CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories

Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts visited by a user. Context history enables applications to explore users past behavior. Researchers have studied different ways to analyze these...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern analysis and applications : PAA Ročník 23; číslo 2; s. 725 - 734
Hlavní autori: Dupont, Daniel, Barbosa, Jorge Luis Victória, Alves, Bruno Mota
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.05.2020
Springer Nature B.V
Predmet:
ISSN:1433-7541, 1433-755X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts visited by a user. Context history enables applications to explore users past behavior. Researchers have studied different ways to analyze these data. This article addresses a specific type of data analysis in contexts histories, which is the discovery and monitoring of sequential patterns. The article proposes a model, called CHSPAM, that allows the discovery of sequential patterns in contexts histories databases and keeps track of these patterns to monitor their evolution over time. There are two main contributions of this work. The first one is the use of a generic representation for stored context information on pattern recognition field, which enables the model to be used for different research domains. The second contribution is the fact that CHSPAM monitors discovered pattern evolution over time. We have build a functional prototype that allowed us to conduct experiments in two different applications. The first experiment used the model to perform pattern analysis and evaluate the prediction based on monitored sequential patterns. Prediction accuracy increased by up to 17% when compared to the use of common sequential patterns. On the second experiment, CHSPAM was used as a component of a learning object recommendation application. The application was able to recommend learning objects related to students interests based on monitored sequential patterns extracted from users session history. Usefulness for recommendations reached 84%.
AbstractList Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts visited by a user. Context history enables applications to explore users past behavior. Researchers have studied different ways to analyze these data. This article addresses a specific type of data analysis in contexts histories, which is the discovery and monitoring of sequential patterns. The article proposes a model, called CHSPAM, that allows the discovery of sequential patterns in contexts histories databases and keeps track of these patterns to monitor their evolution over time. There are two main contributions of this work. The first one is the use of a generic representation for stored context information on pattern recognition field, which enables the model to be used for different research domains. The second contribution is the fact that CHSPAM monitors discovered pattern evolution over time. We have build a functional prototype that allowed us to conduct experiments in two different applications. The first experiment used the model to perform pattern analysis and evaluate the prediction based on monitored sequential patterns. Prediction accuracy increased by up to 17% when compared to the use of common sequential patterns. On the second experiment, CHSPAM was used as a component of a learning object recommendation application. The application was able to recommend learning objects related to students interests based on monitored sequential patterns extracted from users session history. Usefulness for recommendations reached 84%.
Author Dupont, Daniel
Alves, Bruno Mota
Barbosa, Jorge Luis Victória
Author_xml – sequence: 1
  givenname: Daniel
  surname: Dupont
  fullname: Dupont, Daniel
  organization: University of Vale do Rio dos Sinos (UNISINOS)
– sequence: 2
  givenname: Jorge Luis Victória
  surname: Barbosa
  fullname: Barbosa, Jorge Luis Victória
  organization: University of Vale do Rio dos Sinos (UNISINOS)
– sequence: 3
  givenname: Bruno Mota
  surname: Alves
  fullname: Alves, Bruno Mota
  email: motaalvesb@gmail.com
  organization: University of Vale do Rio dos Sinos (UNISINOS)
BookMark eNp9kM1KAzEURoNUsFZfwFXA9Wj-xmTclaJWqCio4C5kMhlNmUlqkop9e1NHFFx0kxvCd24-ziEYOe8MACcYnWGE-HnMJ2MFwlWBkCBVUe2BMWaUFrwsX0a_d4YPwGGMS4QopUSMQT2bPz5M7y6hgv26S7ZofK-sg71vTAdbH2A072vjklUdXKmUTHCwsVH7DxM2ULkmR51NPlj3CjOovUvmM0X4ZuP21cQjsN-qLprjnzkBz9dXT7N5sbi_uZ1NF4WmuEpFrRuGUE1xrQ1XdaNYQ5ASF4oIxjRlpKxpwymqtDZCk5bUrBQlN1iXnJtS0Qk4Hfaugs-VY5JLvw4ufykJrWhZCcZ5TokhpYOPMZhWaptUsrl2ULaTGMmtUTkYldmo_DYqq4ySf-gq2F6FzW6IDlBcbRWZ8NdqB_UFtz-MDA
CitedBy_id crossref_primary_10_3390_educsci11080442
crossref_primary_10_3390_jsan10030040
crossref_primary_10_1016_j_jth_2022_101411
crossref_primary_10_1016_j_inffus_2024_102731
crossref_primary_10_1109_TC_2023_3311921
crossref_primary_10_1007_s11277_024_11605_2
crossref_primary_10_7717_peerj_cs_794
crossref_primary_10_1016_j_techsoc_2021_101801
crossref_primary_10_5753_rbie_2025_4585
crossref_primary_10_3390_computers10100128
crossref_primary_10_3390_electronics11040625
crossref_primary_10_1016_j_ssci_2024_106525
crossref_primary_10_1016_j_bbe_2022_10_001
crossref_primary_10_3390_sym13091697
crossref_primary_10_1016_j_aei_2021_101419
crossref_primary_10_1007_s12652_022_03893_y
crossref_primary_10_3390_electronics10111260
crossref_primary_10_1016_j_eswa_2022_119342
crossref_primary_10_3233_AIS_210606
crossref_primary_10_3390_informatics8040073
crossref_primary_10_1016_j_ssci_2024_106684
crossref_primary_10_1016_j_aei_2024_103106
crossref_primary_10_3390_app112211078
crossref_primary_10_1007_s10586_022_03787_w
crossref_primary_10_3233_SCS_240006
crossref_primary_10_1007_s12652_021_03126_8
crossref_primary_10_3390_electronics10141692
crossref_primary_10_1016_j_eswa_2023_119767
crossref_primary_10_3390_educsci11110666
crossref_primary_10_1371_journal_pone_0303605
Cites_doi 10.1016/j.compeleceng.2014.04.006
10.1109/TKDE.2004.77
10.1016/j.eswa.2008.09.002
10.1109/MNET.2008.4579768
10.1007/s007790170019
10.1016/j.eswa.2015.09.016
10.1109/TII.2015.2475218
10.1007/s10586-014-0370-3
10.1038/scientificamerican0991-94
10.1109/TNNLS.2018.2797060
10.1016/j.compind.2016.04.006
10.1109/SURV.2013.042313.00197
10.3390/s130202682
10.1145/159544.159617
10.1145/1409635.1409638
10.1145/1864349.1864393
10.3390/s130505460
10.1145/72551.72554
10.1007/s00779-014-0796-x
10.1109/COMST.2014.2381246
10.1109/98.943998
10.1145/342009.335372
10.1016/j.ins.2014.06.026
10.1007/s40593-015-0047-y
10.1145/170036.170072
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10044-019-00829-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 734
ExternalDocumentID 10_1007_s10044_019_00829_9
GrantInformation_xml – fundername: CNPq/Brazil (National Council for Scientific and Technological Development)
  grantid: 310443/2013-0
– fundername: Capes/Brazil (Coordination for the Improvement of Higher Education Personnel) - PROSUP Program
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-bcd400b31bce7abda4d20a86a2844c3425b3d7309cce8c2f2b45857e1c577e5a3
IEDL.DBID RSV
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7541
IngestDate Thu Sep 25 00:55:53 EDT 2025
Tue Nov 18 20:53:24 EST 2025
Sat Nov 29 02:31:06 EST 2025
Fri Feb 21 02:29:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ubiquitous computing
Context histories
Pattern discovery
Data mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bcd400b31bce7abda4d20a86a2844c3425b3d7309cce8c2f2b45857e1c577e5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2393598477
PQPubID 2043691
PageCount 10
ParticipantIDs proquest_journals_2393598477
crossref_citationtrail_10_1007_s10044_019_00829_9
crossref_primary_10_1007_s10044_019_00829_9
springer_journals_10_1007_s10044_019_00829_9
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ACM sigmod record, vol 29. ACM, pp 1–12
FatimaIFahimMLeeYKLeeSA unified framework for activity recognition-based behavior analysis and action prediction in smart homesSensors20131322682269910.3390/s130202682
WhiteTHadoop: the definitive guide2012SebastopolO’Reilly Media Inc.
LeeSCPaikJOkJSongIKimUMEfficient mining of user behaviors by temporal mobile access patternsInt J Comput Sci Secur20077285291
BarbosaJLVMartinsCFrancoLKBarbosaDNFTrailtrade: a model for trail-aware commerce supportComput Ind201680435310.1016/j.compind.2016.04.006
ZhangHJiYLiJYeYA triple wing harmonium model for movie recommendationIEEE Trans Ind Inf201512231239
PereraCZaslavskyAChristenPGeorgakopoulosDContext aware computing for the internet of things: a surveyIEEE Commun Surv Tutor201416141445410.1109/SURV.2013.042313.00197
HongJSuhEHKimJKimSContext-aware system for proactive personalized service based on context historyExpert Syst Appl2009367448745710.1016/j.eswa.2008.09.002
ChikhaouiBWangSXiongTPigotHPattern-based causal relationships discovery from event sequences for modeling behavioral user profile in ubiquitous environmentsInf Sci201428520422210.1016/j.ins.2014.06.026
Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Acm sigmod record, vol 22. ACM, pp 207–216
ChodorowKMongoDB: the definitive guide2013SebastopolO’Reilly Media Inc.
DeyAKUnderstanding and using contextPersonal Ubiquitous Comput200154710.1007/s007790170019
OrdóñezFJde ToledoPSanchisAActivity recognition using hybrid generative/discriminative models on home environments using binary sensorsSensors20131355460547710.3390/s130505460
da RosaJHBarbosaJLRibeiroGDOracon: an adaptive model for context predictionExpert Syst Appl201645567010.1016/j.eswa.2015.09.016
HudakPConception, evolution, and application of functional programming languagesACM Comput Surv19892135941110.1145/72551.72554
MengXBradleyJYuvazBSparksEVenkataramanSLiuDFreemanJTsaiDAmdeMOwenSMllib: machine learning in apache sparkJMLR201617341734911281360.68697
WeiserMThe computer for the 21st centurySci Am19912659410410.1038/scientificamerican0991-94
WeiserMSome computer science issues in ubiquitous computingCommun ACM199336758410.1145/159544.159617
YürürÖLiuCHShengZLeungVCMorenoWLeungKKContext-awareness for mobile sensing: a survey and future directionsIEEE Commun Surv Tutor2014181689310.1109/COMST.2014.2381246
Hadley M, Sandoz P (2009) Jax-rs: JavaTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\rm TM}}$$\end{document} api for restful web services. In: Java specification request (JSR), p 311
JungHChungKSequential pattern profiling based bio-detection for smart health serviceClust Comput201518120921910.1007/s10586-014-0370-3
RosaJHBarbosaJLKichMBritoLA multi-temporal context-aware system for competences managementInt J Artif Intell Educ20152545549210.1007/s40593-015-0047-y
SatyanarayananMPervasive computing: vision and challengesIEEE Personal Commun20018101710.1109/98.943998
PeiJHanJMortazavi-AslBWangJPintoHChenQDayalUHsuMCMining sequential patterns by pattern-growth: the prefixspan approachIEEE Trans Knowl Data Eng200416111424144010.1109/TKDE.2004.77
YinJTianGFengZLiJHuman activity recognition based on multiple order temporal informationComput Electric Eng20144051538155110.1016/j.compeleceng.2014.04.006
MoorePHuBWanJCaballeSIntelligent context for personalised mobile learningArchitectures for distributed and complex M-learning systems2009New YorkApplying Intelligent Technologies236270
NiuXLiMCuiXLiuJLiuSChowdhuryKRWtrack: HMM-based walk pattern recognition and indoor pedestrian tracking using phone inertial sensorsPersonal Ubiquitous Comput2014181901191510.1007/s00779-014-0796-x
WiedmannTBarbosaJLVRigoSJBarbosaDNFRecsim: a model for learning objects recommendation using similarity of sessionsJ Univers Comput Sci201622811751200
Nurmi P, Martin M, Flanagan JA (2005) Enabling proactiveness through context prediction. In: Workshop on context awareness for proactive systems, p 53
ZhangHWangSXuXChowTWSWuQMJTree2vector: learning a vectorial representation for tree-structured dataIEEE Trans Neural Netw Lean Syst20182953045318386784610.1109/TNNLS.2018.2797060
Rachuri KK, Musolesi M, Mascolo C, Rentfrow PJ, Longworth C, Aucinas A (2010) Emotionsense: a mobile phones based adaptive platform for experimental social psychology research, pp 281–290
CardosoIGMotaBVictória BarbosaJLda Rosa RighiRVulcanus 2.0: a recommender system for accessibilityCLEI Electron J201619124
Huynh T, Fritz M, Schiele B (2008) Discovery of activity patterns using topic models. In: Proceedings of the 10th international conference on ubiquitous computing, pp 10–19
WoodADStankovicJAVironeGSelavoLHeZCaoQDoanTWuYFangLStoleruRContext-aware wireless sensor networks for assisted living and residential monitoringIEEE Netw200822263310.1109/MNET.2008.4579768
P Hudak (829_CR12) 1989; 21
J Pei (829_CR21) 2004; 16
H Jung (829_CR14) 2015; 18
829_CR13
H Zhang (829_CR34) 2018; 29
829_CR19
FJ Ordóñez (829_CR20) 2013; 13
829_CR9
C Perera (829_CR22) 2014; 16
829_CR10
P Moore (829_CR17) 2009
IG Cardoso (829_CR3) 2016; 19
K Chodorow (829_CR5) 2013
829_CR1
B Chikhaoui (829_CR4) 2014; 285
J Hong (829_CR11) 2009; 36
JH da Rosa (829_CR6) 2016; 45
T White (829_CR28) 2012
H Zhang (829_CR33) 2015; 12
M Satyanarayanan (829_CR25) 2001; 8
829_CR23
SC Lee (829_CR15) 2007; 7
AK Dey (829_CR7) 2001; 5
X Niu (829_CR18) 2014; 18
AD Wood (829_CR30) 2008; 22
X Meng (829_CR16) 2016; 17
I Fatima (829_CR8) 2013; 13
M Weiser (829_CR26) 1991; 265
M Weiser (829_CR27) 1993; 36
JH Rosa (829_CR24) 2015; 25
Ö Yürür (829_CR32) 2014; 18
J Yin (829_CR31) 2014; 40
JLV Barbosa (829_CR2) 2016; 80
T Wiedmann (829_CR29) 2016; 22
References_xml – reference: PereraCZaslavskyAChristenPGeorgakopoulosDContext aware computing for the internet of things: a surveyIEEE Commun Surv Tutor201416141445410.1109/SURV.2013.042313.00197
– reference: DeyAKUnderstanding and using contextPersonal Ubiquitous Comput200154710.1007/s007790170019
– reference: ChodorowKMongoDB: the definitive guide2013SebastopolO’Reilly Media Inc.
– reference: HudakPConception, evolution, and application of functional programming languagesACM Comput Surv19892135941110.1145/72551.72554
– reference: WeiserMSome computer science issues in ubiquitous computingCommun ACM199336758410.1145/159544.159617
– reference: PeiJHanJMortazavi-AslBWangJPintoHChenQDayalUHsuMCMining sequential patterns by pattern-growth: the prefixspan approachIEEE Trans Knowl Data Eng200416111424144010.1109/TKDE.2004.77
– reference: BarbosaJLVMartinsCFrancoLKBarbosaDNFTrailtrade: a model for trail-aware commerce supportComput Ind201680435310.1016/j.compind.2016.04.006
– reference: ChikhaouiBWangSXiongTPigotHPattern-based causal relationships discovery from event sequences for modeling behavioral user profile in ubiquitous environmentsInf Sci201428520422210.1016/j.ins.2014.06.026
– reference: YürürÖLiuCHShengZLeungVCMorenoWLeungKKContext-awareness for mobile sensing: a survey and future directionsIEEE Commun Surv Tutor2014181689310.1109/COMST.2014.2381246
– reference: MoorePHuBWanJCaballeSIntelligent context for personalised mobile learningArchitectures for distributed and complex M-learning systems2009New YorkApplying Intelligent Technologies236270
– reference: HongJSuhEHKimJKimSContext-aware system for proactive personalized service based on context historyExpert Syst Appl2009367448745710.1016/j.eswa.2008.09.002
– reference: RosaJHBarbosaJLKichMBritoLA multi-temporal context-aware system for competences managementInt J Artif Intell Educ20152545549210.1007/s40593-015-0047-y
– reference: ZhangHWangSXuXChowTWSWuQMJTree2vector: learning a vectorial representation for tree-structured dataIEEE Trans Neural Netw Lean Syst20182953045318386784610.1109/TNNLS.2018.2797060
– reference: Hadley M, Sandoz P (2009) Jax-rs: JavaTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\rm TM}}$$\end{document} api for restful web services. In: Java specification request (JSR), p 311
– reference: da RosaJHBarbosaJLRibeiroGDOracon: an adaptive model for context predictionExpert Syst Appl201645567010.1016/j.eswa.2015.09.016
– reference: YinJTianGFengZLiJHuman activity recognition based on multiple order temporal informationComput Electric Eng20144051538155110.1016/j.compeleceng.2014.04.006
– reference: WhiteTHadoop: the definitive guide2012SebastopolO’Reilly Media Inc.
