Bohr Type Inequalities for Functions with a Multiple Zero at the Origin

Recently, there has been a number of good deal of research on the Bohr’s phenomenon in various settings including a refined formulation of his classical version of the inequality. Among them, in Paulsen et al. (Proc Lond Math Soc 85(2):493–512, 2002) the authors considered cases in which the above f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory Jg. 20; H. 3-4; S. 559 - 570
Hauptverfasser: Ponnusamy, S., Wirths, K.-J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Schlagworte:
ISSN:1617-9447, 2195-3724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, there has been a number of good deal of research on the Bohr’s phenomenon in various settings including a refined formulation of his classical version of the inequality. Among them, in Paulsen et al. (Proc Lond Math Soc 85(2):493–512, 2002) the authors considered cases in which the above functions have a multiple zero at the origin. In this article, we present a refined version of Bohr’s inequality for these cases and give a partial answer to a question from Paulsen et al. (2002) for the revised setting.
AbstractList Recently, there has been a number of good deal of research on the Bohr’s phenomenon in various settings including a refined formulation of his classical version of the inequality. Among them, in Paulsen et al. (Proc Lond Math Soc 85(2):493–512, 2002) the authors considered cases in which the above functions have a multiple zero at the origin. In this article, we present a refined version of Bohr’s inequality for these cases and give a partial answer to a question from Paulsen et al. (2002) for the revised setting.
Author Wirths, K.-J.
Ponnusamy, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Ponnusamy
  fullname: Ponnusamy, S.
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 2
  givenname: K.-J.
  surname: Wirths
  fullname: Wirths, K.-J.
  email: kjwirths@tu-bs.de
  organization: Institut für Analysis und Algebra, TU Braunschweig
BookMark eNp9kE1PAjEURRuDiYj-AVdNXFf7NdOZpRJBEgwb3LhpSqeFkrEDbScGfr2DY2LigtXb3HPvy7kGA994A8AdwQ8EY_EYOWYkQ5hihDFjGB0vwJCSMkNMUD4AQ5ITgUrOxRW4jnGLccZLxoZg-txsAlwedgbOvNm3qnbJmQhtE-Ck9Tq5xkf45dIGKvjW1sntagM_TGigSjBtDFwEt3b-BlxaVUdz-3tH4H3yshy_ovliOhs_zZFmpExoZa3SVFDNSaFoVqwKi02Z40oUmeKVwdoUOVUltpzZUnBbripV6cIURDGRczYC933vLjT71sQkt00bfDcpKRdMiKyLdSnap3RoYgzGyl1wnyocJMHyJEz2wmQnTP4Ik8cOKv5B2iV1EpCCcvV5lPVo7Hb82oS_r85Q31MGghQ
CitedBy_id crossref_primary_10_1016_j_bulsci_2021_103054
crossref_primary_10_1016_j_jmaa_2025_129965
crossref_primary_10_1016_j_bulsci_2025_103577
crossref_primary_10_1007_s00009_021_01891_6
crossref_primary_10_1007_s13324_020_00393_0
crossref_primary_10_1080_17476933_2021_1990272
crossref_primary_10_1002_mana_202000408
crossref_primary_10_1007_s00009_021_01726_4
crossref_primary_10_1016_j_jmaa_2020_124147
crossref_primary_10_1007_s40315_021_00412_6
crossref_primary_10_1016_j_jmaa_2021_125308
crossref_primary_10_1016_j_jmaa_2020_124837
crossref_primary_10_1007_s00025_020_01325_x
crossref_primary_10_1007_s00025_023_01953_z
crossref_primary_10_1007_s40315_023_00482_8
crossref_primary_10_1007_s40315_022_00444_6
crossref_primary_10_1007_s40315_025_00578_3
Cites_doi 10.1090/proc/14634
10.1155/S1073792804143444
10.1090/S0002-9939-04-07553-7
10.1007/978-3-319-78247-8
10.5186/aasfm.2019.4416
10.1016/j.indag.2018.09.008
10.1090/S0002-9939-97-04270-6
10.1007/BF03321051
10.1016/j.jmaa.2018.05.038
10.1016/j.crma.2018.01.010
10.1016/j.jmaa.2018.01.035
10.1090/crmp/051/12
10.7146/math.scand.a-10653
10.1007/s40315-017-0206-2
10.1112/plms/s2-13.1.1
10.1112/S0024611502013692
10.1007/BF01475487
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40315-020-00330-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 570
ExternalDocumentID 10_1007_s40315_020_00330_z
GroupedDBID -EM
06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-bffac272c418a258b8f0e960d785a4de0ce862a90f43f974f9bdadc8e81a37643
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545664500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-9447
IngestDate Thu Sep 18 00:03:39 EDT 2025
Tue Nov 18 22:04:22 EST 2025
Sat Nov 29 03:09:54 EST 2025
Fri Feb 21 02:47:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Schwarz lemma
Bohr’s inequality
Cauchy–Schwarz inequality
30B10
Primary 30A10
30C55
41A58
Analytic functions
Secondary 30C45
Multiple zero
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bffac272c418a258b8f0e960d785a4de0ce862a90f43f974f9bdadc8e81a37643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2473775376
PQPubID 2043941
PageCount 12
ParticipantIDs proquest_journals_2473775376
crossref_primary_10_1007_s40315_020_00330_z
crossref_citationtrail_10_1007_s40315_020_00330_z
springer_journals_10_1007_s40315_020_00330_z
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationTitleAbbrev Comput. Methods Funct. Theory
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References PaulsenVIPopescuGSinghDOn Bohr’s inequalityProc. Lond. Math. Soc.2002852493512191205910.1112/S0024611502013692
BhowmikBDasNBohr phenomenon for subordinating families of certain univalent functionsJ. Math. Anal. Appl.2018462210871098377428010.1016/j.jmaa.2018.01.035
BohrHA theorem concerning power seriesProc. Lond. Math. Soc.191413215157749410.1112/plms/s2-13.1.1
Kayumov, I.R., Ponnusamy, S.: On a powered Bohr inequality. Ann. Acad. Sci. Fenn. Ser. A I Math. 44, 301–310 (2019)
BoasHPKhavinsonDBohr’s power series theorem in several variablesProc. Am. Math. Soc.19971251029752979144337110.1090/S0002-9939-97-04270-6
Bombieri, E.: Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze. Boll. Un. Mat. Ital. 17(3), 276–282 (1962)
KayumovIRPonnusamySBohr inequality for odd analytic functionsComput. Methods Funct. Theory201717679688371252610.1007/s40315-017-0206-2
Tomić, M.: Sur un théorème de H. Bohr. Math. Scand. 11, 103–106 (1962)
SidonSÜber einen Satz von Herrn BohrMath. Z.1927261731732154488810.1007/BF01475487
PaulsenVISinghDBohr’s inequality for uniform algebrasProc. Am. Math. Soc.20041321235773579208407910.1090/S0002-9939-04-07553-7
GarciaSRMashreghiJRossWTFinite Blaschke Products and Their Connections2018ChamSpringer10.1007/978-3-319-78247-8
Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: New inequalities for the coefficients of unimodular bounded functions. Results Math., to appear
RogosinskiWOn the coefficients of subordinate functionsProc. Lond. Math. Soc.1943482488286250028.35502
Abu Muhanna, Y., Ali, R.M., Ponnusamy, S.: On the Bohr inequality. In: Govil N.K. et al. (eds.) Progress in Approximation Theory and Applicable Complex Analysis? Springer Optimization and Its Applications, vol. 117, pp. 265–295 (2016)
Fournier, R., Ruscheweyh, S.: On the Bohr radius for simply connected plane domains. Hilbert spaces of analytic functions, CRM Proc. Lecture Notes, vol. 51, pp. 165–171. Amer. Math. Soc., Providence (2010)
BénéteauCDahlnerAKhavinsonDRemarks on the Bohr phenomenonComput. Methods Funct. Theory200441119208166110.1007/BF03321051
Ricci, G.: Complementi a un teorema di H. Bohr riguardante le serie di potenze. Rev. Un.Mat. Argentina 17, 185–195 (1955/1956)
Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for mappings defined on simply connected domains (in preparation)
Landau, E., Gaier, D.: Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie.
KayumovIRPonnusamySImproved version of Bohr’s inequalityComptes Rendus Mathematique20183563272277376759510.1016/j.crma.2018.01.010
KayumovIRPonnusamySBohr’s inequalities for the analytic functions with lacunary series and harmonic functionsJ. Math. Anal. Appl.2018465857871380933410.1016/j.jmaa.2018.05.038
BombieriEBourgainJA remark on Bohr’s inequalityInt. Math. Res. Not.20048043074330212662710.1155/S1073792804143444
Carlson, F.: Sur les coefficients d’une fonction bornée dans le cercle unité (French). Ark. Mat. Astr. Fys. 27A(1), 8 (1940)
AlkhaleefahSAKayumovIRPonnusamySOn the Bohr inequality with a fixed zero coefficientProc. Am. Math. Soc.20191471252635274402108610.1090/proc/14634
Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for locally univalent harmonic mappings. Indag. Math. (N.S.) 30, 201–213 (2019)
330_CR21
330_CR22
VI Paulsen (330_CR19) 2002; 85
330_CR1
VI Paulsen (330_CR20) 2004; 132
330_CR7
330_CR9
330_CR17
IR Kayumov (330_CR15) 2018; 356
330_CR18
330_CR10
330_CR11
W Rogosinski (330_CR23) 1943; 48
330_CR12
IR Kayumov (330_CR16) 2018; 465
SA Alkhaleefah (330_CR2) 2019; 147
C Bénéteau (330_CR3) 2004; 4
HP Boas (330_CR5) 1997; 125
H Bohr (330_CR6) 1914; 13
IR Kayumov (330_CR14) 2017; 17
B Bhowmik (330_CR4) 2018; 462
E Bombieri (330_CR8) 2004; 80
S Sidon (330_CR24) 1927; 26
330_CR25
SR Garcia (330_CR13) 2018
References_xml – reference: Tomić, M.: Sur un théorème de H. Bohr. Math. Scand. 11, 103–106 (1962)
– reference: BohrHA theorem concerning power seriesProc. Lond. Math. Soc.191413215157749410.1112/plms/s2-13.1.1
– reference: Abu Muhanna, Y., Ali, R.M., Ponnusamy, S.: On the Bohr inequality. In: Govil N.K. et al. (eds.) Progress in Approximation Theory and Applicable Complex Analysis? Springer Optimization and Its Applications, vol. 117, pp. 265–295 (2016)
– reference: AlkhaleefahSAKayumovIRPonnusamySOn the Bohr inequality with a fixed zero coefficientProc. Am. Math. Soc.20191471252635274402108610.1090/proc/14634
– reference: Carlson, F.: Sur les coefficients d’une fonction bornée dans le cercle unité (French). Ark. Mat. Astr. Fys. 27A(1), 8 (1940)
– reference: KayumovIRPonnusamySBohr inequality for odd analytic functionsComput. Methods Funct. Theory201717679688371252610.1007/s40315-017-0206-2
– reference: PaulsenVISinghDBohr’s inequality for uniform algebrasProc. Am. Math. Soc.20041321235773579208407910.1090/S0002-9939-04-07553-7
– reference: Fournier, R., Ruscheweyh, S.: On the Bohr radius for simply connected plane domains. Hilbert spaces of analytic functions, CRM Proc. Lecture Notes, vol. 51, pp. 165–171. Amer. Math. Soc., Providence (2010)
– reference: BhowmikBDasNBohr phenomenon for subordinating families of certain univalent functionsJ. Math. Anal. Appl.2018462210871098377428010.1016/j.jmaa.2018.01.035
– reference: Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for locally univalent harmonic mappings. Indag. Math. (N.S.) 30, 201–213 (2019)
– reference: RogosinskiWOn the coefficients of subordinate functionsProc. Lond. Math. Soc.1943482488286250028.35502
– reference: Bombieri, E.: Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze. Boll. Un. Mat. Ital. 17(3), 276–282 (1962)
– reference: KayumovIRPonnusamySBohr’s inequalities for the analytic functions with lacunary series and harmonic functionsJ. Math. Anal. Appl.2018465857871380933410.1016/j.jmaa.2018.05.038
– reference: Landau, E., Gaier, D.: Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie.
– reference: SidonSÜber einen Satz von Herrn BohrMath. Z.1927261731732154488810.1007/BF01475487
– reference: GarciaSRMashreghiJRossWTFinite Blaschke Products and Their Connections2018ChamSpringer10.1007/978-3-319-78247-8
– reference: BombieriEBourgainJA remark on Bohr’s inequalityInt. Math. Res. Not.20048043074330212662710.1155/S1073792804143444
– reference: BénéteauCDahlnerAKhavinsonDRemarks on the Bohr phenomenonComput. Methods Funct. Theory200441119208166110.1007/BF03321051
– reference: KayumovIRPonnusamySImproved version of Bohr’s inequalityComptes Rendus Mathematique20183563272277376759510.1016/j.crma.2018.01.010
– reference: BoasHPKhavinsonDBohr’s power series theorem in several variablesProc. Am. Math. Soc.19971251029752979144337110.1090/S0002-9939-97-04270-6
– reference: PaulsenVIPopescuGSinghDOn Bohr’s inequalityProc. Lond. Math. Soc.2002852493512191205910.1112/S0024611502013692
– reference: Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: New inequalities for the coefficients of unimodular bounded functions. Results Math., to appear
– reference: Ricci, G.: Complementi a un teorema di H. Bohr riguardante le serie di potenze. Rev. Un.Mat. Argentina 17, 185–195 (1955/1956)
– reference: Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for mappings defined on simply connected domains (in preparation)
– reference: Kayumov, I.R., Ponnusamy, S.: On a powered Bohr inequality. Ann. Acad. Sci. Fenn. Ser. A I Math. 44, 301–310 (2019)
– volume: 147
  start-page: 5263
  issue: 12
  year: 2019
  ident: 330_CR2
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14634
– ident: 330_CR22
– volume: 80
  start-page: 4307
  year: 2004
  ident: 330_CR8
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/S1073792804143444
– volume: 132
  start-page: 3577
  issue: 12
  year: 2004
  ident: 330_CR20
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-04-07553-7
– volume-title: Finite Blaschke Products and Their Connections
  year: 2018
  ident: 330_CR13
  doi: 10.1007/978-3-319-78247-8
– ident: 330_CR17
  doi: 10.5186/aasfm.2019.4416
– ident: 330_CR10
  doi: 10.1016/j.indag.2018.09.008
– volume: 125
  start-page: 2975
  issue: 10
  year: 1997
  ident: 330_CR5
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-97-04270-6
– ident: 330_CR11
– volume: 4
  start-page: 1
  issue: 1
  year: 2004
  ident: 330_CR3
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/BF03321051
– ident: 330_CR9
– ident: 330_CR7
– ident: 330_CR1
– volume: 465
  start-page: 857
  year: 2018
  ident: 330_CR16
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.05.038
– volume: 48
  start-page: 48
  issue: 2
  year: 1943
  ident: 330_CR23
  publication-title: Proc. Lond. Math. Soc.
– volume: 356
  start-page: 272
  issue: 3
  year: 2018
  ident: 330_CR15
  publication-title: Comptes Rendus Mathematique
  doi: 10.1016/j.crma.2018.01.010
– volume: 462
  start-page: 1087
  issue: 2
  year: 2018
  ident: 330_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.01.035
– ident: 330_CR12
  doi: 10.1090/crmp/051/12
– ident: 330_CR18
– ident: 330_CR25
  doi: 10.7146/math.scand.a-10653
– volume: 17
  start-page: 679
  year: 2017
  ident: 330_CR14
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/s40315-017-0206-2
– ident: 330_CR21
– volume: 13
  start-page: 1
  issue: 2
  year: 1914
  ident: 330_CR6
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s2-13.1.1
– volume: 85
  start-page: 493
  issue: 2
  year: 2002
  ident: 330_CR19
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/S0024611502013692
– volume: 26
  start-page: 731
  issue: 1
  year: 1927
  ident: 330_CR24
  publication-title: Math. Z.
  doi: 10.1007/BF01475487
SSID ssj0054933
Score 2.3454618
Snippet Recently, there has been a number of good deal of research on the Bohr’s phenomenon in various settings including a refined formulation of his classical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 559
SubjectTerms Analysis
Computational Mathematics and Numerical Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Title Bohr Type Inequalities for Functions with a Multiple Zero at the Origin
URI https://link.springer.com/article/10.1007/s40315-020-00330-z
https://www.proquest.com/docview/2473775376
Volume 20
WOSCitedRecordID wos000545664500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2195-3724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054933
  issn: 1617-9447
  databaseCode: RSV
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6JQkAc2sJQmdu2MgCgwtCBeQiyR7dgCCaUoCQz99dhukgoESDDHOUV3vscX--4D2OeS0EAEERaCaExSKrCkkmKaSqEVVYZq4skm2HDIHx7iq6oprKhvu9dHkj5SN81uxBESYAd3HAFZgMezMGfTHXfueH1zX8dfC3g8gbwr3HFMCKtaZb6X8TkdTWvML8eiPtv0l__3nSuwVFWX6GiyHVZhRmdrsDhoRrMW63B2PHrKkYOf6CLTk55Ki5aRLV5R3yY5vw-R-z2LBBpU1w3Ro85HSJTICkKXnktrA-76p7cn57hiU8DKulmJpTFChSxUpMtFSLnkJtAWv6SMU0FSHSht0Y2IA0MiY1GGiWUqUsU17wobhUi0Ca1slOktQD3ZDZmRFskZTSwmiqUwsSaKakYoVb02dGulJqoaNe4YL16SZkiyV1JilZR4JSXjNhw077xOBm38urpT2yqpnK5IQsIixtx8mjYc1raZPv5Z2vbflu_AQujM6zsSO9Aq8ze9C_PqvXwu8j2_GT8A9mDZMQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1Dz4poG2S5b2UcU5cZuiU4YvIUkTFGSTdfqwv94kazcUFfS56VHuLnf3Nbn7AA5jSWgggioWgmhMUiqwpJJimkqhFVWGauLJJli7HXe7yU3eFJYVt92LI0kfqSfNbsQREmAHdxwBWYBHszBHbMZyF_lu7x6K-GsBjyeQd4U7TghheavM9zI-p6NpjfnlWNRnm_rK_75zFZbz6hKdjN1hDWZ0bx2WWpPRrNkGXJz2nwbIwU902dPjnkqLlpEtXlHdJjnvh8j9nkUCtfLrhuhRD_pIDJEVhK49l9Ym3NfPO2cNnLMpYGW32RBLY4SKWKRIGIuIxjI2gbb4JWUxFSTVgdIW3YgkMKRqLMowiUxFqmIdh8JGIVLdglKv39PbgGoyjJiRFskZTSwmSqQwiSaKakYoVbUyhIVSucpHjTvGixc-GZLslcStkrhXEh-V4Wjyzut40MavqyuFrXi-6TIeEVZlzM2nKcNxYZvp45-l7fxt-QEsNDqtJm9etq92YTFypvbdiRUoDQdveg_m1fvwORvse8f8AC4k3BU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgO7Iiy-sANrCapXSdHtkIFLZVYVHGJbMcWSCit2sChX4_tJi0gQEKc44yimbE9L_abB3AQCkI97lUx50RhklCOBRUU00RwJanUVBEnNsFarbDTidofWPzutntxJDniNNguTWlW6SW6Mia-EStOgC30sWJkHh5OwwyxokEWr98-FGuxAT9OTN4W8TgihOW0me9tfN6aJvXmlyNSt_PUl_7_zcuwmFed6HiUJiswpdJVWGiOW7YO1uDipPvURxaWokaqRlxLg6KRKWpR3Wx-Lj-R_W2LOGrm1xDRo-p3Ec-QMYRunMbWOtzXz-9OL3GusoClmX4ZFlpzGbBAEj_kAQ1FqD1lcE3CQspJojypDOrhkadJVRv0oSOR8ESGKvS5WZ1IdQNKaTdVm4Bqwg-YFgbhaUVMMCLBdaSIpIoRSmWtDH7h4FjmLcitEsZLPG6e7JwUGyfFzknxsAyH43d6owYcv47eKeIW55NxEAeEVRmzfWvKcFTEafL4Z2tbfxu-D3Pts3p83WhdbcN8YCPtSIs7UMr6r2oXZuVb9jzo77kcfQc00eT5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bohr+Type+Inequalities+for+Functions+with+a+Multiple+Zero+at+the+Origin&rft.jtitle=Computational+methods+and+function+theory&rft.au=Ponnusamy%2C+S.&rft.au=Wirths%2C+K.-J.&rft.date=2020-11-01&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=20&rft.issue=3-4&rft.spage=559&rft.epage=570&rft_id=info:doi/10.1007%2Fs40315-020-00330-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40315_020_00330_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon