Modified intermixed iteration for solving the split general system of variational inequality problems and applications

Inspired by the works of Siriyan and Kangtunyakarn ( 2018 ) and Yao et al. ( 2015 ), we first introduce the two-step intermixed iteration for finding a common element of the set of the solutions of the split general system of variational inequality problem (SGSV), and also, we prove strong convergen...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics Vol. 40; no. 8
Main Authors: Saechou, Kanyanee, Kangtunyakarn, Atid
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2021
Springer Nature B.V
Subjects:
ISSN:2238-3603, 1807-0302
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inspired by the works of Siriyan and Kangtunyakarn ( 2018 ) and Yao et al. ( 2015 ), we first introduce the two-step intermixed iteration for finding a common element of the set of the solutions of the split general system of variational inequality problem (SGSV), and also, we prove strong convergence theorem of the intermixed algorithm. Using our main theorem, we prove strong convergence theorems for finding solutions to the split variational inequality problem (SVIP), the split feasibility problem (SFP), and the split common fixed point problem (SCFP). Moreover, we give three numerical examples of these classical problems introduced by the previous studies and an example that conflicts with our main theorem where some conditions fail.
AbstractList Inspired by the works of Siriyan and Kangtunyakarn (2018) and Yao et al. (2015), we first introduce the two-step intermixed iteration for finding a common element of the set of the solutions of the split general system of variational inequality problem (SGSV), and also, we prove strong convergence theorem of the intermixed algorithm. Using our main theorem, we prove strong convergence theorems for finding solutions to the split variational inequality problem (SVIP), the split feasibility problem (SFP), and the split common fixed point problem (SCFP). Moreover, we give three numerical examples of these classical problems introduced by the previous studies and an example that conflicts with our main theorem where some conditions fail.
Inspired by the works of Siriyan and Kangtunyakarn ( 2018 ) and Yao et al. ( 2015 ), we first introduce the two-step intermixed iteration for finding a common element of the set of the solutions of the split general system of variational inequality problem (SGSV), and also, we prove strong convergence theorem of the intermixed algorithm. Using our main theorem, we prove strong convergence theorems for finding solutions to the split variational inequality problem (SVIP), the split feasibility problem (SFP), and the split common fixed point problem (SCFP). Moreover, we give three numerical examples of these classical problems introduced by the previous studies and an example that conflicts with our main theorem where some conditions fail.
ArticleNumber 264
Author Kangtunyakarn, Atid
Saechou, Kanyanee
Author_xml – sequence: 1
  givenname: Kanyanee
  surname: Saechou
  fullname: Saechou, Kanyanee
  organization: Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang
– sequence: 2
  givenname: Atid
  surname: Kangtunyakarn
  fullname: Kangtunyakarn, Atid
  email: beawrock@hotmail.com
  organization: Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang
BookMark eNp9kMtKAzEUhoMo2FZfwFXA9WguM5OZpRRvUHGj65DmUlNmkjZJi3170xlBcNHVORy-7_DzT8G5804DcIPRHUaI3ccSUVwWiOAC4bpqi_IMTHCDWIEoIudgQghtClojegmmMa4RogyX5QTs37yyxmoFrUs69Pb7uOZNJOsdND7A6Lu9dSuYvjSMm84muNIuAx2Mh5h0D72BexHsYOSrdXq7E5k7wE3wy073EQqnoNhkWQ5UvAIXRnRRX__OGfh8evyYvxSL9-fX-cOikBS3qVhqJklVypZIVtdUUSUa00pmpKyQ0kvF2lpioVraaCoqQmvTYNa0Shlcl62kM3A7_s1JtjsdE1_7XcgpIydVrgexmpSZakZKBh9j0IZLm4agKQjbcYz4sWU-tsxzy3xomR9V8k_dBNuLcDgt0VGKGXYrHf5SnbB-AO-wlMM
CitedBy_id crossref_primary_10_1080_00207160_2023_2217303
Cites_doi 10.1007/BF02142692
10.1016/j.jmaa.2006.05.010
10.1088/0266-5611/18/2/310
10.22436/jnsa.010.05.31
10.1088/0266-5611/21/6/017
10.1016/j.na.2010.10.054
10.1006/jmaa.1999.6615
10.1090/S0002-9904-1967-11761-0
10.1007/s00186-007-0207-4
10.1007/s11075-011-9490-5
10.1016/j.jmaa.2005.05.028
10.1090/S0002-9939-1953-0054846-3
10.1007/978-3-662-12613-4
10.1002/cpa.3160200302
10.1023/A:1023073621589
10.1186/s13663-015-0454-7
10.1002/mma.5240
10.1186/1687-1812-2012-89
10.1155/2011/562689
ContentType Journal Article
Copyright SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021
SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.
Copyright_xml – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021
– notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40314-021-01659-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
ExternalDocumentID 10_1007_s40314_021_01659_4
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
JQ2
ID FETCH-LOGICAL-c319t-be7c254c92c7663d3da8f9c7fcc50debd796c1ad938e3a5236f81789ddf1649c3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705406600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2238-3603
IngestDate Thu Sep 25 00:47:22 EDT 2025
Sat Nov 29 01:53:10 EST 2025
Tue Nov 18 21:22:28 EST 2025
Fri Feb 21 02:47:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 47H09
47H10
Nonexpansive mappings
The split general system of variational inequalities problem
Fixed point
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-be7c254c92c7663d3da8f9c7fcc50debd796c1ad938e3a5236f81789ddf1649c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2580707624
PQPubID 2044245
ParticipantIDs proquest_journals_2580707624
crossref_citationtrail_10_1007_s40314_021_01659_4
crossref_primary_10_1007_s40314_021_01659_4
springer_journals_10_1007_s40314_021_01659_4
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Byrne (CR1) 2002; 18
Moudafi (CR15) 2000; 241
Verma (CR20) 1999; 3
CR18
CR11
CR10
Ceng, Wang, Yao (CR2) 2008; 67
Censor, Elfving (CR3) 1994; 8
Marino, Xu (CR14) 2006; 318
Censor, Motova, Segal (CR6) 2007; 327
Lions, Stampacchia (CR12) 1967; 20
Opial (CR16) 1967; 73
Glowinski (CR8) 1984
Yao, Chadli (CR23) 2005
Yao, Zheng, Leng, Kang (CR24) 2017; 10
Censor, Elfving, Kopt, Bortfeld (CR5) 2005; 21
Censor, Segal (CR4) 2009; 16
Osilike, Isiogugu (CR17) 2011; 74
CR25
Xu (CR22) 2003; 116
Censor, Gibali, Reich (CR7) 2012; 59
Mann (CR13) 1953; 4
Izuchukwu (CR9) 2018; 9
Xu (CR21) 2000; 14
Takahashi (CR19) 2000
C Izuchukwu (1659_CR9) 2018; 9
LC Ceng (1659_CR2) 2008; 67
1659_CR25
C Byrne (1659_CR1) 2002; 18
G Marino (1659_CR14) 2006; 318
A Moudafi (1659_CR15) 2000; 241
Y Censor (1659_CR4) 2009; 16
Y Censor (1659_CR5) 2005; 21
Y Yao (1659_CR24) 2017; 10
W Takahashi (1659_CR19) 2000
Y Censor (1659_CR6) 2007; 327
MO Osilike (1659_CR17) 2011; 74
1659_CR11
1659_CR10
JL Lions (1659_CR12) 1967; 20
WR Mann (1659_CR13) 1953; 4
Z Opial (1659_CR16) 1967; 73
JC Yao (1659_CR23) 2005
1659_CR18
RU Verma (1659_CR20) 1999; 3
Y Censor (1659_CR7) 2012; 59
H Xu (1659_CR21) 2000; 14
Y Censor (1659_CR3) 1994; 8
R Glowinski (1659_CR8) 1984
HK Xu (1659_CR22) 2003; 116
References_xml – volume: 8
  start-page: 221
  year: 1994
  end-page: 239
  ident: CR3
  article-title: A multiprojection algorithm using Bregman projections in a product space
  publication-title: J Numer Algorithms
  doi: 10.1007/BF02142692
– ident: CR18
– volume: 327
  start-page: 1224
  year: 2007
  end-page: 1256
  ident: CR6
  article-title: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2006.05.010
– volume: 9
  start-page: 27
  year: 2018
  end-page: 40
  ident: CR9
  article-title: Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
  publication-title: J Nonlinear Anal Appl
– ident: CR10
– volume: 18
  start-page: 441
  year: 2002
  end-page: 453
  ident: CR1
  article-title: Iterative oblique projection onto convex subsets and the split feasibility problem
  publication-title: J Inverse Probl
  doi: 10.1088/0266-5611/18/2/310
– ident: CR25
– volume: 10
  start-page: 2649
  year: 2017
  end-page: 2661
  ident: CR24
  article-title: The split variational inequality problem and its algorithm iteration
  publication-title: J Nonlinear Sci Appl
  doi: 10.22436/jnsa.010.05.31
– start-page: 501
  year: 2005
  end-page: 558
  ident: CR23
  publication-title: Pseudomonotone complementarity problems and variational inequalites
– volume: 21
  start-page: 2071
  year: 2005
  end-page: 2084
  ident: CR5
  article-title: The multiple-sets split feasibility problem and its applications
  publication-title: J Inverse Probl
  doi: 10.1088/0266-5611/21/6/017
– volume: 16
  start-page: 587
  year: 2009
  end-page: 600
  ident: CR4
  article-title: The split common fixed point problem for directed operators
  publication-title: J Convex Anal
– volume: 74
  start-page: 1814
  year: 2011
  end-page: 1822
  ident: CR17
  article-title: Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces
  publication-title: J Nonlinear Anal
  doi: 10.1016/j.na.2010.10.054
– volume: 241
  start-page: 46
  year: 2000
  end-page: 55
  ident: CR15
  article-title: Viscosity approximation methods for fixed-points problems
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.1999.6615
– volume: 73
  start-page: 591
  year: 1967
  end-page: 597
  ident: CR16
  article-title: Weak convergence of the sequence of successive approximation of nonexpansive mappings
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11761-0
– volume: 67
  start-page: 375
  year: 2008
  end-page: 390
  ident: CR2
  article-title: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities
  publication-title: J Math Methods Oper Res
  doi: 10.1007/s00186-007-0207-4
– volume: 59
  start-page: 301
  year: 2012
  end-page: 323
  ident: CR7
  article-title: Algorithms for the split variational inequality problem
  publication-title: J Numer Algorithms
  doi: 10.1007/s11075-011-9490-5
– volume: 318
  start-page: 43
  year: 2006
  end-page: 52
  ident: CR14
  article-title: A general iterative method for nonexpansive mappings in Hilbert spaces
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2005.05.028
– volume: 3
  start-page: 65
  issue: 8
  year: 1999
  end-page: 68
  ident: CR20
  article-title: On a new system of nonlinear variational inequalities and associated iterative algorithms
  publication-title: Math Sci Res
– ident: CR11
– year: 2000
  ident: CR19
  publication-title: Nonlinear functional analysis
– volume: 14
  start-page: 463
  year: 2000
  end-page: 478
  ident: CR21
  article-title: Viscosity method for hierarchical fixed point approach to variational inequalities
  publication-title: J Taiwan Math
– volume: 4
  start-page: 506
  year: 1953
  end-page: 510
  ident: CR13
  article-title: Mean value methods in iteration
  publication-title: J Proc Am Math Soc
  doi: 10.1090/S0002-9939-1953-0054846-3
– year: 1984
  ident: CR8
  publication-title: Numerical Methods for Nonlinear Variational Problems
  doi: 10.1007/978-3-662-12613-4
– volume: 20
  start-page: 493
  year: 1967
  end-page: 517
  ident: CR12
  article-title: Variational inequalities
  publication-title: J Comm Pure Appl Math
  doi: 10.1002/cpa.3160200302
– volume: 116
  start-page: 659
  year: 2003
  end-page: 678
  ident: CR22
  article-title: An iterative approach to quadratic optimization
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1023073621589
– volume: 318
  start-page: 43
  year: 2006
  ident: 1659_CR14
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2005.05.028
– volume: 59
  start-page: 301
  year: 2012
  ident: 1659_CR7
  publication-title: J Numer Algorithms
  doi: 10.1007/s11075-011-9490-5
– volume: 74
  start-page: 1814
  year: 2011
  ident: 1659_CR17
  publication-title: J Nonlinear Anal
  doi: 10.1016/j.na.2010.10.054
– volume: 18
  start-page: 441
  year: 2002
  ident: 1659_CR1
  publication-title: J Inverse Probl
  doi: 10.1088/0266-5611/18/2/310
– ident: 1659_CR25
  doi: 10.1186/s13663-015-0454-7
– start-page: 501
  volume-title: Pseudomonotone complementarity problems and variational inequalites
  year: 2005
  ident: 1659_CR23
– volume-title: Numerical Methods for Nonlinear Variational Problems
  year: 1984
  ident: 1659_CR8
  doi: 10.1007/978-3-662-12613-4
– ident: 1659_CR18
  doi: 10.1002/mma.5240
– ident: 1659_CR11
  doi: 10.1186/1687-1812-2012-89
– volume: 3
  start-page: 65
  issue: 8
  year: 1999
  ident: 1659_CR20
  publication-title: Math Sci Res
– volume-title: Nonlinear functional analysis
  year: 2000
  ident: 1659_CR19
– ident: 1659_CR10
  doi: 10.1155/2011/562689
– volume: 8
  start-page: 221
  year: 1994
  ident: 1659_CR3
  publication-title: J Numer Algorithms
  doi: 10.1007/BF02142692
– volume: 16
  start-page: 587
  year: 2009
  ident: 1659_CR4
  publication-title: J Convex Anal
– volume: 21
  start-page: 2071
  year: 2005
  ident: 1659_CR5
  publication-title: J Inverse Probl
  doi: 10.1088/0266-5611/21/6/017
– volume: 116
  start-page: 659
  year: 2003
  ident: 1659_CR22
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1023073621589
– volume: 10
  start-page: 2649
  year: 2017
  ident: 1659_CR24
  publication-title: J Nonlinear Sci Appl
  doi: 10.22436/jnsa.010.05.31
– volume: 241
  start-page: 46
  year: 2000
  ident: 1659_CR15
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.1999.6615
– volume: 73
  start-page: 591
  year: 1967
  ident: 1659_CR16
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11761-0
– volume: 20
  start-page: 493
  year: 1967
  ident: 1659_CR12
  publication-title: J Comm Pure Appl Math
  doi: 10.1002/cpa.3160200302
– volume: 14
  start-page: 463
  year: 2000
  ident: 1659_CR21
  publication-title: J Taiwan Math
– volume: 67
  start-page: 375
  year: 2008
  ident: 1659_CR2
  publication-title: J Math Methods Oper Res
  doi: 10.1007/s00186-007-0207-4
– volume: 327
  start-page: 1224
  year: 2007
  ident: 1659_CR6
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2006.05.010
– volume: 9
  start-page: 27
  year: 2018
  ident: 1659_CR9
  publication-title: J Nonlinear Anal Appl
– volume: 4
  start-page: 506
  year: 1953
  ident: 1659_CR13
  publication-title: J Proc Am Math Soc
  doi: 10.1090/S0002-9939-1953-0054846-3
SSID ssj0037144
Score 2.1794405
Snippet Inspired by the works of Siriyan and Kangtunyakarn ( 2018 ) and Yao et al. ( 2015 ), we first introduce the two-step intermixed iteration for finding a common...
Inspired by the works of Siriyan and Kangtunyakarn (2018) and Yao et al. (2015), we first introduce the two-step intermixed iteration for finding a common...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Convergence
Inequality
Iterative methods
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Theorems
Title Modified intermixed iteration for solving the split general system of variational inequality problems and applications
URI https://link.springer.com/article/10.1007/s40314-021-01659-4
https://www.proquest.com/docview/2580707624
Volume 40
WOSCitedRecordID wos000705406600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: RSV
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDq6vi-iIHbxpom7ZJjiIuXnYRX-yttHnIgnRlWxf9907atKuigt4KmQwlM8nMZDLfIHTClMek1JIwriMSxrEiIjMR8ZmhOjCahrGsmk2w0YiPx-LaFYUVzWv3JiVZndRtsVtokdaJfVJgS3AECZfRCpg7bhs23Nw-NOevhaCzuWSwe5zQ2KOuVOZ7Hp_N0cLH_JIWrazNoPu__9xEG867xOe1OmyhJZ33UNd5mtjt46KH1octWmuxjebDqZoYS2HBI0Dyr_azglsGqWFwazFoqL15wDALF8CtxI81XjWuoaDx1OA5hN3uahEY6bpc8w27ljUFTnOFP-bLd9D94PLu4oq4fgxEwkYtSaaZhHhSikAycFQUVSk3QjIjZeQpnSkmYumnSlCuaQoRbmy4z7hQykBQJiTdRZ18mus9hD0YyYBOZSoKWZSlYeQbP2VUeDwL0riP_EYsiXRg5bZnxlPSwixXy5zAMifVMidhH522c55rqI5fqQ8baSdu2xZJEHELfxQHMHzWSHcx_DO3_b-RH6C1wCpI9SzmEHXK2Ys-QqtyXk6K2XGlzu_70vDT
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLb7NwZsG2qZtkqOIori7iC-8lTYPEWRX7Lrov3fSprsqKuitkMlQMpPMTCbzDcAe1wFXyijKhUlonKaaysImNOSWmcgaFqeqajbBOx1xdycvfFFY2bx2b1KS1Uk9LHaLHdI6dU8KXAmOpPE4TMZosRxi_uXVbXP-Ogg6l0tGuycoSwPmS2W-5_HZHI18zC9p0cranMz_7z8XYM57l-SwVodFGDPdJZj3nibx-7hcgtn2EK21XIZBu6cfrKNw4BEo-Vf3WcEto9QIurUENdTdPBCcRUrk1if3NV41qaGgSc-SAYbd_moRGZm6XPON-JY1Jcm7mnzMl6_Azcnx9dEp9f0YqMKN2qeF4QrjSSUjxdFR0UznwkrFrVJJoE2huUxVmGvJhGE5RripFSEXUmuLQZlUbBUmur2uWQMS4EiBdLrQScyTIo-T0IY5ZzIQRZSn6xA2YsmUByt3PTMesyHMcrXMGS5zVi1zFq_D_nDOUw3V8Sv1ViPtzG_bMosS4eCP0giHDxrpjoZ_5rbxN_JdmD69brey1lnnfBNmIqcs1ROZLZjoP7-YbZhSg_5D-bxTqfY7TZnztw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_8QvTh1o8TPVfNw73dBdumbZLHw7tFURfhTvGttPkQ4egu27rof--kTVdPTkF8K2QylMwkmcnM_AbgK9cBV8ooyoVJaJymmsrCJjTklpnIGhanqmk2wYdDcX0tL55V8TfZ7l1Isq1pcChNZX041vZwVvgWO9R16tILXDmOpPE8LMYukd7567-vurPYwdG5uDLegYKyNGC-bOb_PP69mp7szRch0ubmGfQ-_s9r8MlbneRHqybrMGfKDeh5C5T4_V1twOr5DMW12oTp-UjfWkfhQCVQI-7dZwPDjNIkaO4S1Fz3IkFwFqmQW01uWhxr0kJEk5ElU3TH_ZMjMjJtGecD8a1sKpKXmjyPo3-Gy8GvP0fH1PdpoAo3cE0LwxX6mUpGiqMBo5nOhZWKW6WSQJtCc5mqMNeSCcNy9HxTK0IupNYWnTWp2BYslKPSbAMJcKRAOl3oJOZJkcdJaMOcMxmIIsrTHQg7EWXKg5i7Xhp_sxn8crPMGS5z1ixzFu_At9mccQvh8SZ1v5N85rdzlUWJcLBIaYTD3ztJPw2_zu3L-8gPYPni5yA7Oxme7sJK5HSlyZzpw0I9uTN7sKSm9W012W-0_BGPhPyb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+intermixed+iteration+for+solving+the+split+general+system+of+variational+inequality+problems+and+applications&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Saechou%2C+Kanyanee&rft.au=Kangtunyakarn%2C+Atid&rft.date=2021-12-01&rft.pub=Springer+International+Publishing&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=40&rft.issue=8&rft_id=info:doi/10.1007%2Fs40314-021-01659-4&rft.externalDocID=10_1007_s40314_021_01659_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon