Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning

Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 188; H. 1; S. 19 - 51
Hauptverfasser: Bolte, Jérôme, Pauwels, Edouard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentiable: convex, concave, Clarke regular and any semialgebraic Lipschitz continuous functions are path differentiable. Using Whitney stratification techniques for semialgebraic and definable sets, our model provides variational formulas for nonsmooth automatic differentiation oracles, as for instance the famous backpropagation algorithm in deep learning. Our differential model is applied to establish the convergence in values of nonsmooth stochastic gradient methods as they are implemented in practice.
AbstractList Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentiable: convex, concave, Clarke regular and any semialgebraic Lipschitz continuous functions are path differentiable. Using Whitney stratification techniques for semialgebraic and definable sets, our model provides variational formulas for nonsmooth automatic differentiation oracles, as for instance the famous backpropagation algorithm in deep learning. Our differential model is applied to establish the convergence in values of nonsmooth stochastic gradient methods as they are implemented in practice.
Author Bolte, Jérôme
Pauwels, Edouard
Author_xml – sequence: 1
  givenname: Jérôme
  surname: Bolte
  fullname: Bolte, Jérôme
  email: jerome.bolte@tse-fr.eu
  organization: Toulouse School of Economics, Université Toulouse 1 Capitole
– sequence: 2
  givenname: Edouard
  surname: Pauwels
  fullname: Pauwels, Edouard
  organization: IRIT, Université de Toulouse, CNRS, DEEL IRT Saint Exupery
BookMark eNp9kEtLAzEUhYNUsFX_gKuA247eZCaZ6VKKLyi40XXITO60KdOkJmnBf2_aCoILV5fLOd99nAkZOe-QkBsGdwygvo8MGNQFcCiACWCFOCNjVpWyqGQlR2QMwEUhJIMLMolxDQCsbJoxWc29ixj2Otk90oiJ7vWwQ0N7i4OJU6p3yW-y2lFj-x4DumRz692UxuS7lY4HbRm0sVmiG0wrbyLVzlCDuKUD6uCsW16R814PEa9_6iX5eHp8n78Ui7fn1_nDouhKNktF2_Z9VXatnNUSsauhaVGCFBJ5zWouZCm4qQ0XOndGc-wZiKqsBbZQsZkpL8ntae42-M8dxqTWfhdcXqm4qCrOGyEgu5qTqws-xoC96mw6vpWCtoNioA65qlOuKueqjrkqkVH-B90Gu9Hh63-oPEExm90Sw-9V_1DfhieNeg
CitedBy_id crossref_primary_10_1007_s10915_025_02798_0
crossref_primary_10_1088_1361_6420_adda74
crossref_primary_10_1137_20M1387961
crossref_primary_10_1007_s10589_022_00404_9
crossref_primary_10_1093_imanum_drad098
crossref_primary_10_1287_moor_2022_0289
crossref_primary_10_1007_s10957_021_01883_2
crossref_primary_10_1007_s00362_023_01442_z
crossref_primary_10_1007_s11590_022_01884_8
crossref_primary_10_1007_s10957_025_02749_7
crossref_primary_10_1007_s10107_025_02245_w
crossref_primary_10_1051_cocv_2025057
crossref_primary_10_1109_LCSYS_2025_3548956
crossref_primary_10_1007_s11228_021_00594_0
crossref_primary_10_1137_24M1659911
crossref_primary_10_1007_s10489_024_05805_3
crossref_primary_10_1007_s10107_023_01936_6
crossref_primary_10_1007_s10107_023_01937_5
crossref_primary_10_1007_s10957_024_02408_3
crossref_primary_10_1109_TAC_2025_3545767
crossref_primary_10_1007_s11228_023_00682_3
crossref_primary_10_1214_22_AAP1829
crossref_primary_10_1007_s10957_022_02093_0
crossref_primary_10_1287_moor_2023_1390
crossref_primary_10_1007_s11081_023_09847_3
crossref_primary_10_1287_moor_2021_0194
crossref_primary_10_1109_TAC_2024_3410890
crossref_primary_10_3390_math11234858
crossref_primary_10_1007_s10107_025_02255_8
crossref_primary_10_1137_22M1541630
crossref_primary_10_1137_24M1643347
crossref_primary_10_1016_j_jmaa_2022_126601
crossref_primary_10_1080_17442508_2024_2353278
crossref_primary_10_1007_s11228_022_00638_z
crossref_primary_10_1137_22M1479178
crossref_primary_10_1016_j_ifacol_2022_09_030
crossref_primary_10_1137_22M1513034
crossref_primary_10_2139_ssrn_4372556
Cites_doi 10.1137/S0363012904439301
10.1137/1.9780898717761
10.1007/3-540-31246-3
10.1090/S0002-9947-01-02820-3
10.1201/b18333
10.1007/978-3-319-64277-2
10.1137/S1052623496297838
10.5802/aif.1638
10.1007/s10208-018-09409-5
10.2140/pjm.1970.33.209
10.1080/10556788.2013.796683
10.2307/2661354
10.1080/17442508.2018.1539086
