Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate

Convolutional neural networks (CNNs) have obtained high accuracy results for pedestrian re-identification in the past few years. There is always a trade-off between high accuracy and computational time in CNNs. Training CNN is always very difficult as it may take a long time to produce high accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 32; H. 10; S. 5695 - 5712
Hauptverfasser: Cheng, Keyang, Tao, Fei, Zhan, Yongzhao, Li, Maozhen, Li, Kenli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.05.2020
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Convolutional neural networks (CNNs) have obtained high accuracy results for pedestrian re-identification in the past few years. There is always a trade-off between high accuracy and computational time in CNNs. Training CNN is always very difficult as it may take a long time to produce high accuracy results. To overcome this limitation, a novel method parallel stochastic gradient descent (PSGD) is proposed to train a five-hierarchical parallel CNNs that is designed according to pedestrian attributes. Moreover, the momentum correction and adaptive adjustment of learning rate are applied during training process and the time interval for updating parameters is inspected during optimization of parameters selection. The results of this paper prove the effectiveness of proposed PSGD that successfully decreases the training process by five times and surpasses the state-of-the-art methods of pedestrian re-identification in terms of both accuracy and time. The minimum reported running time of the proposed method is 8.7 s which is minimum among all other state-of-the-art methods. These promising results show the efficiency and performance of the proposed model.
AbstractList Convolutional neural networks (CNNs) have obtained high accuracy results for pedestrian re-identification in the past few years. There is always a trade-off between high accuracy and computational time in CNNs. Training CNN is always very difficult as it may take a long time to produce high accuracy results. To overcome this limitation, a novel method parallel stochastic gradient descent (PSGD) is proposed to train a five-hierarchical parallel CNNs that is designed according to pedestrian attributes. Moreover, the momentum correction and adaptive adjustment of learning rate are applied during training process and the time interval for updating parameters is inspected during optimization of parameters selection. The results of this paper prove the effectiveness of proposed PSGD that successfully decreases the training process by five times and surpasses the state-of-the-art methods of pedestrian re-identification in terms of both accuracy and time. The minimum reported running time of the proposed method is 8.7 s which is minimum among all other state-of-the-art methods. These promising results show the efficiency and performance of the proposed model.
Author Tao, Fei
Zhan, Yongzhao
Li, Maozhen
Li, Kenli
Cheng, Keyang
Author_xml – sequence: 1
  givenname: Keyang
  orcidid: 0000-0001-5240-1605
  surname: Cheng
  fullname: Cheng, Keyang
  email: kycheng@ujs.edu.cn
  organization: School of Computer Science and Communication Engineering, Jiangsu University, National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data
– sequence: 2
  givenname: Fei
  surname: Tao
  fullname: Tao, Fei
  organization: School of Computer Science and Communication Engineering, Jiangsu University
– sequence: 3
  givenname: Yongzhao
  surname: Zhan
  fullname: Zhan, Yongzhao
  organization: School of Computer Science and Communication Engineering, Jiangsu University
– sequence: 4
  givenname: Maozhen
  surname: Li
  fullname: Li, Maozhen
  organization: Department of Electronic and Computer Engineering, Brunel University, The Key Laboratory of Embedded Systems and Service Computing, Tongji University
– sequence: 5
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  organization: College of Information Science and Engineering, Hunan University
BookMark eNp9kctqHDEQRYWxIWPHP5CVIOtO9OxRL4NJ4oAhm2Qt1FL1jEy31C5pHPJF-c1oZgKGLLwqqLqnXveaXKacgJB3nH3gjG0_Fsa04B3jQ8eUMroTF2TDlZSdZNpckg0bVCv3Sr4h16U8MsZUb_SG_LmPgA79Pno3U1crxvFQodAZHKaYdnTKSFcIUFrJJYrQxQCpxqkRNeZEn6Ojq0M3zzDTUrPfu1Kjpzt0ITYlbaw_Rp-XMSYI9Fese7rkpSUPS0sjgj-1cilQF9xa4zO8bICuwltyNbm5wO2_eEN-fvn84-6-e_j-9dvdp4fOSz7Ubhz70WhQZpIquCH4drdSWgkFwoPQ0AfgW2PC1EMYjA7bwYhe6K0SQo-DkDfk_bnvivnp0I62j_mAqY20QhitOJNaNpU5qzzmUhAm62M9faOii7PlzB5tsWdbbLPFnmyxxwHiP3TFuDj8_Tokz1Bp4rQDfNnqFeov3FKmXw
CitedBy_id crossref_primary_10_3233_JIFS_189834
crossref_primary_10_1109_JIOT_2021_3065368
crossref_primary_10_1007_s00521_022_07300_7
crossref_primary_10_3390_buildings13010027
crossref_primary_10_1109_TII_2021_3064358
crossref_primary_10_1016_j_cag_2023_10_016
crossref_primary_10_32604_cmes_2023_025119
crossref_primary_10_1155_2022_7835241
crossref_primary_10_1371_journal_pone_0256836
crossref_primary_10_1016_j_jksuci_2023_101558
crossref_primary_10_1016_j_neunet_2021_10_021
crossref_primary_10_1002_cpe_70029
crossref_primary_10_1007_s00500_023_08061_8
crossref_primary_10_1080_10739149_2025_2529308
crossref_primary_10_3233_JIFS_189345
crossref_primary_10_1007_s00521_021_05951_6
crossref_primary_10_3390_jmse11091807
Cites_doi 10.1109/ICCVW.2017.318
10.1109/TPDS.2014.2308221
10.1007/s00521-018-3922-2
10.1007/978-3-319-46475-6_30
10.1007/s10619-014-7156-8
10.1007/978-3-319-27674-8_24
10.1007/978-3-642-41822-8_38
10.1016/j.neunet.2017.06.003
10.1016/j.jfranklin.2017.09.003
10.1109/CVPRW.2017.129
10.1109/CVPR.2017.195
10.1109/CVPRW.2010.5543255
10.1109/IJCNN.2017.7966082
10.1109/CVPR.2010.5539926
10.1109/CVPR.2015.7298594
10.1016/j.patrec.2016.09.015
10.5244/C.26.24
10.1109/ICIP.2016.7533166
10.1109/TII.2019.2909473
10.1016/j.neucom.2013.12.017
10.1109/CVPR.2018.00709
10.1109/CVPR.2011.5995719
10.1109/CVPR.2013.461
10.1186/s40064-016-1931-0
10.1080/10543406.2014.941987
10.1016/j.neucom.2014.05.011
10.1007/s00521-017-3164-8
10.1109/TPDS.2018.2877359
10.1109/ICASSP.2017.7952446
10.1007/978-1-4471-6296-4_5
10.1109/NCVPRIPG.2013.6776234
10.1109/TC.2013.205
10.1109/ROMA.2016.7847818
10.1007/978-3-319-48881-3_2
10.1109/ICME.2018.8486604
10.1007/s00521-017-3167-5
10.1109/BigData.2015.7364091
10.5220/0006622901140122
10.1145/2897937.2897995
10.1109/ICCV.2015.314
10.1007/s00521-018-3809-2
10.3390/app9102027
10.1007/978-1-4471-6296-4_12
10.1046/j.1365-2958.1996.00063.x
10.1109/CVPR.2013.460
10.1109/DICTA.2016.7797032
10.1109/ICIP.2015.7351743
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04485-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5712
ExternalDocumentID 10_1007_s00521_019_04485_2
GrantInformation_xml – fundername: Young Scientists Fund
  grantid: 61602215
  funderid: http://dx.doi.org/10.13039/501100010909
– fundername: National Engineering Laboratory Director Foundation of Big Data Application for Social Security Risk Perception and Prevention
  grantid: 2018
– fundername: Major Research Plan
  grantid: 61672268; 61972183
  funderid: http://dx.doi.org/10.13039/501100010905
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-bb6b85e48f34da9dc094445424e2ce25e6de1788df6ed985d798262574225b923
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529745200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 22:07:32 EST 2025
Sat Nov 29 02:59:13 EST 2025
Tue Nov 18 22:15:19 EST 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Pedestrian attributes
CNN
Parameter exchanging
Parallel SGD
Pedestrian re-identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bb6b85e48f34da9dc094445424e2ce25e6de1788df6ed985d798262574225b923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5240-1605
PQID 2285410353
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_2285410353
crossref_citationtrail_10_1007_s00521_019_04485_2
crossref_primary_10_1007_s00521_019_04485_2
springer_journals_10_1007_s00521_019_04485_2
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Li Y, Tong G, Li X, Wang Y, Zou B, Liu Y (2019) PARNet: a joint loss function and dynamic weights network for pedestrian semantic attributes recognition of smart surveillance image. In: Multidisciplinary digital publishing institute, applied sciences, p 2027
MwakalongeJLSiuhiSWhiteJDistracted walking: examining the extent to pedestrian safety problemsJ Traffic Transp Eng201525327337
Dass J, Sharma M, Hassan E, Ghosh H (2013) A density based method for automatic hairstyle discovery and recognition. In: Proceedings of the national conference on computer vision, pattern recognition, image processing and graphics, pp 1–4
Guo J, Gould S (2016) Depth dropout: efficient training of residual convolutional neural networks. In: Proceedings of the international conference on digital image computing: techniques and applications, pp 1–7
Botev A, Lever G, Barber D (2016) Nesterov’s accelerated gradient and momentum as approximations to regularised update descent In: Proceedings of the international joint conference on neural network, pp 1899–1903
Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Computer vision and pattern recognition, pp 2360–2367
Flores A, Belongie SJ (2010) Removing pedestrians from google street view images. In: Computer vision and pattern recognition, pp 53–58
Song L, Wang Y, Han Y, Zhao X, Liu B, Li X (2016) C-brain: a deep learning accelerator that tames the diversity of cnns through adaptive data-level parallelization. In: Proceedings of the design automation conference, p 123
Huanzhou Z, Zhuoer G, Haiming Z, Keyang C, Chang-Tsun L, Ligang H (2018) Developing a pattern discovery method in time series data and its GPU acceleration. In: TUP, Big data mining and analytics, pp 266–283
Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of the IEEE international workshop on performance evaluation for tracking and surveillance, vol 3(5), pp 501–512
Umeda T, Sun Y, Irie G, Sudo K, Kinebuchi T (2016) Attribute discovery for person re-identification. In: International conference on multimedia modeling. Springer, New York, pp 268–276
Zhang J, Wang N, Zhang L (2018) Multi-shot pedestrian re-identification via sequential decision making. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6781–6789
LatifiAFoglinoMTanakaKWilliamsPLazdunskiAA hierarchical quorum-sensing cascade in pseudomonas aeruginosa links the transcriptional activators lasr and rhir (vsmr) to expression of the stationary-phase sigma factor rposMol Microbiol19962161137114610.1046/j.1365-2958.1996.00063.x
Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Rabinovich A (2015) Going deeper with convolutions In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
Layne R, Hospedales TM, Gong S (2014) Attributes-based re-identification. Springer, London (Person Re-Identification)
ChengKXuFTaoFQiMLiMData-driven pedestrian re-identification based on hierarchical semantic representationConcurr Comput Pract Exp20179e4403
Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY (2017) Resnet-based vehicle classification and localization in traffic surveillance systems. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 934–940
ChatzipavlisATsekourasGETrygonisVVelegrakisAFTsimikasJRigosASalmasCModeling beach realignment using a neuro-fuzzy network optimized by a novel backtracking search algorithmNeural Comput Appl2019311747176310.1007/s00521-018-3809-2
LiKYangWLiKPerformance analysis and optimization for SpMV on GPU using probabilistic modelingIEEE Trans Parallel Distrib Syst2015261196205338126910.1109/TPDS.2014.2308221
Chen Z, Li A, Wang Y (2019) Video-Based Pedestrian Attribute Recognition In: Computer vision and pattern recognition. arXiv:1901.05742
DongXTsongYShenMEquivalence tests for interchangeability based on two one-sided probabilitiesJ Biopharm Stat201424613321348327378910.1080/10543406.2014.941987
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the international conference on learning representations
CaiLZhuJZengHChenJCaiCMaKHog-assisted deep feature learning for pedestrian gender recognitionJ Frank Inst20183551991200810.1016/j.jfranklin.2017.09.003
Wang X, Zheng S, Yang R, Luo B, Tang J (2019) Pedestrian attribute recognition: a survey. In: Computer vision and pattern recognition. arXiv:1901.07474
Wang L, Yang Y, Min MR, Chakradhar ST (2017) Accelerating deep neural network training with inconsistent stochastic gradient descent. In: Neural networks the official journal of the international neural network society. Elsevier, pp 219–229
Nguyen TP, Manzanera A, Kropatsch WG (2014) Impact of topology-related attributes from local binary patterns on texture classification. In: Proceedings of the European conference on computer vision, pp 80–93
Vedaldi A, Lenc K (2014) Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on multimedia, pp 689–692
Roth PM, Hirzer M, Kostinger M, Beleznai C, Bischof H (2014) Mahalanobis distance learning for person re-identification. In: Springer, London (Person Re-Identification), pp 247–267
Chen J, Li K, Deng Q, Li K (2019) Distributed deep learning model for intelligent video surveillance systems with edge computing. In: IEEE, transactions on industrial informatics, p 1
Loshchilov I, Hutter F (2016) Sgdr: stochastic gradient descent with restarts. In: Proceedings of the international conference on learning representations
Hadgu AT, Nigam A, Diaz-Aviles E (2015) Large-scale learning with adagrad on spark. In: Proceedings of the IEEE international conference on Big Data, pp 2828–2830
Gao M, Ai H, Bai B (2016) A feature fusion strategy for person re-identification In: Proceedings of the international conference on image processing, pp 4274–4278
MoscaAMagoulasGDCustomised ensemble methodologies for deep learning: Boosted Residual Networks and related approachesNeural Comput Appl2019311713173110.1007/s00521-018-3922-2
Yan Z, Zhang H, Piramuthu R, Jagadeesh V (2015) Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In: Proceedings of the IEEE international conference on computer vision, pp 2740–2748
Li D, Zhang Z, Chen X, Ling H, Huang K (2016) A richly annotated dataset for pedestrian attribute recognition. In: Computer vision and pattern recognition. arXiv:1603.07054
HajjNadineAwadMarietteA piecewise weight update rule for a supervised training of cortical algorithmsNeural Comput Appl2019311915193010.1007/s00521-017-3167-5
Cheng K, Hui K, Zhan Y (2017) Sparse representations based distributed attribute learning for person re-identification In: Multimedia tools and applications. Springer, New York, pp 25015–25037
Cheng K, Tan X, Li M (2014) Sparse representations based attribute learning for flower classification. In: Neurocomputing. Elsevier, pp 416–426
FanQWuWZuradaJMConvergence of batch gradient learning with smoothing regularization and adaptive momentum for neural networksSpringerPlus20165129510.1186/s40064-016-1931-0
Chollet François (2017) Xception: Deep learning with depthwise separable convolutions In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 0.5$$\end{document} MB model size. In: Computer vision and pattern recognition. arXiv:1602.07360
Zhao R, Ouyang W, Wang X (2013) Unsupervised salience learning for person re-identification. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 3586–3593
Lazo-Cortes MS, Carrasco-Ochoa JA, Sanchez-Diaz G (2013) Easy categorization of attributes in decision tables based on basic binary discernibility matrix. In: Iberoamerican congress on pattern recognition. Springer, New York, pp 302–310
Layne R, Hospedales TM, Gong S (2012) Person re-identification by attributes. In: British machine vision conference, pp 1–11
Li D, Chen X, Zhang Z, Huang K (2018) Pose guided deep model for pedestrian attribute recognition in surveillance scenarios. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), pp 1–6
Bhinge S, Levin-Schwartz Y, Adal T (2017) Data-driven fusion of multi-camera video sequences: application to abandoned object detection. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing, pp 1697–1701
Chen J, Li K, Bilal K, Zhou X, Li K, Yu PS (2019) A bi-layered parallel training architecture for large-scale convolutional neural networks. In: IEEE, transactions on parallel and distributed systems, pp 965–976
Rafegas I, Vanrell M (2017) Color representation in cnns: parallelisms with biological vision. In: Proceedings of the IEEE international conference on computer vision workshop, pp 2697–2705
LiKTangXVeeravalliBLiKScheduling precedence constrained stochastic tasks on heterogeneous cluster systemsIEEE Trans Comput201564119120432967881360.6827610.1109/TC.2013.205
Li W, Wang X (2013) Locally aligned feature transforms across views. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3594–3601
Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Performance measures and a data set for multi-target, multi-camera tracking. In: Proceedings of the European conference on computer vision workshops, pp 17–35
LiuYYangJHuangYXuLLiSQiMMapreduce based parallel neural networks in enabling large scale machine learningComput Intell Neurosci2015201529767229
VD Hoang (4485_CR54) 2014; 135
Q Fan (4485_CR35) 2016; 5
4485_CR53
K Cheng (4485_CR11) 2017; 9
4485_CR52
4485_CR51
4485_CR50
G Xiao (4485_CR24) 2015; 33
A Latifi (4485_CR5) 1996; 21
4485_CR19
L Cai (4485_CR45) 2018; 355
4485_CR18
4485_CR13
4485_CR57
4485_CR12
4485_CR56
4485_CR55
4485_CR10
4485_CR17
4485_CR16
4485_CR15
4485_CR59
4485_CR58
4485_CR60
4485_CR20
4485_CR64
4485_CR63
X Dong (4485_CR49) 2014; 24
4485_CR62
4485_CR61
K Li (4485_CR28) 2015; 64
EG Danaci (4485_CR14) 2016; 84
A Chatzipavlis (4485_CR41) 2019; 31
A Mosca (4485_CR9) 2019; 31
4485_CR23
4485_CR21
4485_CR65
Y Liu (4485_CR22) 2015; 2015
4485_CR27
4485_CR26
4485_CR25
4485_CR7
4485_CR6
4485_CR4
4485_CR31
4485_CR3
4485_CR30
4485_CR1
4485_CR34
4485_CR33
4485_CR32
4485_CR39
Nadine Hajj (4485_CR40) 2019; 31
4485_CR38
4485_CR37
4485_CR36
JL Mwakalonge (4485_CR2) 2015; 2
4485_CR42
MM Oghaz (4485_CR8) 2019; 31
K Li (4485_CR29) 2015; 26
4485_CR46
4485_CR44
4485_CR43
4485_CR48
4485_CR47
References_xml – reference: Wang X, Zheng S, Yang R, Luo B, Tang J (2019) Pedestrian attribute recognition: a survey. In: Computer vision and pattern recognition. arXiv:1901.07474
– reference: Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 0.5$$\end{document} MB model size. In: Computer vision and pattern recognition. arXiv:1602.07360
– reference: Hadgu AT, Nigam A, Diaz-Aviles E (2015) Large-scale learning with adagrad on spark. In: Proceedings of the IEEE international conference on Big Data, pp 2828–2830
– reference: LiuYYangJHuangYXuLLiSQiMMapreduce based parallel neural networks in enabling large scale machine learningComput Intell Neurosci20152015297672297672
– reference: XiaoGLiKLiKXuZEfficient top-(k, l) top range query processing for uncertain data based on multicore architecturesDistrib Parallel Databases201533338141310.1007/s10619-014-7156-8
– reference: Flores A, Belongie SJ (2010) Removing pedestrians from google street view images. In: Computer vision and pattern recognition, pp 53–58
– reference: Layne R, Hospedales TM, Gong S (2014) Attributes-based re-identification. Springer, London (Person Re-Identification)
– reference: Huanzhou Z, Zhuoer G, Haiming Z, Keyang C, Chang-Tsun L, Ligang H (2018) Developing a pattern discovery method in time series data and its GPU acceleration. In: TUP, Big data mining and analytics, pp 266–283
– reference: ChengKXuFTaoFQiMLiMData-driven pedestrian re-identification based on hierarchical semantic representationConcurr Comput Pract Exp20179e4403
– reference: FanQWuWZuradaJMConvergence of batch gradient learning with smoothing regularization and adaptive momentum for neural networksSpringerPlus20165129510.1186/s40064-016-1931-0
– reference: Li W, Wang X (2013) Locally aligned feature transforms across views. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3594–3601
– reference: Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Computer vision and pattern recognition, pp 2360–2367
– reference: Ali H, Hariharan M, Yaacob S, Adom AH, Zaba SK, Elshaikh M (2016) Facial emotion recognition under partial occlusion using empirical mode decomposition. In: Proceedings of the IEEE international symposium on robotics and manufacturing automation, pp 1–6
– reference: Roth PM, Hirzer M, Kostinger M, Beleznai C, Bischof H (2014) Mahalanobis distance learning for person re-identification. In: Springer, London (Person Re-Identification), pp 247–267
– reference: OghazMMMaarofMARohaniMFZainalAShaidSZAn optimized skin texture model using gray-level co-occurrence matrixNeural Comput Appl2019311835185310.1007/s00521-017-3164-8
– reference: Dass J, Sharma M, Hassan E, Ghosh H (2013) A density based method for automatic hairstyle discovery and recognition. In: Proceedings of the national conference on computer vision, pattern recognition, image processing and graphics, pp 1–4
– reference: LatifiAFoglinoMTanakaKWilliamsPLazdunskiAA hierarchical quorum-sensing cascade in pseudomonas aeruginosa links the transcriptional activators lasr and rhir (vsmr) to expression of the stationary-phase sigma factor rposMol Microbiol19962161137114610.1046/j.1365-2958.1996.00063.x
– reference: Song L, Wang Y, Han Y, Zhao X, Liu B, Li X (2016) C-brain: a deep learning accelerator that tames the diversity of cnns through adaptive data-level parallelization. In: Proceedings of the design automation conference, p 123
– reference: Li D, Chen X, Zhang Z, Huang K (2018) Pose guided deep model for pedestrian attribute recognition in surveillance scenarios. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), pp 1–6
– reference: Gao M, Ai H, Bai B (2016) A feature fusion strategy for person re-identification In: Proceedings of the international conference on image processing, pp 4274–4278
– reference: Lazo-Cortes MS, Carrasco-Ochoa JA, Sanchez-Diaz G (2013) Easy categorization of attributes in decision tables based on basic binary discernibility matrix. In: Iberoamerican congress on pattern recognition. Springer, New York, pp 302–310
– reference: Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY (2017) Resnet-based vehicle classification and localization in traffic surveillance systems. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 934–940
– reference: Loshchilov I, Hutter F (2016) Sgdr: stochastic gradient descent with restarts. In: Proceedings of the international conference on learning representations
– reference: Bo L, Lai K, Ren X, Fox D (2011) Object recognition with hierarchical kernel descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1729–1736
– reference: Botev A, Lever G, Barber D (2016) Nesterov’s accelerated gradient and momentum as approximations to regularised update descent In: Proceedings of the international joint conference on neural network, pp 1899–1903
– reference: Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of the IEEE international workshop on performance evaluation for tracking and surveillance, vol 3(5), pp 501–512
– reference: Zhang J, Wang N, Zhang L (2018) Multi-shot pedestrian re-identification via sequential decision making. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6781–6789
– reference: Chen J, Li K, Bilal K, Zhou X, Li K, Yu PS (2019) A bi-layered parallel training architecture for large-scale convolutional neural networks. In: IEEE, transactions on parallel and distributed systems, pp 965–976
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the international conference on learning representations
– reference: Kang S, Lee D, Yoo CD (2015) Face attribute classification using attribute-aware correlation map and gated convolutional neural networks. In: Proceedings of the international conference on image processing, pp 4922–4926
– reference: Nguyen TP, Manzanera A, Kropatsch WG (2014) Impact of topology-related attributes from local binary patterns on texture classification. In: Proceedings of the European conference on computer vision, pp 80–93
– reference: DongXTsongYShenMEquivalence tests for interchangeability based on two one-sided probabilitiesJ Biopharm Stat201424613321348327378910.1080/10543406.2014.941987
– reference: Cheng K, Hui K, Zhan Y (2017) Sparse representations based distributed attribute learning for person re-identification In: Multimedia tools and applications. Springer, New York, pp 25015–25037
– reference: Chollet François (2017) Xception: Deep learning with depthwise separable convolutions In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
– reference: Chen J, Li K, Deng Q, Li K (2019) Distributed deep learning model for intelligent video surveillance systems with edge computing. In: IEEE, transactions on industrial informatics, p 1
– reference: Vedaldi A, Lenc K (2014) Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on multimedia, pp 689–692
– reference: Li W, Zhao R, Wang X (2012) Human reidentification with transferred metric learning. In: Asian conference on computer vision. Springer, New York, pp 31–44
– reference: Umeda T, Sun Y, Irie G, Sudo K, Kinebuchi T (2016) Attribute discovery for person re-identification. In: International conference on multimedia modeling. Springer, New York, pp 268–276
– reference: Bhinge S, Levin-Schwartz Y, Adal T (2017) Data-driven fusion of multi-camera video sequences: application to abandoned object detection. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing, pp 1697–1701
– reference: Li D, Zhang Z, Chen X, Ling H, Huang K (2016) A richly annotated dataset for pedestrian attribute recognition. In: Computer vision and pattern recognition. arXiv:1603.07054
– reference: Chen Y, Duffner S, Stoian A, Dufour J, Baskurt A (2018) Pedestrian attribute recognition with part-based CNN and combined feature representations. In: Proceedings of the international joint conference on computer vision imaging and computer graphics theory and applications, pp 114–122
– reference: MwakalongeJLSiuhiSWhiteJDistracted walking: examining the extent to pedestrian safety problemsJ Traffic Transp Eng201525327337
– reference: Chen Z, Li A, Wang Y (2019) Video-Based Pedestrian Attribute Recognition In: Computer vision and pattern recognition. arXiv:1901.05742
– reference: Bottou Leon (2012) Stochastic gradient descent tricks. In: Neural networks: tricks of the trade. Springer, New York, pp 421–436
– reference: Su C, Zhang S, Xing J, Gao W, Tian Q (2016) Deep attributes driven multi-camera person re-identification. In: Proceedings of the European conference on computer vision, pp 475–491
– reference: Zhao R, Ouyang W, Wang X (2013) Unsupervised salience learning for person re-identification. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 3586–3593
– reference: Yan Z, Zhang H, Piramuthu R, Jagadeesh V (2015) Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In: Proceedings of the IEEE international conference on computer vision, pp 2740–2748
– reference: Rafegas I, Vanrell M (2017) Color representation in cnns: parallelisms with biological vision. In: Proceedings of the IEEE international conference on computer vision workshop, pp 2697–2705
– reference: Layne R, Hospedales TM, Gong S (2012) Person re-identification by attributes. In: British machine vision conference, pp 1–11
– reference: ChatzipavlisATsekourasGETrygonisVVelegrakisAFTsimikasJRigosASalmasCModeling beach realignment using a neuro-fuzzy network optimized by a novel backtracking search algorithmNeural Comput Appl2019311747176310.1007/s00521-018-3809-2
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Rabinovich A (2015) Going deeper with convolutions In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
– reference: Wang L, Yang Y, Min MR, Chakradhar ST (2017) Accelerating deep neural network training with inconsistent stochastic gradient descent. In: Neural networks the official journal of the international neural network society. Elsevier, pp 219–229
– reference: LiKYangWLiKPerformance analysis and optimization for SpMV on GPU using probabilistic modelingIEEE Trans Parallel Distrib Syst2015261196205338126910.1109/TPDS.2014.2308221
– reference: CaiLZhuJZengHChenJCaiCMaKHog-assisted deep feature learning for pedestrian gender recognitionJ Frank Inst20183551991200810.1016/j.jfranklin.2017.09.003
– reference: HajjNadineAwadMarietteA piecewise weight update rule for a supervised training of cortical algorithmsNeural Comput Appl2019311915193010.1007/s00521-017-3167-5
– reference: Guo J, Gould S (2016) Depth dropout: efficient training of residual convolutional neural networks. In: Proceedings of the international conference on digital image computing: techniques and applications, pp 1–7
– reference: Sutskever I, Martens J, Dahl GE, Hinton GE (2013) On the importance of initialization and momentum in deep learning. In: Proceedings of the international conference on machine learning, pp 1139–1147
– reference: MoscaAMagoulasGDCustomised ensemble methodologies for deep learning: Boosted Residual Networks and related approachesNeural Comput Appl2019311713173110.1007/s00521-018-3922-2
– reference: Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: Proceedings of the international conference on learning representations
– reference: HoangVDLeMHJoKHHybrid cascade boosting machine using variant scale blocks based hog features for pedestrian detectionNeurocomputing2014135C35736610.1016/j.neucom.2013.12.017
– reference: Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Performance measures and a data set for multi-target, multi-camera tracking. In: Proceedings of the European conference on computer vision workshops, pp 17–35
– reference: DanaciEGIkizlercinbisNLow-level features for visual attribute recognitionPattern Recognit Lett20168418519110.1016/j.patrec.2016.09.015
– reference: Cheng K, Tan X, Li M (2014) Sparse representations based attribute learning for flower classification. In: Neurocomputing. Elsevier, pp 416–426
– reference: LiKTangXVeeravalliBLiKScheduling precedence constrained stochastic tasks on heterogeneous cluster systemsIEEE Trans Comput201564119120432967881360.6827610.1109/TC.2013.205
– reference: Li Y, Tong G, Li X, Wang Y, Zou B, Liu Y (2019) PARNet: a joint loss function and dynamic weights network for pedestrian semantic attributes recognition of smart surveillance image. In: Multidisciplinary digital publishing institute, applied sciences, p 2027
– ident: 4485_CR25
  doi: 10.1109/ICCVW.2017.318
– volume: 26
  start-page: 196
  issue: 1
  year: 2015
  ident: 4485_CR29
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2308221
– volume: 31
  start-page: 1713
  year: 2019
  ident: 4485_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3922-2
– ident: 4485_CR13
  doi: 10.1007/978-3-319-46475-6_30
– volume: 33
  start-page: 381
  issue: 3
  year: 2015
  ident: 4485_CR24
  publication-title: Distrib Parallel Databases
  doi: 10.1007/s10619-014-7156-8
– ident: 4485_CR55
– ident: 4485_CR64
  doi: 10.1007/978-3-319-27674-8_24
– ident: 4485_CR32
– ident: 4485_CR16
– ident: 4485_CR20
  doi: 10.1007/978-3-642-41822-8_38
– ident: 4485_CR59
– ident: 4485_CR33
  doi: 10.1016/j.neunet.2017.06.003
– volume: 355
  start-page: 1991
  year: 2018
  ident: 4485_CR45
  publication-title: J Frank Inst
  doi: 10.1016/j.jfranklin.2017.09.003
– ident: 4485_CR56
  doi: 10.1109/CVPRW.2017.129
– ident: 4485_CR58
  doi: 10.1109/CVPR.2017.195
– ident: 4485_CR46
– ident: 4485_CR1
  doi: 10.1109/CVPRW.2010.5543255
– ident: 4485_CR36
  doi: 10.1109/IJCNN.2017.7966082
– ident: 4485_CR62
  doi: 10.1109/CVPR.2010.5539926
– ident: 4485_CR48
– ident: 4485_CR57
  doi: 10.1109/CVPR.2015.7298594
– volume: 84
  start-page: 185
  year: 2016
  ident: 4485_CR14
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2016.09.015
– ident: 4485_CR63
  doi: 10.5244/C.26.24
– volume: 2015
  start-page: 297672
  year: 2015
  ident: 4485_CR22
  publication-title: Comput Intell Neurosci
– ident: 4485_CR23
– ident: 4485_CR50
– ident: 4485_CR15
  doi: 10.1109/ICIP.2016.7533166
– ident: 4485_CR30
  doi: 10.1109/TII.2019.2909473
– volume: 135
  start-page: 357
  issue: C
  year: 2014
  ident: 4485_CR54
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.017
– ident: 4485_CR3
  doi: 10.1109/CVPR.2018.00709
– ident: 4485_CR4
  doi: 10.1109/CVPR.2011.5995719
– ident: 4485_CR51
  doi: 10.1109/CVPR.2013.461
– volume: 5
  start-page: 295
  issue: 1
  year: 2016
  ident: 4485_CR35
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-1931-0
– volume: 24
  start-page: 1332
  issue: 6
  year: 2014
  ident: 4485_CR49
  publication-title: J Biopharm Stat
  doi: 10.1080/10543406.2014.941987
– ident: 4485_CR17
  doi: 10.1016/j.neucom.2014.05.011
– volume: 31
  start-page: 1835
  year: 2019
  ident: 4485_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3164-8
– ident: 4485_CR47
– ident: 4485_CR27
  doi: 10.1109/TPDS.2018.2877359
– ident: 4485_CR12
  doi: 10.1109/ICASSP.2017.7952446
– ident: 4485_CR60
  doi: 10.1007/978-1-4471-6296-4_5
– ident: 4485_CR18
  doi: 10.1109/NCVPRIPG.2013.6776234
– volume: 64
  start-page: 191
  issue: 1
  year: 2015
  ident: 4485_CR28
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2013.205
– ident: 4485_CR6
  doi: 10.1109/ROMA.2016.7847818
– ident: 4485_CR53
  doi: 10.1007/978-3-319-48881-3_2
– ident: 4485_CR34
– ident: 4485_CR43
  doi: 10.1109/ICME.2018.8486604
– ident: 4485_CR44
– volume: 31
  start-page: 1915
  year: 2019
  ident: 4485_CR40
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3167-5
– ident: 4485_CR37
  doi: 10.1109/BigData.2015.7364091
– ident: 4485_CR21
– ident: 4485_CR31
– ident: 4485_CR42
  doi: 10.5220/0006622901140122
– ident: 4485_CR26
  doi: 10.1145/2897937.2897995
– ident: 4485_CR52
– ident: 4485_CR38
– ident: 4485_CR7
  doi: 10.1109/ICCV.2015.314
– volume: 9
  start-page: e4403
  year: 2017
  ident: 4485_CR11
  publication-title: Concurr Comput Pract Exp
– volume: 2
  start-page: 327
  issue: 5
  year: 2015
  ident: 4485_CR2
  publication-title: J Traffic Transp Eng
– volume: 31
  start-page: 1747
  year: 2019
  ident: 4485_CR41
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3809-2
– ident: 4485_CR39
  doi: 10.3390/app9102027
– ident: 4485_CR61
  doi: 10.1007/978-1-4471-6296-4_12
– volume: 21
  start-page: 1137
  issue: 6
  year: 1996
  ident: 4485_CR5
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1996.00063.x
– ident: 4485_CR65
  doi: 10.1109/CVPR.2013.460
– ident: 4485_CR10
  doi: 10.1109/DICTA.2016.7797032
– ident: 4485_CR19
  doi: 10.1109/ICIP.2015.7351743
SSID ssj0004685
Score 2.314347
Snippet Convolutional neural networks (CNNs) have obtained high accuracy results for pedestrian re-identification in the past few years. There is always a trade-off...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5695
SubjectTerms Accuracy
Adaptive learning
Advances in Parallel and Distributed Computing for Neural Computing
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computing time
Data Mining and Knowledge Discovery
Identification methods
Image Processing and Computer Vision
Learning
Momentum
Optimization
Parameters
Probability and Statistics in Computer Science
Training
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELX4OnAp0ILYFtAcuFGLjWPvZk9VhUAcEOIACPUSOfYEVgphmw38Jf4mM16HbZHgwjVxLEfPHs_YM-8JsZ-Sx9b3w1LylZ3UrsxkURIgOhn20bjCmCAHdH02PD_Pbm5GF_HAbRrTKjubGAy1f3B8Rn6ouNQv6acm_TX5K1k1im9Xo4TGolhmlgSWbrgwf_6piwySnBTBcHaPTmPRTCid4_NQDqT5akBnRqr_N6a5t_nmgjTsOydrnx3xuvgSPU74PZsiG2IB669irVNzgLi4v4nn0zEXIwdtlApsO5PCwilEYYlbIP8WJugxSH3U0KAc-5hsFPCFp7EF5hKvKqyAvEp3Z5kGGm6bkFjWgp-RRwH9AEXk6IGPgeGeWSDax3t63AQDTF3Z2oP1dsLWeD4C5rXYFFcnx5dHpzLKOEhH67uVRTEoMoM6K1Pt7cg7wkNro5VG5VAZHHhMKBL35QD9KDN-OKKYh0yJJltTkAO6JZbqhxq3BaTKugwpoHflQCdeWZ8mFFFm1KhgR6Mnkg7D3EWOc5baqPJXduaAe0645wH3XPXEwes3kxnDx4etdzqw87jap_kc6Z742U2X-ev3e_v-cW8_xKri8D7kV-6IpbZ5xF2x4p7a8bTZC3P9BZFSBr4
  priority: 102
  providerName: ProQuest
Title Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate
URI https://link.springer.com/article/10.1007/s00521-019-04485-2
https://www.proquest.com/docview/2285410353
Volume 32
WOSCitedRecordID wos000529745200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB210EMvQGkrQmk0h96opdjeTZwjRSAOKIr6gRAXa707ppGMiRzDX-JvMrNZJwW1ldqrvV6tNLPjebsz7wF8SjljG7hRGcmVXaRsmUVFyQZR8WhA2hZaezmgi_PRZJJdXo6noSls0VW7d1eSPlKvmt3kBFOgrxzmq0xHHHg3tbDNCEb_dvFLN6QX4mTcIjU9Kg2tMr-f4-nvaJ1jPrsW9X-b0-3_W-cObIXsEo-W7vAGXlC9C9udcgOGjfwWHs5m0njsdVAqNO1S9ooWGEQkrpFzWZyTIy_rUWND0cyFwiJvS7yfGRTe8KqiCjmDtD-NUD7jdeOLyFp0S6Io5FUz-iaHcuSLN8L40N7d8OPGB1ueytQOjTNzibzrFQiHxTv4cXry_fgsCpINkeW93EZFMSwyTSorU-XM2Fm2glJaJYoSS4mmoaOYUbcrh-TGmXajMeMbDhuK40rByeZ72Khva9oDTBNjM2Lwbsuhil1iXBozesx4UCFJRQ_iznK5DXzmIqtR5SsmZm-JnC2Re0vkSQ8OV9_Ml2wefx190DlEHnb2Ik-k5TQepDrtwefOAdav_zzb_r8N_wCvE4H2vrbyADba5o4-wit7384WTR82v5xMpl_78HKqr_re_x8BKC__RA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLRJcKJ_q0gJzgBNYJI6dTQ4IIaDaqsuqh4IqLiGxnbJSmi7ZtIhfxI3fyIyTdAGJ3nrgmjhWZD-PZ-yZ9wCeROSxBXZcCr6yE8qUiShKmhAVjgOnTaG1lwP6OB3PZsnRUXqwBj-HWhhOqxxsojfU9tTwGfkLyaV-YRDp6NXiq2DVKL5dHSQ0Oljsu-_fKGRbvtx7S_P7VMrdd4dvJqJXFRCG4NaKooiLRDuVlJGyeWoNBThKaSWVk8ZJ7WLrQgoMbRk7mybajlNywQnZiqBfpEx0QCZ_QykZsGLCgf70Wx2mlwClDjmbSEV9kY4v1ePzVw7c-SpCJVrIPzfClXf714Ws3-d2N_-3EboFN3uPGl93S-A2rLn6DmwOahXYG6-78GMy52Jrr_1SYd52Ul9uib1wxjGS_44LZ52XMqmxcWJu-2Qqj188n-fIXOlV5Sokr9l8yZnmGo8bnzjXou3IsZAGrCD33SIfc-MJs1y0Zyf0uPEbDHWV1xZzmy94t1n9AfN23IMPVzJc92G9Pq3dFmAkc5O4OA1MGavQytxGIUXMCTUq2JEaQThgJjM9hztLiVTZBfu0x1lGOMs8zjI5gmcX3yw6BpNLW-8M4Mp6a7bMVsgawfMBnqvX_-7tweW9PYbrk8P302y6N9vfhhuSjzJ8LukOrLfNmXsI18x5O182j_w6Q_h81bD9BTdbYiU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwELUQIMRlWb5EgYU5cIOIJrHb9Ih2twKBKsSXuEWOPYFKIVulgb_E32TGSVpYARLimjiWo7HH8-yZ94TYCylia9tu6vGVnSdNGnlJSgaRfreNyiRKOTmgm7PuYBDd3vbOX1Xxu2z35kqyqmlglqa8PBzZ9HBS-ManmQyD-WBfRsojJzwnCclwUtfF5c2rykgnykkYhvN7ZFiXzbzfx9utaRpv_ndF6nae_tL3x_xT_KijTjiqpsmymMF8RSw1ig5QL_BV8Xw85IJkp4-SgS4rOSwcQy0ucQcU48IILTq5jxwK9Ia2TjhyNoanoQbmE88yzIAiS3OvmQoa7gqXXFaCrQikgP6AUDla4KNgeGAmiPLxgR4XzglTVzq3oK0esUeejoC5LdbEdf_v1e9jr5Zy8Ayt8dJLkk4SKZRRGkqre9aQRaRUMpAYGAwUdiz6hMZt2kHbi5Tt9gj3kDuR5G8SCkLXxWz-L8cNAWGgTYQE6k3akb4NtA19QpURNUo42GgJv7FibGqec5bbyOIJQ7OzREyWiJ0l4qAl9iffjCqWj09bbzeTI65X_DgOuBTVb4cqbImDZjJMX3_c2-bXmu-KhfM__fjsZHC6JRYDRv8u_XJbzJbFI_4S8-apHI6LHbcQXgCHrgiB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+attributes+learning+for+pedestrian+re-identification+via+parallel+stochastic+gradient+descent+combined+with+momentum+correction+and+adaptive+learning+rate&rft.jtitle=Neural+computing+%26+applications&rft.au=Cheng%2C+Keyang&rft.au=Tao%2C+Fei&rft.au=Zhan%2C+Yongzhao&rft.au=Li%2C+Maozhen&rft.date=2020-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=5695&rft.epage=5712&rft_id=info:doi/10.1007%2Fs00521-019-04485-2&rft.externalDocID=10_1007_s00521_019_04485_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon