CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories
Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts visited by a user. Context history enables applications to explore users past behavior. Researchers have studied different ways to analyze these...
Saved in:
| Published in: | Pattern analysis and applications : PAA Vol. 23; no. 2; pp. 725 - 734 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.05.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1433-7541, 1433-755X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts visited by a user. Context history enables applications to explore users past behavior. Researchers have studied different ways to analyze these data. This article addresses a specific type of data analysis in contexts histories, which is the discovery and monitoring of sequential patterns. The article proposes a model, called CHSPAM, that allows the discovery of sequential patterns in contexts histories databases and keeps track of these patterns to monitor their evolution over time. There are two main contributions of this work. The first one is the use of a generic representation for stored context information on pattern recognition field, which enables the model to be used for different research domains. The second contribution is the fact that CHSPAM monitors discovered pattern evolution over time. We have build a functional prototype that allowed us to conduct experiments in two different applications. The first experiment used the model to perform pattern analysis and evaluate the prediction based on monitored sequential patterns. Prediction accuracy increased by up to 17% when compared to the use of common sequential patterns. On the second experiment, CHSPAM was used as a component of a learning object recommendation application. The application was able to recommend learning objects related to students interests based on monitored sequential patterns extracted from users session history. Usefulness for recommendations reached 84%. |
|---|---|
| AbstractList | Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts visited by a user. Context history enables applications to explore users past behavior. Researchers have studied different ways to analyze these data. This article addresses a specific type of data analysis in contexts histories, which is the discovery and monitoring of sequential patterns. The article proposes a model, called CHSPAM, that allows the discovery of sequential patterns in contexts histories databases and keeps track of these patterns to monitor their evolution over time. There are two main contributions of this work. The first one is the use of a generic representation for stored context information on pattern recognition field, which enables the model to be used for different research domains. The second contribution is the fact that CHSPAM monitors discovered pattern evolution over time. We have build a functional prototype that allowed us to conduct experiments in two different applications. The first experiment used the model to perform pattern analysis and evaluate the prediction based on monitored sequential patterns. Prediction accuracy increased by up to 17% when compared to the use of common sequential patterns. On the second experiment, CHSPAM was used as a component of a learning object recommendation application. The application was able to recommend learning objects related to students interests based on monitored sequential patterns extracted from users session history. Usefulness for recommendations reached 84%. |
| Author | Dupont, Daniel Alves, Bruno Mota Barbosa, Jorge Luis Victória |
| Author_xml | – sequence: 1 givenname: Daniel surname: Dupont fullname: Dupont, Daniel organization: University of Vale do Rio dos Sinos (UNISINOS) – sequence: 2 givenname: Jorge Luis Victória surname: Barbosa fullname: Barbosa, Jorge Luis Victória organization: University of Vale do Rio dos Sinos (UNISINOS) – sequence: 3 givenname: Bruno Mota surname: Alves fullname: Alves, Bruno Mota email: motaalvesb@gmail.com organization: University of Vale do Rio dos Sinos (UNISINOS) |
| BookMark | eNp9kM1KAzEURoNUsFZfwFXA9Wj-xmTclaJWqCio4C5kMhlNmUlqkop9e1NHFFx0kxvCd24-ziEYOe8MACcYnWGE-HnMJ2MFwlWBkCBVUe2BMWaUFrwsX0a_d4YPwGGMS4QopUSMQT2bPz5M7y6hgv26S7ZofK-sg71vTAdbH2A072vjklUdXKmUTHCwsVH7DxM2ULkmR51NPlj3CjOovUvmM0X4ZuP21cQjsN-qLprjnzkBz9dXT7N5sbi_uZ1NF4WmuEpFrRuGUE1xrQ1XdaNYQ5ASF4oIxjRlpKxpwymqtDZCk5bUrBQlN1iXnJtS0Qk4Hfaugs-VY5JLvw4ufykJrWhZCcZ5TokhpYOPMZhWaptUsrl2ULaTGMmtUTkYldmo_DYqq4ySf-gq2F6FzW6IDlBcbRWZ8NdqB_UFtz-MDA |
| CitedBy_id | crossref_primary_10_3390_educsci11080442 crossref_primary_10_3390_jsan10030040 crossref_primary_10_1016_j_jth_2022_101411 crossref_primary_10_1016_j_inffus_2024_102731 crossref_primary_10_1109_TC_2023_3311921 crossref_primary_10_1007_s11277_024_11605_2 crossref_primary_10_7717_peerj_cs_794 crossref_primary_10_1016_j_techsoc_2021_101801 crossref_primary_10_5753_rbie_2025_4585 crossref_primary_10_3390_computers10100128 crossref_primary_10_3390_electronics11040625 crossref_primary_10_1016_j_ssci_2024_106525 crossref_primary_10_1016_j_bbe_2022_10_001 crossref_primary_10_3390_sym13091697 crossref_primary_10_1016_j_aei_2021_101419 crossref_primary_10_1007_s12652_022_03893_y crossref_primary_10_3390_electronics10111260 crossref_primary_10_1016_j_eswa_2022_119342 crossref_primary_10_3233_AIS_210606 crossref_primary_10_3390_informatics8040073 crossref_primary_10_1016_j_ssci_2024_106684 crossref_primary_10_1016_j_aei_2024_103106 crossref_primary_10_3390_app112211078 crossref_primary_10_1007_s10586_022_03787_w crossref_primary_10_3233_SCS_240006 crossref_primary_10_1007_s12652_021_03126_8 crossref_primary_10_3390_electronics10141692 crossref_primary_10_1016_j_eswa_2023_119767 crossref_primary_10_3390_educsci11110666 crossref_primary_10_1371_journal_pone_0303605 |
| Cites_doi | 10.1016/j.compeleceng.2014.04.006 10.1109/TKDE.2004.77 10.1016/j.eswa.2008.09.002 10.1109/MNET.2008.4579768 10.1007/s007790170019 10.1016/j.eswa.2015.09.016 10.1109/TII.2015.2475218 10.1007/s10586-014-0370-3 10.1038/scientificamerican0991-94 10.1109/TNNLS.2018.2797060 10.1016/j.compind.2016.04.006 10.1109/SURV.2013.042313.00197 10.3390/s130202682 10.1145/159544.159617 10.1145/1409635.1409638 10.1145/1864349.1864393 10.3390/s130505460 10.1145/72551.72554 10.1007/s00779-014-0796-x 10.1109/COMST.2014.2381246 10.1109/98.943998 10.1145/342009.335372 10.1016/j.ins.2014.06.026 10.1007/s40593-015-0047-y 10.1145/170036.170072 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10044-019-00829-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1433-755X |
| EndPage | 734 |
| ExternalDocumentID | 10_1007_s10044_019_00829_9 |
| GrantInformation_xml | – fundername: CNPq/Brazil (National Council for Scientific and Technological Development) grantid: 310443/2013-0 – fundername: Capes/Brazil (Coordination for the Improvement of Higher Education Personnel) - PROSUP Program |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-bcd400b31bce7abda4d20a86a2844c3425b3d7309cce8c2f2b45857e1c577e5a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7541 |
| IngestDate | Thu Sep 25 00:55:53 EDT 2025 Tue Nov 18 20:53:24 EST 2025 Sat Nov 29 02:31:06 EST 2025 Fri Feb 21 02:29:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Ubiquitous computing Context histories Pattern discovery Data mining |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-bcd400b31bce7abda4d20a86a2844c3425b3d7309cce8c2f2b45857e1c577e5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2393598477 |
| PQPubID | 2043691 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2393598477 crossref_citationtrail_10_1007_s10044_019_00829_9 crossref_primary_10_1007_s10044_019_00829_9 springer_journals_10_1007_s10044_019_00829_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Pattern analysis and applications : PAA |
| PublicationTitleAbbrev | Pattern Anal Applic |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ACM sigmod record, vol 29. ACM, pp 1–12 FatimaIFahimMLeeYKLeeSA unified framework for activity recognition-based behavior analysis and action prediction in smart homesSensors20131322682269910.3390/s130202682 WhiteTHadoop: the definitive guide2012SebastopolO’Reilly Media Inc. LeeSCPaikJOkJSongIKimUMEfficient mining of user behaviors by temporal mobile access patternsInt J Comput Sci Secur20077285291 BarbosaJLVMartinsCFrancoLKBarbosaDNFTrailtrade: a model for trail-aware commerce supportComput Ind201680435310.1016/j.compind.2016.04.006 ZhangHJiYLiJYeYA triple wing harmonium model for movie recommendationIEEE Trans Ind Inf201512231239 PereraCZaslavskyAChristenPGeorgakopoulosDContext aware computing for the internet of things: a surveyIEEE Commun Surv Tutor201416141445410.1109/SURV.2013.042313.00197 HongJSuhEHKimJKimSContext-aware system for proactive personalized service based on context historyExpert Syst Appl2009367448745710.1016/j.eswa.2008.09.002 ChikhaouiBWangSXiongTPigotHPattern-based causal relationships discovery from event sequences for modeling behavioral user profile in ubiquitous environmentsInf Sci201428520422210.1016/j.ins.2014.06.026 Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Acm sigmod record, vol 22. ACM, pp 207–216 ChodorowKMongoDB: the definitive guide2013SebastopolO’Reilly Media Inc. DeyAKUnderstanding and using contextPersonal Ubiquitous Comput200154710.1007/s007790170019 OrdóñezFJde ToledoPSanchisAActivity recognition using hybrid generative/discriminative models on home environments using binary sensorsSensors20131355460547710.3390/s130505460 da RosaJHBarbosaJLRibeiroGDOracon: an adaptive model for context predictionExpert Syst Appl201645567010.1016/j.eswa.2015.09.016 HudakPConception, evolution, and application of functional programming languagesACM Comput Surv19892135941110.1145/72551.72554 MengXBradleyJYuvazBSparksEVenkataramanSLiuDFreemanJTsaiDAmdeMOwenSMllib: machine learning in apache sparkJMLR201617341734911281360.68697 WeiserMThe computer for the 21st centurySci Am19912659410410.1038/scientificamerican0991-94 WeiserMSome computer science issues in ubiquitous computingCommun ACM199336758410.1145/159544.159617 YürürÖLiuCHShengZLeungVCMorenoWLeungKKContext-awareness for mobile sensing: a survey and future directionsIEEE Commun Surv Tutor2014181689310.1109/COMST.2014.2381246 Hadley M, Sandoz P (2009) Jax-rs: JavaTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\rm TM}}$$\end{document} api for restful web services. In: Java specification request (JSR), p 311 JungHChungKSequential pattern profiling based bio-detection for smart health serviceClust Comput201518120921910.1007/s10586-014-0370-3 RosaJHBarbosaJLKichMBritoLA multi-temporal context-aware system for competences managementInt J Artif Intell Educ20152545549210.1007/s40593-015-0047-y SatyanarayananMPervasive computing: vision and challengesIEEE Personal Commun20018101710.1109/98.943998 PeiJHanJMortazavi-AslBWangJPintoHChenQDayalUHsuMCMining sequential patterns by pattern-growth: the prefixspan approachIEEE Trans Knowl Data Eng200416111424144010.1109/TKDE.2004.77 YinJTianGFengZLiJHuman activity recognition based on multiple order temporal informationComput Electric Eng20144051538155110.1016/j.compeleceng.2014.04.006 MoorePHuBWanJCaballeSIntelligent context for personalised mobile learningArchitectures for distributed and complex M-learning systems2009New YorkApplying Intelligent Technologies236270 NiuXLiMCuiXLiuJLiuSChowdhuryKRWtrack: HMM-based walk pattern recognition and indoor pedestrian tracking using phone inertial sensorsPersonal Ubiquitous Comput2014181901191510.1007/s00779-014-0796-x WiedmannTBarbosaJLVRigoSJBarbosaDNFRecsim: a model for learning objects recommendation using similarity of sessionsJ Univers Comput Sci201622811751200 Nurmi P, Martin M, Flanagan JA (2005) Enabling proactiveness through context prediction. In: Workshop on context awareness for proactive systems, p 53 ZhangHWangSXuXChowTWSWuQMJTree2vector: learning a vectorial representation for tree-structured dataIEEE Trans Neural Netw Lean Syst20182953045318386784610.1109/TNNLS.2018.2797060 Rachuri KK, Musolesi M, Mascolo C, Rentfrow PJ, Longworth C, Aucinas A (2010) Emotionsense: a mobile phones based adaptive platform for experimental social psychology research, pp 281–290 CardosoIGMotaBVictória BarbosaJLda Rosa RighiRVulcanus 2.0: a recommender system for accessibilityCLEI Electron J201619124 Huynh T, Fritz M, Schiele B (2008) Discovery of activity patterns using topic models. In: Proceedings of the 10th international conference on ubiquitous computing, pp 10–19 WoodADStankovicJAVironeGSelavoLHeZCaoQDoanTWuYFangLStoleruRContext-aware wireless sensor networks for assisted living and residential monitoringIEEE Netw200822263310.1109/MNET.2008.4579768 P Hudak (829_CR12) 1989; 21 J Pei (829_CR21) 2004; 16 H Jung (829_CR14) 2015; 18 829_CR13 H Zhang (829_CR34) 2018; 29 829_CR19 FJ Ordóñez (829_CR20) 2013; 13 829_CR9 C Perera (829_CR22) 2014; 16 829_CR10 P Moore (829_CR17) 2009 IG Cardoso (829_CR3) 2016; 19 K Chodorow (829_CR5) 2013 829_CR1 B Chikhaoui (829_CR4) 2014; 285 J Hong (829_CR11) 2009; 36 JH da Rosa (829_CR6) 2016; 45 T White (829_CR28) 2012 H Zhang (829_CR33) 2015; 12 M Satyanarayanan (829_CR25) 2001; 8 829_CR23 SC Lee (829_CR15) 2007; 7 AK Dey (829_CR7) 2001; 5 X Niu (829_CR18) 2014; 18 AD Wood (829_CR30) 2008; 22 X Meng (829_CR16) 2016; 17 I Fatima (829_CR8) 2013; 13 M Weiser (829_CR26) 1991; 265 M Weiser (829_CR27) 1993; 36 JH Rosa (829_CR24) 2015; 25 Ö Yürür (829_CR32) 2014; 18 J Yin (829_CR31) 2014; 40 JLV Barbosa (829_CR2) 2016; 80 T Wiedmann (829_CR29) 2016; 22 |
| References_xml | – reference: PereraCZaslavskyAChristenPGeorgakopoulosDContext aware computing for the internet of things: a surveyIEEE Commun Surv Tutor201416141445410.1109/SURV.2013.042313.00197 – reference: DeyAKUnderstanding and using contextPersonal Ubiquitous Comput200154710.1007/s007790170019 – reference: ChodorowKMongoDB: the definitive guide2013SebastopolO’Reilly Media Inc. – reference: HudakPConception, evolution, and application of functional programming languagesACM Comput Surv19892135941110.1145/72551.72554 – reference: WeiserMSome computer science issues in ubiquitous computingCommun ACM199336758410.1145/159544.159617 – reference: PeiJHanJMortazavi-AslBWangJPintoHChenQDayalUHsuMCMining sequential patterns by pattern-growth: the prefixspan approachIEEE Trans Knowl Data Eng200416111424144010.1109/TKDE.2004.77 – reference: BarbosaJLVMartinsCFrancoLKBarbosaDNFTrailtrade: a model for trail-aware commerce supportComput Ind201680435310.1016/j.compind.2016.04.006 – reference: ChikhaouiBWangSXiongTPigotHPattern-based causal relationships discovery from event sequences for modeling behavioral user profile in ubiquitous environmentsInf Sci201428520422210.1016/j.ins.2014.06.026 – reference: YürürÖLiuCHShengZLeungVCMorenoWLeungKKContext-awareness for mobile sensing: a survey and future directionsIEEE Commun Surv Tutor2014181689310.1109/COMST.2014.2381246 – reference: MoorePHuBWanJCaballeSIntelligent context for personalised mobile learningArchitectures for distributed and complex M-learning systems2009New YorkApplying Intelligent Technologies236270 – reference: HongJSuhEHKimJKimSContext-aware system for proactive personalized service based on context historyExpert Syst Appl2009367448745710.1016/j.eswa.2008.09.002 – reference: RosaJHBarbosaJLKichMBritoLA multi-temporal context-aware system for competences managementInt J Artif Intell Educ20152545549210.1007/s40593-015-0047-y – reference: ZhangHWangSXuXChowTWSWuQMJTree2vector: learning a vectorial representation for tree-structured dataIEEE Trans Neural Netw Lean Syst20182953045318386784610.1109/TNNLS.2018.2797060 – reference: Hadley M, Sandoz P (2009) Jax-rs: JavaTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\rm TM}}$$\end{document} api for restful web services. In: Java specification request (JSR), p 311 – reference: da RosaJHBarbosaJLRibeiroGDOracon: an adaptive model for context predictionExpert Syst Appl201645567010.1016/j.eswa.2015.09.016 – reference: YinJTianGFengZLiJHuman activity recognition based on multiple order temporal informationComput Electric Eng20144051538155110.1016/j.compeleceng.2014.04.006 – reference: WhiteTHadoop: the definitive guide2012SebastopolO’Reilly Media Inc. – reference: OrdóñezFJde ToledoPSanchisAActivity recognition using hybrid generative/discriminative models on home environments using binary sensorsSensors20131355460547710.3390/s130505460 – reference: ZhangHJiYLiJYeYA triple wing harmonium model for movie recommendationIEEE Trans Ind Inf201512231239 – reference: LeeSCPaikJOkJSongIKimUMEfficient mining of user behaviors by temporal mobile access patternsInt J Comput Sci Secur20077285291 – reference: Huynh T, Fritz M, Schiele B (2008) Discovery of activity patterns using topic models. In: Proceedings of the 10th international conference on ubiquitous computing, pp 10–19 – reference: FatimaIFahimMLeeYKLeeSA unified framework for activity recognition-based behavior analysis and action prediction in smart homesSensors20131322682269910.3390/s130202682 – reference: WoodADStankovicJAVironeGSelavoLHeZCaoQDoanTWuYFangLStoleruRContext-aware wireless sensor networks for assisted living and residential monitoringIEEE Netw200822263310.1109/MNET.2008.4579768 – reference: Nurmi P, Martin M, Flanagan JA (2005) Enabling proactiveness through context prediction. In: Workshop on context awareness for proactive systems, p 53 – reference: WeiserMThe computer for the 21st centurySci Am19912659410410.1038/scientificamerican0991-94 – reference: WiedmannTBarbosaJLVRigoSJBarbosaDNFRecsim: a model for learning objects recommendation using similarity of sessionsJ Univers Comput Sci201622811751200 – reference: JungHChungKSequential pattern profiling based bio-detection for smart health serviceClust Comput201518120921910.1007/s10586-014-0370-3 – reference: MengXBradleyJYuvazBSparksEVenkataramanSLiuDFreemanJTsaiDAmdeMOwenSMllib: machine learning in apache sparkJMLR201617341734911281360.68697 – reference: Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Acm sigmod record, vol 22. ACM, pp 207–216 – reference: CardosoIGMotaBVictória BarbosaJLda Rosa RighiRVulcanus 2.0: a recommender system for accessibilityCLEI Electron J201619124 – reference: Rachuri KK, Musolesi M, Mascolo C, Rentfrow PJ, Longworth C, Aucinas A (2010) Emotionsense: a mobile phones based adaptive platform for experimental social psychology research, pp 281–290 – reference: Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ACM sigmod record, vol 29. ACM, pp 1–12 – reference: NiuXLiMCuiXLiuJLiuSChowdhuryKRWtrack: HMM-based walk pattern recognition and indoor pedestrian tracking using phone inertial sensorsPersonal Ubiquitous Comput2014181901191510.1007/s00779-014-0796-x – reference: SatyanarayananMPervasive computing: vision and challengesIEEE Personal Commun20018101710.1109/98.943998 – volume: 40 start-page: 1538 issue: 5 year: 2014 ident: 829_CR31 publication-title: Comput Electric Eng doi: 10.1016/j.compeleceng.2014.04.006 – volume: 22 start-page: 1175 issue: 8 year: 2016 ident: 829_CR29 publication-title: J Univers Comput Sci – ident: 829_CR19 – volume: 16 start-page: 1424 issue: 11 year: 2004 ident: 829_CR21 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.77 – volume: 36 start-page: 7448 year: 2009 ident: 829_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.09.002 – volume: 22 start-page: 26 year: 2008 ident: 829_CR30 publication-title: IEEE Netw doi: 10.1109/MNET.2008.4579768 – volume: 5 start-page: 4 year: 2001 ident: 829_CR7 publication-title: Personal Ubiquitous Comput doi: 10.1007/s007790170019 – volume: 45 start-page: 56 year: 2016 ident: 829_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.09.016 – volume: 12 start-page: 231 year: 2015 ident: 829_CR33 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2015.2475218 – volume: 18 start-page: 209 issue: 1 year: 2015 ident: 829_CR14 publication-title: Clust Comput doi: 10.1007/s10586-014-0370-3 – ident: 829_CR9 – volume: 265 start-page: 94 year: 1991 ident: 829_CR26 publication-title: Sci Am doi: 10.1038/scientificamerican0991-94 – volume: 29 start-page: 5304 year: 2018 ident: 829_CR34 publication-title: IEEE Trans Neural Netw Lean Syst doi: 10.1109/TNNLS.2018.2797060 – volume: 80 start-page: 43 year: 2016 ident: 829_CR2 publication-title: Comput Ind doi: 10.1016/j.compind.2016.04.006 – volume: 16 start-page: 414 issue: 1 year: 2014 ident: 829_CR22 publication-title: IEEE Commun Surv Tutor doi: 10.1109/SURV.2013.042313.00197 – volume: 17 start-page: 1 issue: 34 year: 2016 ident: 829_CR16 publication-title: JMLR – volume-title: MongoDB: the definitive guide year: 2013 ident: 829_CR5 – volume: 13 start-page: 2682 issue: 2 year: 2013 ident: 829_CR8 publication-title: Sensors doi: 10.3390/s130202682 – volume-title: Hadoop: the definitive guide year: 2012 ident: 829_CR28 – volume: 36 start-page: 75 year: 1993 ident: 829_CR27 publication-title: Commun ACM doi: 10.1145/159544.159617 – volume: 19 start-page: 1 year: 2016 ident: 829_CR3 publication-title: CLEI Electron J – ident: 829_CR13 doi: 10.1145/1409635.1409638 – ident: 829_CR23 doi: 10.1145/1864349.1864393 – volume: 13 start-page: 5460 issue: 5 year: 2013 ident: 829_CR20 publication-title: Sensors doi: 10.3390/s130505460 – volume: 21 start-page: 359 year: 1989 ident: 829_CR12 publication-title: ACM Comput Surv doi: 10.1145/72551.72554 – volume: 18 start-page: 1901 year: 2014 ident: 829_CR18 publication-title: Personal Ubiquitous Comput doi: 10.1007/s00779-014-0796-x – volume: 18 start-page: 68 issue: 1 year: 2014 ident: 829_CR32 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2014.2381246 – volume: 8 start-page: 10 year: 2001 ident: 829_CR25 publication-title: IEEE Personal Commun doi: 10.1109/98.943998 – start-page: 236 volume-title: Architectures for distributed and complex M-learning systems year: 2009 ident: 829_CR17 – ident: 829_CR10 doi: 10.1145/342009.335372 – volume: 285 start-page: 204 year: 2014 ident: 829_CR4 publication-title: Inf Sci doi: 10.1016/j.ins.2014.06.026 – volume: 25 start-page: 455 year: 2015 ident: 829_CR24 publication-title: Int J Artif Intell Educ doi: 10.1007/s40593-015-0047-y – ident: 829_CR1 doi: 10.1145/170036.170072 – volume: 7 start-page: 285 year: 2007 ident: 829_CR15 publication-title: Int J Comput Sci Secur |
| SSID | ssj0033328 |
| Score | 2.3742883 |
| Snippet | Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 725 |
| SubjectTerms | Computer Science Context Data analysis Domains Evolution Learning Monitoring Object recognition Pattern analysis Pattern Recognition Theoretical Advances |
| Title | CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories |
| URI | https://link.springer.com/article/10.1007/s10044-019-00829-9 https://www.proquest.com/docview/2393598477 |
| Volume | 23 |
| WOSCitedRecordID | wos000528015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1433-755X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: RSV dateStart: 19980301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aPXixrlitkoM3DcxMMku8lWLxoKVYLb0N2QYKdVo6VfDf-5KZsSoq6DUbIcnbyPe-h9A5V9zShksiIfwgLGCgB2kIciWjLNOCGt_xbI9u434_GY_5oEoKK2q0e_0l6TT1h2Q3j1nEBCcuIZTwdbQB5i6xBRvuh6Na_1JKXUVVcAQoiUPmV6ky36_x2RytfMwv36LO2vSa_9vnDtquvEvcKZ_DLloz-R5qVp4mruS4gKa6mEPdto9k92Y46NxdYYEdyJDo2ZOY5NiVysHg2uISdQ0aYYrnjpUzxzan12JAX7HINQy1-sFuFsNEC4IHzV_gktIYIvID9Ni7fujekKoAA1EgmUsilQYRl9SXysRCasF04IkkEmDTmKIg7pJqUBFcKZOoIAskg-gjNr4K49iEgh6iRj7LzRHCGeVSSx3JJOGMxUIYL9TgXqjAk36keAv59T2kqmInt0UypumKV9meawrnmrpzTWHOxfucecnN8evodn29aSWnReoI4DhY6LiFLuvrXHX_vNrx34afoK3ABuoOKdlGjeXi2ZyiTfWynBSLM_d-3wCuxukz |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UTfQiPiOK2oM3bcJuu-zWGyESjECIIOG26YuEBBfCoon_3mnZFTVqote-0rSdb2bSmW8QuuSKW9pwSSS4H4T5DHCQBiBXsjoaaUGN53i2B62w04mGQ97NksLSPNo9_5J0SP0h2a3CbMQEJy4hlPB1tMFAY1nG_IfeIMdfSqmrqAqGACVhwLwsVeb7NT6ro5WN-eVb1GmbRvF_-9xFO5l1iWvL57CH1kyyj4qZpYkzOU6hKS_mkLcdIFlv9rq19g0W2AUZEj19EuMEu1I5GExbvIy6BkSY4Jlj5Uywzem1MaCvWCQahlp8sJvFMNEGwQPyp3hJaQwe-SF6bNz2602SFWAgCiRzQaTSIOKSelKZUEgtmPYrIqoK0GlMURB3STVABFfKRMof-ZKB9xEaTwVhaAJBj1AhmSbmGOER5VJLXZVRxBkLhTCVQIN5ofyK9KqKl5CX30OsMnZyWyRjEq94le25xnCusTvXGOZcvc-ZLbk5fh1dzq83zuQ0jR0BHAcNHZbQdX6dq-6fVzv52_ALtNXst1tx665zf4q2feu0u6jJMios5s_mDG2ql8U4nZ-7t_wGpUzsFw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aRby4i7s5eNPQziSzxFuplopaCtXS25BtoKBjsaPov_clM2NVVBCv2QhJ3ka-9z2EjrjiljZcEgnhB2E-Az1IA5ArGaapFtR4jmd7cBV1u_FwyHsfsvgd2r36kixyGixLU5bXxzqtf0h8azCLnuDEJYcSPovmmAXS23i9P6h0MaXUVVcFp4CSKGBemTbz_RqfTdPU3_zyReosT3v5_3teQUul14mbxTNZRTMmW0PLpQeKS_meQFNV5KFqW0ey1en3mtenWGAHPiT64V6MMuxK6GBweXGBxgZNcYfHjq0zwzbX12JDX7HINAy1esNuHMNEt-uXfIILqmOI1DfQbfv8ptUhZWEGokBicyKVBtGX1JPKREJqwbTfEHEowNYxRUENSKpBdXClTKz81JcMopLIeCqIIhMIuolq2UNmthBOKZda6lDGMWcsEsI0Ag1uh_Ib0gsV30ZedSeJKlnLbfGMu2TKt2zPNYFzTdy5JjDn-H3OuODs-HX0XnXVSSm_k8QRw3Gw3NE2Oqmudtr982o7fxt-iBZ6Z-3k6qJ7uYsWfRvLOzDlHqrlj09mH82r53w0eTxwz_oNThz0-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CHSPAM%3A+a+multi-domain+model+for+sequential+pattern+discovery+and+monitoring+in+contexts+histories&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Dupont%2C+Daniel&rft.au=Barbosa%2C+Jorge+Luis+Vict%C3%B3ria&rft.au=Alves%2C+Bruno+Mota&rft.date=2020-05-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=2&rft.spage=725&rft.epage=734&rft_id=info:doi/10.1007%2Fs10044-019-00829-9&rft.externalDocID=10_1007_s10044_019_00829_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |