Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning

Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 188; číslo 1; s. 19 - 51
Hlavní autoři: Bolte, Jérôme, Pauwels, Edouard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentiable: convex, concave, Clarke regular and any semialgebraic Lipschitz continuous functions are path differentiable. Using Whitney stratification techniques for semialgebraic and definable sets, our model provides variational formulas for nonsmooth automatic differentiation oracles, as for instance the famous backpropagation algorithm in deep learning. Our differential model is applied to establish the convergence in values of nonsmooth stochastic gradient methods as they are implemented in practice.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-020-01501-5