Extended Newton-type iteration for nonlinear ill-posed equations in Banach space

In this paper, we study nonlinear ill-posed equations involving m -accretive mappings in Banach spaces. We produce an extended Newton-type iterative scheme that converges cubically to the solution which uses assumptions only on the first Fréchet derivative of the operator. Using general Hölder type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing Jg. 60; H. 1-2; S. 435 - 453
Hauptverfasser: Sreedeep, C. D., George, Santhosh, Argyros, Ioannis K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Schlagworte:
ISSN:1598-5865, 1865-2085
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study nonlinear ill-posed equations involving m -accretive mappings in Banach spaces. We produce an extended Newton-type iterative scheme that converges cubically to the solution which uses assumptions only on the first Fréchet derivative of the operator. Using general Hölder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060–2076,  2005 ) for choosing the regularization parameter.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-018-01221-2