10.1007/s10107-015-0934-x
10.2172/5254402
10.1142/S0219199700000025
10.1007/s10107-013-0701-9
10.1007/BFb0096509
10.1038/nature14539
10.1007/978-3-642-69512-4
10.1007/BF00940840
10.1090/S0002-9947-1981-0613784-7
10.1007/978-0-8176-4848-0
10.1007/978-3-642-02431-3
10.1214/aoms/1177729586
10.1137/16M1080173
10.1038/323533a0
10.1006/jmaa.1995.1003
10.1137/060670080
10.1109/TAC.1977.1101561
10.1006/jfan.1997.3101
10.1090/S0002-9939-05-07883-4
10.1215/S0012-7094-96-08416-1
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-020-01501-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 51
ExternalDocumentID 10_1007_s10107_020_01501_5
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-bbff43cb6976eec708be60656e2717256352d7d25a172da2ef1054375eb0419d3
IEDL.DBID RSV
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526204300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:42:07 EDT 2025
Sat Nov 29 03:34:01 EST 2025
Tue Nov 18 22:24:31 EST 2025
Fri Feb 21 02:48:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords o-Minimal structures
62M45 Neural nets and related approaches to inference from stochastic processes
90C06 Large-scale problems
68T05 Learning and adaptive systems in artificial intelligence
Stochastic gradient
Automatic differentiation
Deep learning
Backpropagation algorithm
Clarke subdifferential
49M27 Decomposition methods
First order methods
Nonsmooth stochastic optimization
Definable sets
65K10 Numerical optimization and variational techniques
49J53 Set-valued and variational analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bbff43cb6976eec708be60656e2717256352d7d25a172da2ef1054375eb0419d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2544228550
PQPubID 25307
PageCount 33
ParticipantIDs proquest_journals_2544228550
crossref_citationtrail_10_1007_s10107_020_01501_5
crossref_primary_10_1007_s10107_020_01501_5
springer_journals_10_1007_s10107_020_01501_5
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CorreaRJofreATangentially continuous directional derivatives in nonsmooth analysisJ. Optim. Theory Appl.198961112199391210.1007/BF00940840
Castera, C., Bolte, J., Févotte, C., Pauwels, E.: An inertial Newton algorithm for deep learning (2019). arXiv preprint arXiv:1905.12278
GriewankAWaltherAFiegeSBosseTOn Lipschitz optimization based on gray-box piecewise linearizationMath. Program.20161581–2383415351138810.1007/s10107-015-0934-x
BorkarVStochastic Approximation: A Dynamical Systems Viewpoint2009BerlinSpringer1181.62119
Kakade, S.M., Lee, J.D.: Provably correct automatic sub-differentiation for qualifed programs. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp 7125–7135. Curran Associates, Inc. (2018)
Moreau J.-J.: Fonctionnelles sous-différentiables, Séminaire Jean Leray (1963)
AubinJ-PFrankowskaHSet-Valued Analysis2009BerlinSpringer10.1007/978-0-8176-4848-0
AttouchHGoudouXRedontPThe heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical systemCommun. Contemp. Math.200021134175313610.1142/S0219199700000025
ThibaultLZagrodnyDIntegration of subdifferentials of lower semicontinuous functions on Banach spacesJ. Math. Anal. Appl.199518913358131202910.1006/jmaa.1995.1003
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: Symposium on Operating Systems Design and Implementation, OSDI, vol. 6, pp. 265–283 (2016)
BorweinJMMoorsWBEssentially smooth Lipschitz functionsJ. Funct. Anal.19971492305351147236210.1006/jfan.1997.3101
KurdykaKOn gradients of functions definable in o-minimal structuresAnn. l’inst. Fourier1998483769783164408910.5802/aif.1638
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in Pytorch. In: NIPS Workshops (2017)
Majewski, S., Miasojedow, B., Moulines, E.: Analysis of nonsmooth stochastic approximation: the differential inclusion approach (2018). arXiv preprint arXiv:1805.01916
RockafellarRTWetsRJBVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-3
van den DriesLMillerCGeometric categories and o-minimal structuresDuke Math. J199684249754014043370889.03025
AubinJPCellinaADifferential Inclusions: Set-valued Maps and Viability Theory1984BerlinSpringer10.1007/978-3-642-69512-4
AliprantisCDBorderKCInfinite Dimensional Analysis20053BerlinSpringer0938.46001
BolteJDaniilidisALewisAShiotaMClarke subgradients of stratifiable functionsSIAM J. Optim.2007182556572233845110.1137/060670080
Le CunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
BorweinJMMoorsWBA chain rule for essentially smooth Lipschitz functionsSIAM J. Optim.199882300308161879410.1137/S1052623496297838
GriewankAWaltherAEvaluating Derivatives: Principles and Techniques of Algorithmic Differentiation2008PhiladelphiaSIAM10.1137/1.9780898717761
Thibault, L., Zlateva, N.: Integrability of subdifferentials of directionally Lipschitz functions. In: Proceedings of the American Mathematical Society, pp. 2939–2948 (2005)
Coste, M.: An Introduction to O-Minimal Geometry. RAAG notes, Institut de Recherche Mathématique de Rennes, p. 81 (1999)
Moulines, E., Bach, F.R.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 451–459. Curran Associates, Inc. (2011)
BianchiPHachemWSalimAConstant step stochastic approximations involving differential inclusions: stability, long-run convergence and applicationsStochastics2019912288320389586710.1080/17442508.2018.1539086
EvansLCGariepyRFMeasure Theory and Fine Properties of Functions2015RevisedLondonChapman and Hall/CRC10.1201/b18333
IoffeADVariational Analysis of Regular Mappings2017ChamSpringer10.1007/978-3-319-64277-2
KushnerHYinGGStochastic Approximation and Recursive Algorithms and Applications2003BerlinSpringer1026.62084
BottouLCurtisFENocedalJOptimization methods for large-scale machine learningSIAM Rev.2018602223311379771910.1137/16M1080173
RockafellarROn the maximal monotonicity of subdifferential mappingsPacific J. Math.197033120921626282710.2140/pjm.1970.33.209
Chizat, L., Bach F.: On the global convergence of gradient descent for over-parameterized models using optimal transport. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 3036–3046. Curran Associates, Inc. (2018)
CorlissGFaureCGriewankAHascoetLNaumannUAutomatic Differentiation Of Algorithms: From Simulation to Optimization2002BerlinSpringer
BorweinJMoorsWWangXGeneralized subdifferentials: a Baire categorical approachTrans. Am. Math. Soc.20013531038753893183721210.1090/S0002-9947-01-02820-3
BaydinAPearlmutterBRadulASiskindJAutomatic differentiation in machine learning: a surveyJ. Mach. Learn. Res.201818155955637380051206982909
DavisDDrusvyatskiyDKakadeSLeeJDStochastic subgradient method converges on tame functionsFound. Comput. Math.2020201119154405692710.1007/s10208-018-09409-5
IoffeADNonsmooth analysis: differential calculus of nondifferentiable mappingsTrans. Am. Math. Soc.1981266115661378410.1090/S0002-9947-1981-0613784-7
ClarkeFHOptimization and Nonsmooth Analysis1983PhiladelphiaSIAM0582.49001
BenaïmMHofbauerJSorinSStochastic approximations and differential inclusionsSIAM J. Control Optim.2005441328348217715910.1137/S0363012904439301
ValadierMEntraînement unilatéral, lignes de descente, fonctions lipschitziennes non pathologiquesC. R. l’Acad. Sci.19893082412440824.49015
Benaïm, M.: Dynamics of stochastic approximation algorithms. In: Séminaire de Probabilités XXXIII, pp. 1–68. Springer, Berlin, Heidelberg (1999)
MordukhovichBSVariational Analysis and Generalized Differentiation i: Basic Theory2006BerlinSpringer10.1007/3-540-31246-3
Adil, S.: Opérateurs monotones aléatoires et application à l’optimisation stochastique. PhD Thesis, Paris Saclay (2018)
GriewankAOn stable piecewise linearization and generalized algorithmic differentiationOptim. Methods Softw.201328611391178317546110.1080/10556788.2013.796683
Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. Curran Associates, Inc. (2008)
RumelhartEHintonEWilliamsJLearning representations by back-propagating errorsNature198632353353610.1038/323533a0
Wang, X.: Pathological Lipschitz functions in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}. Master thesis, Simon Fraser University (1995)
BorweinJLewisASConvex Analysis and Nonlinear Optimization: Theory and Examples2010BerlinSpringer
BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Program.20141461–2459494323262310.1007/s10107-013-0701-9
Rockafellar, R.T.: Convex functions and dual extremum problems. Doctoral dissertation, Harvard University (1963)
Barakat, A., Bianchi, P.: Convergence and Dynamical Behavior of the Adam Algorithm for Non Convex Stochastic Optimization (2018). arXiv preprint arXiv:1810.02263
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
KurdykaKMostowskiTParusinskiAProof of the gradient conjecture of R. ThomAnn. Math.20001523763792181570110.2307/2661354
LjungLAnalysis of recursive stochastic algorithmsIEEE Trans. Autom. Control197722455157546545810.1109/TAC.1977.1101561
MohammadiBPironneauOApplied Shape Optimization for Fluids2010OxfordOxford University Press0970.76003
RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586
Speelpenning, B.: Compiling fast partial derivatives of functions given by algorithms (No. COO-2383-0063; UILU-ENG-80-1702; UIUCDCS-R-80-1002). Illinois Univ., Urbana (USA). Dept. of Computer Science (1980)
1501_CR2
1501_CR1
1501_CR7
A Griewank (1501_CR30) 2008
1501_CR29
L Bottou (1501_CR20) 2018; 60
AD Ioffe (1501_CR34) 2017
A Griewank (1501_CR32) 2016; 158
1501_CR23
1501_CR21
B Mohammadi (1501_CR42) 2010
AD Ioffe (1501_CR33) 1981; 266
1501_CR26
1501_CR9
R Correa (1501_CR25) 1989; 61
FH Clarke (1501_CR22) 1983
JM Borwein (1501_CR16) 1997; 149
P Bianchi (1501_CR11) 2019; 91
R Rockafellar (1501_CR49) 1970; 33
V Borkar (1501_CR14) 2009
K Kurdyka (1501_CR37) 2000; 152
1501_CR35
J-P Aubin (1501_CR6) 2009
RT Rockafellar (1501_CR50) 1998
J Borwein (1501_CR15) 2010
A Baydin (1501_CR8) 2018; 18
J Bolte (1501_CR13) 2014; 146
H Robbins (1501_CR47) 1951; 22
LC Evans (1501_CR28) 2015
J Borwein (1501_CR18) 2001; 353
BS Mordukhovich (1501_CR45) 2006
E Rumelhart (1501_CR51) 1986; 323
1501_CR46
L Thibault (1501_CR53) 1995; 189
1501_CR43
M Valadier (1501_CR55) 1989; 308
1501_CR44
A Griewank (1501_CR31) 2013; 28
1501_CR48
K Kurdyka (1501_CR36) 1998; 48
1501_CR41
CD Aliprantis (1501_CR3) 2005
JP Aubin (1501_CR5) 1984
M Benaïm (1501_CR10) 2005; 44
(1501_CR24) 2002
L van den Dries (1501_CR56) 1996; 84
D Davis (1501_CR27) 2020; 20
1501_CR19
H Attouch (1501_CR4) 2000; 2
JM Borwein (1501_CR17) 1998; 8
1501_CR57
1501_CR54
J Bolte (1501_CR12) 2007; 18
1501_CR52
H Kushner (1501_CR38) 2003
L Ljung (1501_CR40) 1977; 22
Y Le Cun (1501_CR39) 2015; 521
References_xml – reference: Adil, S.: Opérateurs monotones aléatoires et application à l’optimisation stochastique. PhD Thesis, Paris Saclay (2018)
– reference: ValadierMEntraînement unilatéral, lignes de descente, fonctions lipschitziennes non pathologiquesC. R. l’Acad. Sci.19893082412440824.49015
– reference: BorweinJMMoorsWBEssentially smooth Lipschitz functionsJ. Funct. Anal.19971492305351147236210.1006/jfan.1997.3101
– reference: RockafellarROn the maximal monotonicity of subdifferential mappingsPacific J. Math.197033120921626282710.2140/pjm.1970.33.209
– reference: BenaïmMHofbauerJSorinSStochastic approximations and differential inclusionsSIAM J. Control Optim.2005441328348217715910.1137/S0363012904439301
– reference: BorweinJLewisASConvex Analysis and Nonlinear Optimization: Theory and Examples2010BerlinSpringer
– reference: GriewankAWaltherAEvaluating Derivatives: Principles and Techniques of Algorithmic Differentiation2008PhiladelphiaSIAM10.1137/1.9780898717761
– reference: KurdykaKMostowskiTParusinskiAProof of the gradient conjecture of R. ThomAnn. Math.20001523763792181570110.2307/2661354
– reference: Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. Curran Associates, Inc. (2008)
– reference: Le CunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: CorreaRJofreATangentially continuous directional derivatives in nonsmooth analysisJ. Optim. Theory Appl.198961112199391210.1007/BF00940840
– reference: Moulines, E., Bach, F.R.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 451–459. Curran Associates, Inc. (2011)
– reference: Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in Pytorch. In: NIPS Workshops (2017)
– reference: Wang, X.: Pathological Lipschitz functions in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}. Master thesis, Simon Fraser University (1995)
– reference: Chizat, L., Bach F.: On the global convergence of gradient descent for over-parameterized models using optimal transport. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 3036–3046. Curran Associates, Inc. (2018)
– reference: GriewankAOn stable piecewise linearization and generalized algorithmic differentiationOptim. Methods Softw.201328611391178317546110.1080/10556788.2013.796683
– reference: BolteJDaniilidisALewisAShiotaMClarke subgradients of stratifiable functionsSIAM J. Optim.2007182556572233845110.1137/060670080
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: Symposium on Operating Systems Design and Implementation, OSDI, vol. 6, pp. 265–283 (2016)
– reference: AubinJ-PFrankowskaHSet-Valued Analysis2009BerlinSpringer10.1007/978-0-8176-4848-0
– reference: IoffeADNonsmooth analysis: differential calculus of nondifferentiable mappingsTrans. Am. Math. Soc.1981266115661378410.1090/S0002-9947-1981-0613784-7
– reference: RumelhartEHintonEWilliamsJLearning representations by back-propagating errorsNature198632353353610.1038/323533a0
– reference: RockafellarRTWetsRJBVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-3
– reference: AubinJPCellinaADifferential Inclusions: Set-valued Maps and Viability Theory1984BerlinSpringer10.1007/978-3-642-69512-4
– reference: Barakat, A., Bianchi, P.: Convergence and Dynamical Behavior of the Adam Algorithm for Non Convex Stochastic Optimization (2018). arXiv preprint arXiv:1810.02263
– reference: BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Program.20141461–2459494323262310.1007/s10107-013-0701-9
– reference: Rockafellar, R.T.: Convex functions and dual extremum problems. Doctoral dissertation, Harvard University (1963)
– reference: van den DriesLMillerCGeometric categories and o-minimal structuresDuke Math. J199684249754014043370889.03025
– reference: KushnerHYinGGStochastic Approximation and Recursive Algorithms and Applications2003BerlinSpringer1026.62084
– reference: Majewski, S., Miasojedow, B., Moulines, E.: Analysis of nonsmooth stochastic approximation: the differential inclusion approach (2018). arXiv preprint arXiv:1805.01916
– reference: BianchiPHachemWSalimAConstant step stochastic approximations involving differential inclusions: stability, long-run convergence and applicationsStochastics2019912288320389586710.1080/17442508.2018.1539086
– reference: IoffeADVariational Analysis of Regular Mappings2017ChamSpringer10.1007/978-3-319-64277-2
– reference: MohammadiBPironneauOApplied Shape Optimization for Fluids2010OxfordOxford University Press0970.76003
– reference: Benaïm, M.: Dynamics of stochastic approximation algorithms. In: Séminaire de Probabilités XXXIII, pp. 1–68. Springer, Berlin, Heidelberg (1999)
– reference: EvansLCGariepyRFMeasure Theory and Fine Properties of Functions2015RevisedLondonChapman and Hall/CRC10.1201/b18333
– reference: Moreau J.-J.: Fonctionnelles sous-différentiables, Séminaire Jean Leray (1963)
– reference: DavisDDrusvyatskiyDKakadeSLeeJDStochastic subgradient method converges on tame functionsFound. Comput. Math.2020201119154405692710.1007/s10208-018-09409-5
– reference: BorweinJMoorsWWangXGeneralized subdifferentials: a Baire categorical approachTrans. Am. Math. Soc.20013531038753893183721210.1090/S0002-9947-01-02820-3
– reference: Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
– reference: ThibaultLZagrodnyDIntegration of subdifferentials of lower semicontinuous functions on Banach spacesJ. Math. Anal. Appl.199518913358131202910.1006/jmaa.1995.1003
– reference: Speelpenning, B.: Compiling fast partial derivatives of functions given by algorithms (No. COO-2383-0063; UILU-ENG-80-1702; UIUCDCS-R-80-1002). Illinois Univ., Urbana (USA). Dept. of Computer Science (1980)
– reference: CorlissGFaureCGriewankAHascoetLNaumannUAutomatic Differentiation Of Algorithms: From Simulation to Optimization2002BerlinSpringer
– reference: Coste, M.: An Introduction to O-Minimal Geometry. RAAG notes, Institut de Recherche Mathématique de Rennes, p. 81 (1999)
– reference: BaydinAPearlmutterBRadulASiskindJAutomatic differentiation in machine learning: a surveyJ. Mach. Learn. Res.201818155955637380051206982909
– reference: GriewankAWaltherAFiegeSBosseTOn Lipschitz optimization based on gray-box piecewise linearizationMath. Program.20161581–2383415351138810.1007/s10107-015-0934-x
– reference: AttouchHGoudouXRedontPThe heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical systemCommun. Contemp. Math.200021134175313610.1142/S0219199700000025
– reference: LjungLAnalysis of recursive stochastic algorithmsIEEE Trans. Autom. Control197722455157546545810.1109/TAC.1977.1101561
– reference: ClarkeFHOptimization and Nonsmooth Analysis1983PhiladelphiaSIAM0582.49001
– reference: MordukhovichBSVariational Analysis and Generalized Differentiation i: Basic Theory2006BerlinSpringer10.1007/3-540-31246-3
– reference: BorkarVStochastic Approximation: A Dynamical Systems Viewpoint2009BerlinSpringer1181.62119
– reference: Kakade, S.M., Lee, J.D.: Provably correct automatic sub-differentiation for qualifed programs. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp 7125–7135. Curran Associates, Inc. (2018)
– reference: BottouLCurtisFENocedalJOptimization methods for large-scale machine learningSIAM Rev.2018602223311379771910.1137/16M1080173
– reference: KurdykaKOn gradients of functions definable in o-minimal structuresAnn. l’inst. Fourier1998483769783164408910.5802/aif.1638
– reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586
– reference: Thibault, L., Zlateva, N.: Integrability of subdifferentials of directionally Lipschitz functions. In: Proceedings of the American Mathematical Society, pp. 2939–2948 (2005)
– reference: BorweinJMMoorsWBA chain rule for essentially smooth Lipschitz functionsSIAM J. Optim.199882300308161879410.1137/S1052623496297838
– reference: Castera, C., Bolte, J., Févotte, C., Pauwels, E.: An inertial Newton algorithm for deep learning (2019). arXiv preprint arXiv:1905.12278
– reference: AliprantisCDBorderKCInfinite Dimensional Analysis20053BerlinSpringer0938.46001
– volume: 44
  start-page: 328
  issue: 1
  year: 2005
  ident: 1501_CR10
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012904439301
– volume-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
  year: 2008
  ident: 1501_CR30
  doi: 10.1137/1.9780898717761
– volume-title: Variational Analysis and Generalized Differentiation i: Basic Theory
  year: 2006
  ident: 1501_CR45
  doi: 10.1007/3-540-31246-3
– volume: 353
  start-page: 3875
  issue: 10
  year: 2001
  ident: 1501_CR18
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-01-02820-3
– volume-title: Measure Theory and Fine Properties of Functions
  year: 2015
  ident: 1501_CR28
  doi: 10.1201/b18333
– volume-title: Variational Analysis of Regular Mappings
  year: 2017
  ident: 1501_CR34
  doi: 10.1007/978-3-319-64277-2
– volume-title: Stochastic Approximation: A Dynamical Systems Viewpoint
  year: 2009
  ident: 1501_CR14
– volume: 8
  start-page: 300
  issue: 2
  year: 1998
  ident: 1501_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496297838
– ident: 1501_CR2
– volume: 48
  start-page: 769
  issue: 3
  year: 1998
  ident: 1501_CR36
  publication-title: Ann. l’inst. Fourier
  doi: 10.5802/aif.1638
– volume-title: Applied Shape Optimization for Fluids
  year: 2010
  ident: 1501_CR42
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 1501_CR22
– ident: 1501_CR43
– volume: 18
  start-page: 5595
  issue: 1
  year: 2018
  ident: 1501_CR8
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 119
  issue: 1
  year: 2020
  ident: 1501_CR27
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-018-09409-5
– volume: 33
  start-page: 209
  issue: 1
  year: 1970
  ident: 1501_CR49
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1970.33.209
– volume: 28
  start-page: 1139
  issue: 6
  year: 2013
  ident: 1501_CR31
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2013.796683
– volume: 152
  start-page: 763
  issue: 3
  year: 2000
  ident: 1501_CR37
  publication-title: Ann. Math.
  doi: 10.2307/2661354
– volume: 91
  start-page: 288
  issue: 2
  year: 2019
  ident: 1501_CR11
  publication-title: Stochastics
  doi: 10.1080/17442508.2018.1539086
– volume-title: Convex Analysis and Nonlinear Optimization: Theory and Examples
  year: 2010
  ident: 1501_CR15
– volume: 158
  start-page: 383
  issue: 1–2
  year: 2016
  ident: 1501_CR32
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0934-x
– ident: 1501_CR52
  doi: 10.2172/5254402
– volume: 2
  start-page: 1
  issue: 1
  year: 2000
  ident: 1501_CR4
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199700000025
– volume: 146
  start-page: 459
  issue: 1–2
  year: 2014
  ident: 1501_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– ident: 1501_CR1
– ident: 1501_CR48
– ident: 1501_CR44
– ident: 1501_CR9
  doi: 10.1007/BFb0096509
– ident: 1501_CR23
– volume-title: Automatic Differentiation Of Algorithms: From Simulation to Optimization
  year: 2002
  ident: 1501_CR24
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1501_CR39
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 1501_CR41
– volume-title: Differential Inclusions: Set-valued Maps and Viability Theory
  year: 1984
  ident: 1501_CR5
  doi: 10.1007/978-3-642-69512-4
– volume: 61
  start-page: 1
  issue: 1
  year: 1989
  ident: 1501_CR25
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940840
– volume: 266
  start-page: 1
  issue: 1
  year: 1981
  ident: 1501_CR33
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1981-0613784-7
– ident: 1501_CR35
– volume-title: Set-Valued Analysis
  year: 2009
  ident: 1501_CR6
  doi: 10.1007/978-0-8176-4848-0
– ident: 1501_CR7
– volume-title: Variational Analysis
  year: 1998
  ident: 1501_CR50
  doi: 10.1007/978-3-642-02431-3
– volume: 308
  start-page: 241
  year: 1989
  ident: 1501_CR55
  publication-title: C. R. l’Acad. Sci.
– volume-title: Stochastic Approximation and Recursive Algorithms and Applications
  year: 2003
  ident: 1501_CR38
– volume: 22
  start-page: 400
  year: 1951
  ident: 1501_CR47
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– ident: 1501_CR26
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 1501_CR20
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– volume: 323
  start-page: 533
  year: 1986
  ident: 1501_CR51
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 189
  start-page: 33
  issue: 1
  year: 1995
  ident: 1501_CR53
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1995.1003
– volume: 18
  start-page: 556
  issue: 2
  year: 2007
  ident: 1501_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/060670080
– ident: 1501_CR57
– ident: 1501_CR19
– volume: 22
  start-page: 551
  issue: 4
  year: 1977
  ident: 1501_CR40
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1977.1101561
– volume: 149
  start-page: 305
  issue: 2
  year: 1997
  ident: 1501_CR16
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1997.3101
– volume-title: Infinite Dimensional Analysis
  year: 2005
  ident: 1501_CR3
– ident: 1501_CR29
– ident: 1501_CR54
  doi: 10.1090/S0002-9939-05-07883-4
– ident: 1501_CR46
– volume: 84
  start-page: 497
  issue: 2
  year: 1996
  ident: 1501_CR56
  publication-title: Duke Math. J
  doi: 10.1215/S0012-7094-96-08416-1
– ident: 1501_CR21
SSID ssj0001388
Score 2.6321657
Snippet Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Algorithms
Back propagation
Calculus
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Continuity (mathematics)
Deep learning
Differentiation
Full Length Paper
Machine learning
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning
URI https://link.springer.com/article/10.1007/s10107-020-01501-5
https://www.proquest.com/docview/2544228550
Volume 188
WOSCitedRecordID wos000526204300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JQkA_caKRmceIcEaLiABViqXqLbGfcIqG0atJ-P2MnaQsCJDhasa3I4-WNPfMeIZcgI5EGxslhmjuBjrnDOVNOKAyZd-S7YC_c-vdRr8cHg_ixSgrL62j3-knS7tQryW6uuVbzTCAVQyeYrZMNPO64WY5Pz_3F_uv6nNdCrQYdVKky3_fx-ThaYswvz6L2tOnu_u8_98hOhS7pdTkd9skaZAdke4VzEEsPC6LW_JCMjGBneS87B5pDQQ37N6TURrblbSpmxdhWprWUSlEas00RNqqRMDzPdDi1kWMFLQWpcyqylKYAE1qpUgyPyGv39uXmzqnEFxyFq7JwpNQ68JUMEa8AqKjDJaCzw0Lw0ANEoITILY1SjwkspcIDjUgt8CMGshO4ceofk0Y2zuCE0E6shZZSYUdxEOhQcO1ypblQAptHrEnc2gaJqpjJjUDGe7LkVDZjmuCYJnZME2xztWgzKXk5fq3dqk2bVGs0Tww5m-cZQrcmademXH7-ubfTv1U_I1ueCYSxMb4t0iimMzgnm2pevOXTCzt3PwBUmOfB
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA06BfXBb3E6NQ--ucLaJm36KOKYuA3ROfYWkjTZBOnG2u33m6TtNkUFfQzNDSU3H-cmJ-cCcC15yGJkghysiINURBxCsHACZsS8Q9-V9sCt3w67XTIYRE_Fo7C0ZLuXV5J2pV557OaaYzXPEKmwDoLxOthAescyRL7nl_5i_XV9QspErQYdFE9lvm_j83a0xJhfrkXtbtPc-99_7oPdAl3C23w4HIA1mRyCnRXNQV3qLIRa0yMwMgk783PZuYSpzKBR_5YxtMy2tA7ZLBvbyrBMpZLlzqxDDRvFiBmdZzicWuZYBvOE1ClkSQxjKSewyEoxPAavzfveXcspki84Qs_KzOFcKeQLHmi8IqUIG4RLHezgQHo6AtRASSO3OIw9zHQpZp5UGqkhP8SSN5Abxf4JqCTjRJ4C2IgUU5wL3VCEkAoYUS4RijDBtHmIq8AtfUBFoUxuEmS806WmsulTqvuU2j6l2uZmYTPJdTl-rV0rXUuLOZpSI87meUbQrQrqpSuXn39u7exv1a_AVqvXadP2Q_fxHGx7hhRj-b41UMmmM3kBNsU8e0unl3YcfwA5uuql
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzidmgffXNnaJm36KOpQnGOgjr2VNJdNkG6s2X6_SdpuU1QQH0OTUHJy-U5yzvcBcCmSkHJknBwsiYNkRBxCMHMCasi8Q98V9sKt1w47HdLvR92lLH4b7V4-SeY5DYalKVWNMZeNpcQ311yxeSaoCmuHGK-CNWREg4y__tyb78WuT0gp2mqQQpE2830fn4-mBd788kRqT57Wzv__eRdsF6gTXufTZA-siHQfbC1xEerS05zANTsAQyPkmd_XzgTMhIKGFVxwaCPesjqkUzWylWEpsaJyI9ehhpNsSA3_MxxMbESZgrlQdQZpyiEXYgwLtYrBIXht3b3c3DuFKIPD9GpVTpJIiXyWBBrHCMHCJkmEdoJwIDztGWoApREdD7mHqS5x6gmpERzyQyySJnIj7h-BSjpKxTGAzUhSmSRMdxQhJANKpEuYJJRR3TzEVeCW9ohZwVhuhDPe4wXXshnTWI9pbMc01m2u5m3GOV_Hr7VrpZnjYu1msSFt8zxD9FYF9dKsi88_93byt-oXYKN724rbD53HU7DpmVgZGwZcAxU1mYozsM5m6i2bnNsp_QG9ZPOJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservative+set+valued+fields%2C+automatic+differentiation%2C+stochastic+gradient+methods+and+deep+learning&rft.jtitle=Mathematical+programming&rft.au=Bolte+J%C3%A9r%C3%B4me&rft.au=Pauwels+Edouard&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=188&rft.issue=1&rft.spage=19&rft.epage=51&rft_id=info:doi/10.1007%2Fs10107-020-01501-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon