Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning
Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentia...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 188; číslo 1; s. 19 - 51 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Modern problems in AI or in numerical analysis require nonsmooth approaches with a flexible calculus. We introduce generalized derivatives called conservative fields for which we develop a calculus and provide representation formulas. Functions having a conservative field are called path differentiable: convex, concave, Clarke regular and any semialgebraic Lipschitz continuous functions are path differentiable. Using Whitney stratification techniques for semialgebraic and definable sets, our model provides variational formulas for nonsmooth automatic differentiation oracles, as for instance the famous backpropagation algorithm in deep learning. Our differential model is applied to establish the convergence in values of nonsmooth stochastic gradient methods as they are implemented in practice. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-020-01501-5 |