– reference: OrdóñezFJde ToledoPSanchisAActivity recognition using hybrid generative/discriminative models on home environments using binary sensorsSensors20131355460547710.3390/s130505460
– reference: ZhangHJiYLiJYeYA triple wing harmonium model for movie recommendationIEEE Trans Ind Inf201512231239
– reference: LeeSCPaikJOkJSongIKimUMEfficient mining of user behaviors by temporal mobile access patternsInt J Comput Sci Secur20077285291
– reference: Huynh T, Fritz M, Schiele B (2008) Discovery of activity patterns using topic models. In: Proceedings of the 10th international conference on ubiquitous computing, pp 10–19
– reference: FatimaIFahimMLeeYKLeeSA unified framework for activity recognition-based behavior analysis and action prediction in smart homesSensors20131322682269910.3390/s130202682
– reference: WoodADStankovicJAVironeGSelavoLHeZCaoQDoanTWuYFangLStoleruRContext-aware wireless sensor networks for assisted living and residential monitoringIEEE Netw200822263310.1109/MNET.2008.4579768
– reference: Nurmi P, Martin M, Flanagan JA (2005) Enabling proactiveness through context prediction. In: Workshop on context awareness for proactive systems, p 53
– reference: WeiserMThe computer for the 21st centurySci Am19912659410410.1038/scientificamerican0991-94
– reference: WiedmannTBarbosaJLVRigoSJBarbosaDNFRecsim: a model for learning objects recommendation using similarity of sessionsJ Univers Comput Sci201622811751200
– reference: JungHChungKSequential pattern profiling based bio-detection for smart health serviceClust Comput201518120921910.1007/s10586-014-0370-3
– reference: MengXBradleyJYuvazBSparksEVenkataramanSLiuDFreemanJTsaiDAmdeMOwenSMllib: machine learning in apache sparkJMLR201617341734911281360.68697
– reference: Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Acm sigmod record, vol 22. ACM, pp 207–216
– reference: CardosoIGMotaBVictória BarbosaJLda Rosa RighiRVulcanus 2.0: a recommender system for accessibilityCLEI Electron J201619124
– reference: Rachuri KK, Musolesi M, Mascolo C, Rentfrow PJ, Longworth C, Aucinas A (2010) Emotionsense: a mobile phones based adaptive platform for experimental social psychology research, pp 281–290
– reference: Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ACM sigmod record, vol 29. ACM, pp 1–12
– reference: NiuXLiMCuiXLiuJLiuSChowdhuryKRWtrack: HMM-based walk pattern recognition and indoor pedestrian tracking using phone inertial sensorsPersonal Ubiquitous Comput2014181901191510.1007/s00779-014-0796-x
– reference: SatyanarayananMPervasive computing: vision and challengesIEEE Personal Commun20018101710.1109/98.943998
– volume: 40
  start-page: 1538
  issue: 5
  year: 2014
  ident: 829_CR31
  publication-title: Comput Electric Eng
  doi: 10.1016/j.compeleceng.2014.04.006
– volume: 22
  start-page: 1175
  issue: 8
  year: 2016
  ident: 829_CR29
  publication-title: J Univers Comput Sci
– ident: 829_CR19
– volume: 16
  start-page: 1424
  issue: 11
  year: 2004
  ident: 829_CR21
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.77
– volume: 36
  start-page: 7448
  year: 2009
  ident: 829_CR11
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.002
– volume: 22
  start-page: 26
  year: 2008
  ident: 829_CR30
  publication-title: IEEE Netw
  doi: 10.1109/MNET.2008.4579768
– volume: 5
  start-page: 4
  year: 2001
  ident: 829_CR7
  publication-title: Personal Ubiquitous Comput
  doi: 10.1007/s007790170019
– volume: 45
  start-page: 56
  year: 2016
  ident: 829_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.09.016
– volume: 12
  start-page: 231
  year: 2015
  ident: 829_CR33
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2015.2475218
– volume: 18
  start-page: 209
  issue: 1
  year: 2015
  ident: 829_CR14
  publication-title: Clust Comput
  doi: 10.1007/s10586-014-0370-3
– ident: 829_CR9
– volume: 265
  start-page: 94
  year: 1991
  ident: 829_CR26
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0991-94
– volume: 29
  start-page: 5304
  year: 2018
  ident: 829_CR34
  publication-title: IEEE Trans Neural Netw Lean Syst
  doi: 10.1109/TNNLS.2018.2797060
– volume: 80
  start-page: 43
  year: 2016
  ident: 829_CR2
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2016.04.006
– volume: 16
  start-page: 414
  issue: 1
  year: 2014
  ident: 829_CR22
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/SURV.2013.042313.00197
– volume: 17
  start-page: 1
  issue: 34
  year: 2016
  ident: 829_CR16
  publication-title: JMLR
– volume-title: MongoDB: the definitive guide
  year: 2013
  ident: 829_CR5
– volume: 13
  start-page: 2682
  issue: 2
  year: 2013
  ident: 829_CR8
  publication-title: Sensors
  doi: 10.3390/s130202682
– volume-title: Hadoop: the definitive guide
  year: 2012
  ident: 829_CR28
– volume: 36
  start-page: 75
  year: 1993
  ident: 829_CR27
  publication-title: Commun ACM
  doi: 10.1145/159544.159617
– volume: 19
  start-page: 1
  year: 2016
  ident: 829_CR3
  publication-title: CLEI Electron J
– ident: 829_CR13
  doi: 10.1145/1409635.1409638
– ident: 829_CR23
  doi: 10.1145/1864349.1864393
– volume: 13
  start-page: 5460
  issue: 5
  year: 2013
  ident: 829_CR20
  publication-title: Sensors
  doi: 10.3390/s130505460
– volume: 21
  start-page: 359
  year: 1989
  ident: 829_CR12
  publication-title: ACM Comput Surv
  doi: 10.1145/72551.72554
– volume: 18
  start-page: 1901
  year: 2014
  ident: 829_CR18
  publication-title: Personal Ubiquitous Comput
  doi: 10.1007/s00779-014-0796-x
– volume: 18
  start-page: 68
  issue: 1
  year: 2014
  ident: 829_CR32
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2014.2381246
– volume: 8
  start-page: 10
  year: 2001
  ident: 829_CR25
  publication-title: IEEE Personal Commun
  doi: 10.1109/98.943998
– start-page: 236
  volume-title: Architectures for distributed and complex M-learning systems
  year: 2009
  ident: 829_CR17
– ident: 829_CR10
  doi: 10.1145/342009.335372
– volume: 285
  start-page: 204
  year: 2014
  ident: 829_CR4
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.06.026
– volume: 25
  start-page: 455
  year: 2015
  ident: 829_CR24
  publication-title: Int J Artif Intell Educ
  doi: 10.1007/s40593-015-0047-y
– ident: 829_CR1
  doi: 10.1145/170036.170072
– volume: 7
  start-page: 285
  year: 2007
  ident: 829_CR15
  publication-title: Int J Comput Sci Secur
SSID ssj0033328
Score 2.3742883
Snippet Context-aware applications adapt their functionalities based on users contexts. Complementarily, a context history has information about previous contexts...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 725
SubjectTerms Computer Science
Context
Data analysis
Domains
Evolution
Learning
Monitoring
Object recognition
Pattern analysis
Pattern Recognition
Theoretical Advances
Title CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories
URI https://link.springer.com/article/10.1007/s10044-019-00829-9
https://www.proquest.com/docview/2393598477
Volume 23
WOSCitedRecordID wos000528015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: RSV
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PXhx_sTplBy8aWBt0rX1NobDg47hdOxWkpcUBrMb6xT8731JW6eigl7TJJQk73tfyPfeI-Q8NiH3tAEmNHAmUpBoc4FmsfGk5J4E4V50R7dhvx-Nx_GgDArLK7V79STpkPpDsFtLWMVEzFxAKIvXyQa6u8gWbLgfjir85Zy7iqpIBDgLA-GVoTLfz_HZHa045pdnUedtevX__ecO2S7ZJe0Ux2GXrJlsj9RLpklLO86xqSrmULXtE9W9GQ46d1dUUicyZHr2JCcZdaVyKFJbWqiuERGmdO6ycmbUxvRaDegrlZnGrhYf7M9SHGhF8Ij8OS1SGuON_IA89q4fujesLMDAAC1zyRRoNHHFPQUmlEpLof2WjNoSfZoAjuauuEaIiAFMBH7qK4G3j9B4EIShCSQ_JLVslpkjQoUn_BSpQrsNSAq0kIgESkSp0tCCwJgG8ap9SKDMTm6LZEyTVV5lu64Jrmvi1jWJG-Tifcy8yM3xa-9mtb1Jaad54hLAxeihwwa5rLZz9fnn2Y7_1v2EbPn2ou6Ukk1SWy6ezSnZhJflJF-cufP7BqEU6fo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gV6sT6zPHLxpoLvJdrvepFgqtkVsFW9LMkmhoKu4VfDfO0l3rYoKes0mYUky33wh38wAHCY2FoGxyKVBweUQFdlcZHhiA6VEoFD6F92bTtzrNW5vk8siKCwv1e7lk6RH6g_BbjXpFBMJ9wGhPJmFeUkey2XMv-rflPgrhPAVVYkICB5HMihCZb6f47M7mnLML8-i3tu0Kv_7zxVYLtglO50ch1WYsdkaVAqmyQo7zqmpLOZQtq2Dbrb7l6fdE6aYFxly83CvRhnzpXIYUVs2UV0TItyxR5-VM2MuptdpQF-Zygx1dfjgfpbRQCeCJ-TP2SSlMd3IN-C6dTZotnlRgIEjWeaYazRk4loEGm2stFHShDXVqCvyaRIFmbsWhiAiQbQNDIehlnT7iG2AURzbSIlNmMseMrsFTAYyHBJVqNeRSIGRipBAy8ZQG6xhZG0VgnIfUiyyk7siGXfpNK-yW9eU1jX165omVTh6H_M4yc3xa-_dcnvTwk7z1CeAS8hDx1U4Lrdz-vnn2bb_1v0AFtuDbiftnPcudmApdJd2r5rchbnx07PdgwV8GY_yp31_lt8AoO7s3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64IV7cxXHNwZsGp006nXoTdVDUYcAFbyV5SUHQOjhV9N_7kraOigriNRshydvI974HsJXYWATGIpcGBZcZKpK5yPDEBkqJQKH0P7rXZ3G32765SXofsvg92r3-kixzGhxLU17s9k22-yHxrSkdeiLhPjmUJ6MwLh2Q3sXrF9e1LhZC-Oqq5BQIHkcyqNJmvl_js2ka-ptfvki95enM_H_PszBdeZ1sv3wmczBi83mYqTxQVsn3gJrqIg912wLog-OL3v75HlPMgw-5ebhXtznzJXQYubysRGOTprhjfc_WmTOX6-uwoa9M5YaGOr3hNs5oot_1SzFgJdUxReqLcNU5ujw45lVhBo4ksQXXaEj0tQg02lhpo6QJm6rdUmTrJApSA1oYUh0Jom1jmIVaUlQS2wCjOLaREkswlj_kdhmYDGSYkQvRaiE5C0Yq0hBatjNtsImRtQ0I6jtJsWItd8Uz7tIh37I715TONfXnmiYN2H6f0y85O34dvVZfdVrJ7yD1xHAJWe64ATv11Q67f15t5W_DN2Gyd9hJz066p6swFbpY3oMp12CseHyy6zCBz8Xt4HHDP-s3Yef1wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CHSPAM%3A+a+multi-domain+model+for+sequential+pattern+discovery+and+monitoring+in+contexts+histories&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Dupont%2C+Daniel&rft.au=Barbosa+Jorge+Luis+Vict%C3%B3ria&rft.au=Alves%2C+Bruno+Mota&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=2&rft.spage=725&rft.epage=734&rft_id=info:doi/10.1007%2Fs10044-019-00829-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon