1109/COMST.2015.2494502
10.1109/TFUZZ.2017.2719619
10.1109/INISTA.2012.6247011
10.1145/2939672.2939785
10.1007/s12083-017-0630-0
10.1260/1748-3018.6.3.385
10.1016/j.iot.2019.100059
10.1109/ACCESS.2018.2869577
10.13052/jcsm2245-1439.414
10.1587/transinf.2016ICP0018
10.1016/j.neucom.2014.08.070
10.1186/1471-2105-8-25
10.1016/j.procs.2016.06.016
10.1016/j.comcom.2011.07.001
10.1109/COMST.2020.2988293
10.1007/s11277-019-06864-3
10.1016/j.patrec.2007.05.011
10.1007/s10489-018-1141-2
10.1109/TETC.2016.2633228
10.1109/SURV.2013.052213.00046
10.1016/j.future.2018.04.027
10.1504/IJHPCN.2019.103548
10.1007/978-981-32-9343-4_16
10.1109/ICASID.2019.8925239
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2021
King Fahd University of Petroleum & Minerals 2021.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2021
– notice: King Fahd University of Petroleum & Minerals 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13369-020-05181-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 3778
ExternalDocumentID 10_1007_s13369_020_05181_3
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-c088351dde57093c7869b17dac3f48ff3a7d3927b54dc0d3afbea96bb84ace663
IEDL.DBID RSV
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607039200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 08:56:55 EDT 2025
Sat Nov 29 02:51:36 EST 2025
Tue Nov 18 20:25:03 EST 2025
Fri Feb 21 02:48:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cyber attacks
Internet of Things (IoT)
Feature selection
Intrusion detection system (IDS)
Feature ranking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c088351dde57093c7869b17dac3f48ff3a7d3927b54dc0d3afbea96bb84ace663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0723-0752
PQID 2499404414
PQPubID 2044268
PageCount 30
ParticipantIDs proquest_journals_2499404414
crossref_primary_10_1007_s13369_020_05181_3
crossref_citationtrail_10_1007_s13369_020_05181_3
springer_journals_10_1007_s13369_020_05181_3
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Pajouh, Dastghaibyfard, Hashemi (CR38) 2017; 48
Su, Sun, Zhu, Wang, Li (CR59) 2020; 8
Tahsien, Karimipour, Spachos (CR13) 2020; 161
Tewari, Gupta (CR2) 2019; 15
Ghazy, El-Rabaie, Dessouky, El-Fishawy, Abd El-Samie (CR57) 2020; 111
Eesa, Orman, Brifcani (CR23) 2015; 42
CR37
Ren, Guo, Qian, Yuan, Hao, Jingjing (CR15) 2019; 2019
CR36
CR35
Chandak, Shukla, Wadhvani (CR55) 2019; 130
CR33
Remeseiro, Bolon-Canedo (CR28) 2019; 112
CR32
Koroniotis, Moustafa, Sitnikova, Turnbull (CR34) 2019; 100
Chapaneri, Shah, Satapathy, Bhateja, Das (CR19) 2019
CR73
Al-Qatf, Lasheng, Al-Habib, Al-Sabahi (CR52) 2018; 6
Sultana, Chilamkurti, Peng, Alhadad (CR11) 2019; 12
Moustafa, Hu, Slay (CR21) 2019; 128
CR6
CR7
CR9
CR47
Sangkatsanee, Wattanapongsakorn, Charnsripinyo (CR14) 2011; 34
CR42
Blessie, Karthikeyan (CR61) 2012; 6
Shafiq, Tian, Sun, Du, Guizani (CR45) 2020; 107
Stergiou, Psannis, Gupta (CR4) 2020
Jurcut, Niculcea, Ranaweera, Le-Khac (CR8) 2020; 1
Jesudoss, Subramaniam (CR71) 2014; 5
Soe, Feng, Santosa, Hartanto, Sakurai (CR46) 2020; 9
Manzoor, Kumar (CR26) 2017; 88
Letteri, Penna, Gasperis (CR69) 2019; 15
Kamarudin, Maple, Watson (CR24) 2019; 13
Hur, Ihm, Park (CR60) 2017; 2017
Gao, Shan, Hu, Niu, Liu (CR40) 2019; 7
Sasan, Sharma (CR10) 2016; 8
Chandrashekar, Sahin (CR25) 2014; 40
Strobl, Boulesteix, Zeileis, Hothorn (CR62) 2007; 8
Tewari, Gupta (CR1) 2020; 108
Hasan, Islam, Zarif, Hashem (CR44) 2019; 7
CR58
Al-Garadi, Mohamed, Al-Ali, Du, Ali, Guizani (CR31) 2020; 22
Olakanmi, Dada (CR5) 2019; 9
CR12
CR51
Gupta, Tanwar, Tyagi, Kumar (CR20) 2020; 153
CR50
Wu, Chen, Li (CR39) 2018; 6
Pajouh, Javidan, Khayami, Dehghantanha, Choo (CR22) 2019; 7
Latah, Toker (CR49) 2018; 7
Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (CR65) 2003; 43
Abomhara (CR70) 2015; 4
Buczak, Guven (CR30) 2015; 18
Louati, Ktata (CR66) 2020; 2
Belavagi, Muniyal (CR72) 2016; 89
Tama, Comuzzi, Rhee (CR53) 2019; 7
Karami, Guerrero-Zapata (CR18) 2015; 149
Tian, Han, Li, Liu, Duan, Castiglione (CR43) 2020
Kaja, Shaout, Ma (CR56) 2019; 49
Tama, Rhee (CR16) 2017; 100
CR68
Idhammad, Afdel, Belouch (CR48) 2018; 48
CR67
Gan, Duanmu, Wang, Cong (CR17) 2013; 40
Bhuyan, Bhattacharyya, Kalita (CR27) 2013; 16
Yang, Zheng, Wu, Niu, Yang (CR41) 2019; 9
Stergiou, Psannis, Gupta, Ishibashi (CR3) 2018; 19
CR63
Bao, Rong, Angelov, Chen, Wong (CR64) 2017; 26
Çavuşoğlu (CR54) 2019; 49
Huang, Cai, Xu (CR29) 2007; 28
AS Eesa (5181_CR23) 2015; 42
5181_CR47
C Stergiou (5181_CR3) 2018; 19
A Karami (5181_CR18) 2015; 149
M Al-Qatf (5181_CR52) 2018; 6
I Manzoor (5181_CR26) 2017; 88
T Chandak (5181_CR55) 2019; 130
N Koroniotis (5181_CR34) 2019; 100
5181_CR42
G Chandrashekar (5181_CR25) 2014; 40
HH Pajouh (5181_CR38) 2017; 48
N Sultana (5181_CR11) 2019; 12
N Moustafa (5181_CR21) 2019; 128
J Huang (5181_CR29) 2007; 28
5181_CR9
N Kaja (5181_CR56) 2019; 49
M Hasan (5181_CR44) 2019; 7
MH Bhuyan (5181_CR27) 2013; 16
T Su (5181_CR59) 2020; 8
A Jurcut (5181_CR8) 2020; 1
5181_CR12
5181_CR58
R Gupta (5181_CR20) 2020; 153
Ü Çavuşoğlu (5181_CR54) 2019; 49
EC Blessie (5181_CR61) 2012; 6
C Strobl (5181_CR62) 2007; 8
5181_CR51
5181_CR50
HPS Sasan (5181_CR10) 2016; 8
F Louati (5181_CR66) 2020; 2
OO Olakanmi (5181_CR5) 2019; 9
MH Kamarudin (5181_CR24) 2019; 13
B Remeseiro (5181_CR28) 2019; 112
M Latah (5181_CR49) 2018; 7
5181_CR68
Y Yang (5181_CR41) 2019; 9
5181_CR67
HH Pajouh (5181_CR22) 2019; 7
BA Tama (5181_CR53) 2019; 7
AL Buczak (5181_CR30) 2015; 18
5181_CR63
BA Tama (5181_CR16) 2017; 100
YN Soe (5181_CR46) 2020; 9
R-J Bao (5181_CR64) 2017; 26
J Ren (5181_CR15) 2019; 2019
K Wu (5181_CR39) 2018; 6
A Tewari (5181_CR1) 2020; 108
R Chapaneri (5181_CR19) 2019
5181_CR6
5181_CR33
5181_CR32
5181_CR35
5181_CR7
MA Al-Garadi (5181_CR31) 2020; 22
M Idhammad (5181_CR48) 2018; 48
5181_CR37
5181_CR36
Q Tian (5181_CR43) 2020
CL Stergiou (5181_CR4) 2020
5181_CR73
I Letteri (5181_CR69) 2019; 15
A Tewari (5181_CR2) 2019; 15
RA Ghazy (5181_CR57) 2020; 111
M Abomhara (5181_CR70) 2015; 4
P Sangkatsanee (5181_CR14) 2011; 34
X Gao (5181_CR40) 2019; 7
A Jesudoss (5181_CR71) 2014; 5
SM Tahsien (5181_CR13) 2020; 161
X-S Gan (5181_CR17) 2013; 40
M Shafiq (5181_CR45) 2020; 107
MC Belavagi (5181_CR72) 2016; 89
V Svetnik (5181_CR65) 2003; 43
J-H Hur (5181_CR60) 2017; 2017
References_xml – year: 2020
  ident: CR4
  article-title: IoT-based big data secure management in the fog over a 6G wireless network
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3033131
– volume: 128
  start-page: 33
  year: 2019
  end-page: 55
  ident: CR21
  article-title: A holistic review of network anomaly detection systems: a comprehensive survey
  publication-title: J. Netw. Comput. Appl.
– volume: 48
  start-page: 61
  issue: 1
  year: 2017
  end-page: 74
  ident: CR38
  article-title: Two-tier network anomaly detection model: a machine learning approach
  publication-title: J. Intell. Inf. Syst.
– ident: CR68
– volume: 108
  start-page: 909
  year: 2020
  end-page: 920
  ident: CR1
  article-title: Security, privacy and trust of different layers in internet-of-things (IoTs) framework
  publication-title: Future Gener. Comput. Syst.
– volume: 2017
  start-page: 6817627
  year: 2017
  ident: CR60
  article-title: A variable impacts measurement in random forest for mobile cloud computing
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2017/6817627
– volume: 112
  start-page: 103375
  year: 2019
  ident: CR28
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput. Biol. Med.
– volume: 6
  start-page: 52 843
  year: 2018
  end-page: 52 856
  ident: CR52
  article-title: Deep learning approach combining sparse autoencoder with SVM for network intrusion detection
  publication-title: IEEE Access
– ident: CR51
– ident: CR12
– volume: 40
  start-page: 1
  year: 2013
  end-page: 6
  ident: CR17
  article-title: Anomaly intrusion detection based on PLS feature extraction and core vector machine
  publication-title: Knowl. Based Syst.
– volume: 100
  start-page: 779
  year: 2019
  end-page: 796
  ident: CR34
  article-title: Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset
  publication-title: Future Gener. Comput. Syst.
– volume: 22
  start-page: 1646
  issue: 3
  year: 2020
  end-page: 1685
  ident: CR31
  article-title: A survey of machine and deep learning methods for internet of things (IoT) security
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 100
  start-page: 1729
  issue: 8
  year: 2017
  end-page: 1737
  ident: CR16
  article-title: HFSTE: hybrid feature selections and tree-based classifiers ensemble for intrusion detection system
  publication-title: IEICE Trans. Inf. Syst.
– ident: CR35
– ident: CR58
– volume: 8
  start-page: 17
  issue: 1
  year: 2016
  end-page: 25
  ident: CR10
  article-title: Intrusion detection using feature selection and machine learning algorithm with misuse detection
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 49
  start-page: 3235
  issue: 9
  year: 2019
  end-page: 3247
  ident: CR56
  article-title: An intelligent intrusion detection system
  publication-title: Appl. Intell.
– ident: CR42
– volume: 7
  start-page: 314
  issue: 2
  year: 2019
  end-page: 323
  ident: CR22
  article-title: A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 8
  start-page: 25
  issue: 1
  year: 2007
  ident: CR62
  article-title: Bias in random forest variable importance measures: illustrations, sources and a solution
  publication-title: BMC Bioinform.
– volume: 9
  start-page: 79
  issue: 2
  year: 2019
  end-page: 98
  ident: CR5
  article-title: An efficient privacy-preserving approach for secure verifiable outsourced computing on untrusted platforms
  publication-title: Int. J. Cloud Appl. Comput. (IJCAC)
– volume: 7
  start-page: 82 512
  year: 2019
  end-page: 82 521
  ident: CR40
  article-title: An adaptive ensemble machine learning model for intrusion detection
  publication-title: IEEE Access
– volume: 161
  start-page: 102630
  year: 2020
  ident: CR13
  article-title: Machine learning based solutions for security of internet of things (IoT): a survey
  publication-title: J. Netw. Comput. Appl.
– volume: 48
  start-page: 3193
  issue: 10
  year: 2018
  end-page: 3208
  ident: CR48
  article-title: Semi-supervised machine learning approach for DDoS detection
  publication-title: Appl. Intell.
– ident: CR67
– volume: 7
  start-page: 453
  issue: 6
  year: 2018
  end-page: 459
  ident: CR49
  article-title: Towards an efficient anomaly-based intrusion detection for software-defined networks
  publication-title: IET Netw.
– ident: CR50
– volume: 153
  start-page: 406
  year: 2020
  end-page: 440
  ident: CR20
  article-title: Machine learning models for secure data analytics: a taxonomy and threat model
  publication-title: Comput. Commun.
– volume: 1
  start-page: 193
  issue: 4
  year: 2020
  ident: CR8
  article-title: Security considerations for internet of things: a survey
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00201-310.1007/s42979-020-00201-310:1007/s42979-020-00201-3
– ident: CR9
– start-page: 345
  year: 2019
  end-page: 356
  ident: CR19
  article-title: A comprehensive survey of machine learning-based network intrusion detection
  publication-title: Smart Intelligent Computing and Applications
– ident: CR32
– volume: 7
  start-page: 100059
  year: 2019
  ident: CR44
  article-title: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches
  publication-title: Internet Things
– ident: CR36
– volume: 15
  start-page: 170
  issue: 3–4
  year: 2019
  end-page: 182
  ident: CR69
  article-title: Security in the internet of things: botnet detection in software-defined networks by deep learning techniques
  publication-title: Int. J. High Perform. Comput. Netw.
– volume: 28
  start-page: 1825
  issue: 13
  year: 2007
  end-page: 1844
  ident: CR29
  article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information
  publication-title: Pattern Recogn. Lett.
– volume: 13
  start-page: 232
  issue: 2
  year: 2019
  end-page: 240
  ident: CR24
  article-title: Hybrid feature selection technique for intrusion detection system
  publication-title: Int. J. High Perform. Comput. Netw.
– volume: 2019
  start-page: 7130868
  year: 2019
  ident: CR15
  article-title: Building an effective intrusion detection system by using hybrid data optimization based on machine learning algorithms
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2019/7130868
– volume: 7
  start-page: 94 497
  year: 2019
  end-page: 94 507
  ident: CR53
  article-title: TSE-IDS: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system
  publication-title: IEEE Access
– volume: 6
  start-page: 385
  issue: 3
  year: 2012
  end-page: 394
  ident: CR61
  article-title: SIGMIS: a feature selection algorithm using correlation based method
  publication-title: J. Algorithms Comput. Technol.
– volume: 4
  start-page: 65
  issue: 1
  year: 2015
  end-page: 88
  ident: CR70
  article-title: Cyber security and the internet of things: vulnerabilities, threats, intruders and attacks
  publication-title: J. Cyber Secur. Mob.
– ident: CR47
– volume: 88
  start-page: 249
  year: 2017
  end-page: 257
  ident: CR26
  article-title: A feature reduced intrusion detection system using ANN classifier
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 2670
  issue: 5
  year: 2015
  end-page: 2679
  ident: CR23
  article-title: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
  publication-title: Expert Syst. Appl.
– ident: CR37
– volume: 9
  start-page: 238
  issue: 2
  year: 2019
  ident: CR41
  article-title: Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks
  publication-title: Appl. Sci.
– volume: 130
  start-page: 79
  year: 2019
  end-page: 83
  ident: CR55
  article-title: “An analysis of a feature reduced intrusion detection system using ANN classifier” by Akashdeep et al. expert systems with applications (2017)
  publication-title: Expert Syst. Appl.
– ident: CR33
– year: 2020
  ident: CR43
  article-title: An intrusion detection approach based on improved deep belief network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01694-4
– volume: 2
  start-page: 1
  issue: 4
  year: 2020
  end-page: 13
  ident: CR66
  article-title: A deep learning-based multi-agent system for intrusion detection
  publication-title: SN Appl. Sci.
– ident: CR6
– volume: 26
  start-page: 1324
  issue: 3
  year: 2017
  end-page: 1338
  ident: CR64
  article-title: Correntropy-based evolving fuzzy neural system
  publication-title: IEEE Trans. Fuzzy Syst.
– ident: CR63
– volume: 149
  start-page: 1253
  year: 2015
  end-page: 1269
  ident: CR18
  article-title: A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
  publication-title: Neurocomputing
– volume: 8
  start-page: 29 575
  year: 2020
  end-page: 29 585
  ident: CR59
  article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access
– volume: 18
  start-page: 1153
  issue: 2
  year: 2015
  end-page: 1176
  ident: CR30
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 5
  start-page: 71
  issue: 2
  year: 2014
  end-page: 77
  ident: CR71
  article-title: A survey on authentication attacks and countermeasures in a distributed environment
  publication-title: Indian J. Comput. Sci. Eng. (IJCSE)
– volume: 107
  start-page: 433
  year: 2020
  end-page: 442
  ident: CR45
  article-title: Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city
  publication-title: Future Gener. Comput. Syst.
– volume: 34
  start-page: 2227
  issue: 18
  year: 2011
  end-page: 2235
  ident: CR14
  article-title: Practical real-time intrusion detection using machine learning approaches
  publication-title: Comput. Commun.
– ident: CR73
– volume: 16
  start-page: 303
  issue: 1
  year: 2013
  end-page: 336
  ident: CR27
  article-title: Network anomaly detection: methods, systems and tools
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  end-page: 28
  ident: CR25
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  end-page: 1958
  ident: CR65
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 15
  start-page: 106
  issue: 1–2
  year: 2019
  end-page: 120
  ident: CR2
  article-title: A novel ECC-based lightweight authentication protocol for internet of things devices
  publication-title: Int. J. High Perform. Comput. Netw.
– volume: 89
  start-page: 117
  issue: 2016
  year: 2016
  end-page: 123
  ident: CR72
  article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection
  publication-title: Procedia Comput. Sci.
– volume: 111
  start-page: 375
  issue: 1
  year: 2020
  end-page: 393
  ident: CR57
  article-title: Feature selection ranking and subset-based techniques with different classifiers for intrusion detection
  publication-title: Wirel. Pers. Commun.
– volume: 12
  start-page: 493
  issue: 2
  year: 2019
  end-page: 501
  ident: CR11
  article-title: Survey on SDN based network intrusion detection system using machine learning approaches
  publication-title: Peer-to-Peer Netw. Appl.
– volume: 9
  start-page: 144
  issue: 1
  year: 2020
  ident: CR46
  article-title: Towards a lightweight detection system for cyber attacks in the IoT environment using corresponding features
  publication-title: Electronics
– ident: CR7
– volume: 19
  start-page: 174
  year: 2018
  end-page: 184
  ident: CR3
  article-title: Security, privacy and efficiency of sustainable cloud computing for big data and IoT
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 6
  start-page: 50 850
  year: 2018
  end-page: 50 859
  ident: CR39
  article-title: A novel intrusion detection model for a massive network using convolutional neural networks
  publication-title: IEEE Access
– volume: 49
  start-page: 2735
  issue: 7
  year: 2019
  end-page: 2761
  ident: CR54
  article-title: A new hybrid approach for intrusion detection using machine learning methods
  publication-title: Appl. Intell.
– volume: 88
  start-page: 249
  year: 2017
  ident: 5181_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.005
– volume: 161
  start-page: 102630
  year: 2020
  ident: 5181_CR13
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102630
– volume: 1
  start-page: 193
  issue: 4
  year: 2020
  ident: 5181_CR8
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00201-310.1007/s42979-020-00201-310:1007/s42979-020-00201-3
– year: 2020
  ident: 5181_CR4
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3033131
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 5181_CR25
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 49
  start-page: 2735
  issue: 7
  year: 2019
  ident: 5181_CR54
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-01408-x
– volume: 7
  start-page: 82 512
  year: 2019
  ident: 5181_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923640
– ident: 5181_CR47
  doi: 10.1007/978-81-322-2695-6_45
– volume: 2
  start-page: 1
  issue: 4
  year: 2020
  ident: 5181_CR66
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2414-z
– volume: 9
  start-page: 144
  issue: 1
  year: 2020
  ident: 5181_CR46
  publication-title: Electronics
  doi: 10.3390/electronics9010144
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 5181_CR65
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– volume: 40
  start-page: 1
  year: 2013
  ident: 5181_CR17
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.09.004
– volume: 8
  start-page: 29 575
  year: 2020
  ident: 5181_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– volume: 6
  start-page: 50 850
  year: 2018
  ident: 5181_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868993
– ident: 5181_CR36
– volume: 5
  start-page: 71
  issue: 2
  year: 2014
  ident: 5181_CR71
  publication-title: Indian J. Comput. Sci. Eng. (IJCSE)
– volume: 2019
  start-page: 7130868
  year: 2019
  ident: 5181_CR15
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2019/7130868
– ident: 5181_CR32
  doi: 10.1109/CISDA.2009.5356528
– ident: 5181_CR33
  doi: 10.26483/ijarcs.v10i2.6395
– volume: 7
  start-page: 453
  issue: 6
  year: 2018
  ident: 5181_CR49
  publication-title: IET Netw.
  doi: 10.1049/iet-net.2018.5080
– volume: 100
  start-page: 779
  year: 2019
  ident: 5181_CR34
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– start-page: 345
  volume-title: Smart Intelligent Computing and Applications
  year: 2019
  ident: 5181_CR19
  doi: 10.1007/978-981-13-1921-1_35
– volume: 107
  start-page: 433
  year: 2020
  ident: 5181_CR45
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.02.017
– volume: 8
  start-page: 17
  issue: 1
  year: 2016
  ident: 5181_CR10
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 153
  start-page: 406
  year: 2020
  ident: 5181_CR20
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.02.008
– volume: 112
  start-page: 103375
  year: 2019
  ident: 5181_CR28
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103375
– ident: 5181_CR68
– ident: 5181_CR6
– volume: 13
  start-page: 232
  issue: 2
  year: 2019
  ident: 5181_CR24
  publication-title: Int. J. High Perform. Comput. Netw.
  doi: 10.1504/IJHPCN.2019.097503
– volume: 9
  start-page: 238
  issue: 2
  year: 2019
  ident: 5181_CR41
  publication-title: Appl. Sci.
  doi: 10.3390/app9020238
– ident: 5181_CR73
  doi: 10.1109/CCDC.2013.6560973
– volume: 15
  start-page: 170
  issue: 3–4
  year: 2019
  ident: 5181_CR69
  publication-title: Int. J. High Perform. Comput. Netw.
  doi: 10.1504/IJHPCN.2019.106095
– volume: 128
  start-page: 33
  year: 2019
  ident: 5181_CR21
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.12.006
– ident: 5181_CR37
– volume: 2017
  start-page: 6817627
  year: 2017
  ident: 5181_CR60
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2017/6817627
– volume: 9
  start-page: 79
  issue: 2
  year: 2019
  ident: 5181_CR5
  publication-title: Int. J. Cloud Appl. Comput. (IJCAC)
– ident: 5181_CR50
– volume: 7
  start-page: 94 497
  year: 2019
  ident: 5181_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928048
– ident: 5181_CR9
  doi: 10.1007/978-3-030-14070-0_13
– ident: 5181_CR12
  doi: 10.1109/GCCE46687.2019.9015465
– volume: 42
  start-page: 2670
  issue: 5
  year: 2015
  ident: 5181_CR23
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.009
– volume: 130
  start-page: 79
  year: 2019
  ident: 5181_CR55
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.04.017
– volume: 48
  start-page: 61
  issue: 1
  year: 2017
  ident: 5181_CR38
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-015-0388-x
– volume: 49
  start-page: 3235
  issue: 9
  year: 2019
  ident: 5181_CR56
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01436-1
– ident: 5181_CR7
– volume: 18
  start-page: 1153
  issue: 2
  year: 2015
  ident: 5181_CR30
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 26
  start-page: 1324
  issue: 3
  year: 2017
  ident: 5181_CR64
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2719619
– ident: 5181_CR63
  doi: 10.1109/INISTA.2012.6247011
– ident: 5181_CR67
  doi: 10.1145/2939672.2939785
– volume: 12
  start-page: 493
  issue: 2
  year: 2019
  ident: 5181_CR11
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-017-0630-0
– volume: 6
  start-page: 385
  issue: 3
  year: 2012
  ident: 5181_CR61
  publication-title: J. Algorithms Comput. Technol.
  doi: 10.1260/1748-3018.6.3.385
– volume: 7
  start-page: 100059
  year: 2019
  ident: 5181_CR44
  publication-title: Internet Things
  doi: 10.1016/j.iot.2019.100059
– volume: 6
  start-page: 52 843
  year: 2018
  ident: 5181_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869577
– volume: 4
  start-page: 65
  issue: 1
  year: 2015
  ident: 5181_CR70
  publication-title: J. Cyber Secur. Mob.
  doi: 10.13052/jcsm2245-1439.414
– volume: 100
  start-page: 1729
  issue: 8
  year: 2017
  ident: 5181_CR16
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2016ICP0018
– year: 2020
  ident: 5181_CR43
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01694-4
– volume: 149
  start-page: 1253
  year: 2015
  ident: 5181_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.070
– volume: 8
  start-page: 25
  issue: 1
  year: 2007
  ident: 5181_CR62
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-8-25
– ident: 5181_CR51
– volume: 89
  start-page: 117
  issue: 2016
  year: 2016
  ident: 5181_CR72
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.06.016
– volume: 34
  start-page: 2227
  issue: 18
  year: 2011
  ident: 5181_CR14
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2011.07.001
– volume: 22
  start-page: 1646
  issue: 3
  year: 2020
  ident: 5181_CR31
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2988293
– volume: 111
  start-page: 375
  issue: 1
  year: 2020
  ident: 5181_CR57
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06864-3
– volume: 19
  start-page: 174
  year: 2018
  ident: 5181_CR3
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 28
  start-page: 1825
  issue: 13
  year: 2007
  ident: 5181_CR29
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2007.05.011
– volume: 48
  start-page: 3193
  issue: 10
  year: 2018
  ident: 5181_CR48
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1141-2
– volume: 7
  start-page: 314
  issue: 2
  year: 2019
  ident: 5181_CR22
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2016.2633228
– volume: 16
  start-page: 303
  issue: 1
  year: 2013
  ident: 5181_CR27
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.052213.00046
– volume: 108
  start-page: 909
  year: 2020
  ident: 5181_CR1
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.027
– volume: 15
  start-page: 106
  issue: 1–2
  year: 2019
  ident: 5181_CR2
  publication-title: Int. J. High Perform. Comput. Netw.
  doi: 10.1504/IJHPCN.2019.103548
– ident: 5181_CR35
– ident: 5181_CR58
  doi: 10.1007/978-981-32-9343-4_16
– ident: 5181_CR42
  doi: 10.1109/ICASID.2019.8925239
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.4878514
Snippet With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3749
SubjectTerms Accuracy
Algorithms
Correlation coefficients
Cybersecurity
Datasets
Direct reduction
Electronic devices
Engineering
Humanities and Social Sciences
Hybrid systems
Machine learning
multidisciplinary
Networks
Research Article-Computer Engineering and Computer Science
Science
Title Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature Reduced Approach for IoT Networks
URI https://link.springer.com/article/10.1007/s13369-020-05181-3
https://www.proquest.com/docview/2499404414
Volume 46
WOSCitedRecordID wos000607039200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA5uBz24i-PGO3jTQNu0k-Y4uKAgg4yjzK1kq4jSkZkq-O99ybRTFRX03NdQkrd8ab73hZDDMMIcJyNF84Bp3KBYQ5XSKeVSmlwERieeIHt3xbvddDAQ11VT2Lhmu9dHkj5TN81ujLUFddsddKQ0pGyWzGO5S1049m7uai-KseQjimDNnxZEQJG_Shajk9GkzQdV98z3w36uUA3s_HJS6gvQ-cr_Pn2VLFeAEzoTD1kjM7ZYJ0sfZAg3SNn33Fk49WwOGOYgC7icanWWcPKm7Ag6ZSn1I1qVnr5VwETtHBx1_h4u3lzvFzhI-TKy0HOSsNZAp9IsBwTHcDnsQ3fCOx9vktvzs_7JBa1uY6Aaw7SkGvMRS0JMhwkPBNM8bQsVciM1y-M0z5nkBsEWV0lsdGCYzJWVoq1UGkttEdhskbliWNhtApyrCM1SIyIbW3fwiO9xHDtnRkijWiSsVyDTlVS5uzHjKWtElt2MZjijmZ_RjLXI0fSd54lQx6_We_XCZlXQjjPciYo4QHwYt8hxvZDN459H2_mb-S5ZjBwzxvN_9shcOXqx-2RBv5YP49GBd-Z3LWXsOg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7BmAQ8AIMhOsa4h70NS0mc1PFj1TG1oqum0k19i_wrCA2lqE2R9t9zdpNlIIYEzzlbln2--xx_9xngOE4oxqlEszLihg4ozjKtTc6EUraUkTVZIMheTcR0mi8W8qIpClu3bPf2SjJE6q7YjfO-ZP64Q46Ux4w_hEcpZSxP5Jt9vmq9KKWUTyiCd39aCAEl4SlZ2p2cZX2xaKpn_tztrxmqg52_3ZSGBHT2_P-G_gKeNYATB1sP2YMHrnoJT-_IEL6Ceh64s3ga2By4LFFVOL7V6qxxeKPdCgd1rcw1WdWBvlXhVu0cPXX-C45ufO0Xeki5WTmceUlYZ3HQaJYjgWMcL-c43fLO1_twefZxPhyx5jUGZmib1sxQPOJZTOEwE5HkRuR9qWNhleFlmpclV8IS2BI6S62JLFeldkr2tc5TZRwBm9ewUy0r9wZQCJ2QWW5l4lLnLx6pnaC-S26lsroHcbsChWmkyv2LGd-KTmTZz2hBM1qEGS14D05u23zfCnX81fqwXdii2bTrgk6iMo0IH6Y9-NAuZPf5_t4O_s38PTwezc8nxWQ8_fQWniSeJRO4QIewU6827h3smh_11_XqKDj2T0fx7x4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1Riip6oN9iC7Q-9EYtkjhZx8cVsGIFWqF2QXuL_FlVrbJo11Ti33fsJIRWBaninLEl22P7TfzmDcCnNMMzTmaKuoRpDFCsoUrpknIpjROJ0UUkyF6e8em0nM_F-Z0s_sh2754km5yGoNJU-4Mr4w76xDfGhoKG0AedqkwpewJP81A0KMTrXy87j8rx-kdEwfq_LoiGslhWFncqo8WQz9tMmn93--dt1UPQv15N42U0fvH4YbyErRaIklHjOa9gzdav4fkdecI34GeRU0uOIsuDLByRNZncanh6cnij7JKMvJf6B1r5SOuqSaOCTgKl_hs5uQk5YSRAzeulJV-CVKw1ZNRqmRMEzWSymJFpw0dfvYWL8fHs8IS2VRqoxu3rqcZzihUpHpMFTwTTvBwKlXIjNXN56RyT3CAI46rIjU4Mk05ZKYZKlbnUFgHPO1ivF7XdBsK5ytCsNCKzuQ0PktiOY9-OGSGNGkDarUalWwnzUEnjZ9WLL4cZrXBGqzijFRvA_m2bq0bA40Hr3W6Rq3YzryqMUEWeIG7MB_C5W9T-8_29vf8_84_w7PxoXJ1Npqc7sJkF8kykCO3Cul9e2z3Y0L_899XyQ_Tx31sx-AI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Design+of+an+Intelligent+Cyber+Attack+Detection+System+using+Hybrid+Feature+Reduced+Approach+for+IoT+Networks&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Kumar%2C+Prabhat&rft.au=Gupta%2C+Govind+P.&rft.au=Tripathi%2C+Rakesh&rft.date=2021-04-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=46&rft.issue=4&rft.spage=3749&rft.epage=3778&rft_id=info:doi/10.1007%2Fs13369-020-05181-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_020_05181_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon