Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate

Convolutional neural networks (CNNs) have obtained high accuracy results for pedestrian re-identification in the past few years. There is always a trade-off between high accuracy and computational time in CNNs. Training CNN is always very difficult as it may take a long time to produce high accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 32; H. 10; S. 5695 - 5712
Hauptverfasser: Cheng, Keyang, Tao, Fei, Zhan, Yongzhao, Li, Maozhen, Li, Kenli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.05.2020
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!