Extended Newton-type iteration for nonlinear ill-posed equations in Banach space

In this paper, we study nonlinear ill-posed equations involving m -accretive mappings in Banach spaces. We produce an extended Newton-type iterative scheme that converges cubically to the solution which uses assumptions only on the first Fréchet derivative of the operator. Using general Hölder type...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied mathematics & computing Ročník 60; číslo 1-2; s. 435 - 453
Hlavní autori: Sreedeep, C. D., George, Santhosh, Argyros, Ioannis K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Predmet:
ISSN:1598-5865, 1865-2085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study nonlinear ill-posed equations involving m -accretive mappings in Banach spaces. We produce an extended Newton-type iterative scheme that converges cubically to the solution which uses assumptions only on the first Fréchet derivative of the operator. Using general Hölder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060–2076,  2005 ) for choosing the regularization parameter.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-018-01221-2