A robust feature extraction with optimized DBN-SMO for facial expression recognition

Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one individual to another so that an automatic facial expression analysis and recognition is a difficult operation. To solve this difficulty, this p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 79; číslo 29-30; s. 21487 - 21512
Hlavní autori: Vedantham, Ramachandran, Reddy, Edara Sreenivasa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2020
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one individual to another so that an automatic facial expression analysis and recognition is a difficult operation. To solve this difficulty, this paper proposes a robust feature extraction with optimized DBN-SMO for facial expression recognition (FER). Initially, the pre-processing stage is performed then texture descriptors of Local Phase Quantization (LPQ), Weber Local Descriptor (WLD) and Local Binary Pattern (LBP) are used to extract the features. Moreover, Discrete Cosine Transform (DCT) features are extracted to enhance the recognition rate and reduce the computational cost. After that, the Principal component analysis (PCA) is used for dimension reduction. Finally, a deep belief network (DBN) with Spider monkey optimization (SMO) algorithm is used to classify basic expressions for FER. Here, SMO algorithm is used to optimize bias factors and initial connection weights that control the efficiency of the DBN. The proposed work is performed in the MATLAB environment. Experiments performed on Karolinska Directed Emotional Faces (KDEF), Man-Machine Interaction (MMI), Cohn Kanade (CK+), Extended Denver Intensity of Spontaneous Facial Actions (DISFA+) and Oulu-Chinese Academy of Science Institute of Automation (Oulu-CASIA) datasets and it provides a classification accuracy of 97.93%, 95.42%, 97.58%, 95.76%, and 92.38% respectively, this is higher than other current procedures for seven-class emotion.
AbstractList Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one individual to another so that an automatic facial expression analysis and recognition is a difficult operation. To solve this difficulty, this paper proposes a robust feature extraction with optimized DBN-SMO for facial expression recognition (FER). Initially, the pre-processing stage is performed then texture descriptors of Local Phase Quantization (LPQ), Weber Local Descriptor (WLD) and Local Binary Pattern (LBP) are used to extract the features. Moreover, Discrete Cosine Transform (DCT) features are extracted to enhance the recognition rate and reduce the computational cost. After that, the Principal component analysis (PCA) is used for dimension reduction. Finally, a deep belief network (DBN) with Spider monkey optimization (SMO) algorithm is used to classify basic expressions for FER. Here, SMO algorithm is used to optimize bias factors and initial connection weights that control the efficiency of the DBN. The proposed work is performed in the MATLAB environment. Experiments performed on Karolinska Directed Emotional Faces (KDEF), Man-Machine Interaction (MMI), Cohn Kanade (CK+), Extended Denver Intensity of Spontaneous Facial Actions (DISFA+) and Oulu-Chinese Academy of Science Institute of Automation (Oulu-CASIA) datasets and it provides a classification accuracy of 97.93%, 95.42%, 97.58%, 95.76%, and 92.38% respectively, this is higher than other current procedures for seven-class emotion.
Author Vedantham, Ramachandran
Reddy, Edara Sreenivasa
Author_xml – sequence: 1
  givenname: Ramachandran
  surname: Vedantham
  fullname: Vedantham, Ramachandran
  email: vrc.bhatt@gmail.com
  organization: IT Department, Vasireddy Venkatadri Institute of Technology
– sequence: 2
  givenname: Edara Sreenivasa
  surname: Reddy
  fullname: Reddy, Edara Sreenivasa
  organization: Principal, ANU College of Engineering & Technology, Acharya Nagarjuna University
BookMark eNp9kL1OwzAURi1UJNrCCzBFYjZc20mcjKX8SoUOlNlyEru4auNiu6Lw9DgECYmh0_Vwju93vxEatLZVCJ0TuCQA_MoTAinFQAFDUQLB-yM0JBlnmHNKBvHNCsA8A3KCRt6vAEie0XSIFpPE2WrnQ6KVDDunErUPTtbB2Db5MOEtsdtgNuZLNcnN9TN-eZon2rpEy9rIdYS3TnnfwU7VdtmaTjxFx1quvTr7nWP0ene7mD7g2fz-cTqZ4ZqRMuCqAk44y5nmDeNVDM5VnmdEpkAKTTWnFa8qKZXkZZFD0zQxoya5lqzWRFM2Rhf9v1tn33fKB7GyO9fGlYKmjOYl0DSPVNFTtbPeO6VFbYLscsZDzVoQEF2Hou9QxA7FT4diH1X6T906s5Hu87DEeslHuF0q95fqgPUNFveHlQ
CitedBy_id crossref_primary_10_1007_s11042_023_14491_1
crossref_primary_10_1007_s11042_022_12438_6
crossref_primary_10_1007_s10791_025_09699_8
crossref_primary_10_1080_01431161_2025_2538829
crossref_primary_10_1093_comjnl_bxab088
crossref_primary_10_1007_s10878_022_00935_1
crossref_primary_10_1016_j_aej_2025_01_078
crossref_primary_10_1007_s12652_020_02235_0
crossref_primary_10_1007_s00500_023_08230_9
crossref_primary_10_1016_j_asoc_2021_107173
crossref_primary_10_1080_13682199_2022_2157956
crossref_primary_10_3389_fbioe_2022_855667
crossref_primary_10_1007_s11042_023_15982_x
Cites_doi 10.1109/FG.2018.00074
10.1007/s10462-017-9554-6
10.1007/978-981-10-8569-7_14
10.1007/s11263-017-1055-1
10.1109/ICCV.2015.341
10.1109/ACCESS.2017.2676238
10.1016/j.patcog.2016.07.026
10.1007/s11036-019-01366-9
10.1109/TIP.2017.2689999
10.21275/v5i4.NOV162465
10.1016/j.patcog.2016.12.002
10.1109/TAFFC.2018.2880201
10.1007/s10586-017-0935-z
10.1007/s11042-016-4324-z
10.1016/j.patcog.2017.02.003
10.23919/ChiCC.2018.8483540
10.1007/s00371-019-01636-3
10.1109/ANZCC.2018.8606597
10.1016/j.patcog.2019.106966
10.1109/CVPRW.2016.182
10.1007/978-981-10-3920-1_18
10.1109/ICMLA.2014.70
10.1109/ACCESS.2019.2917266
10.1007/s11760-017-1226-0
10.1109/LOCS.2019.2927959
10.1109/ISBAST.2012.14
10.1007/978-981-13-1921-1_13
10.1016/j.ijleo.2012.08.040
10.1007/s11042-017-5141-8
10.1049/iet-ipr.2018.5683
10.1109/TIP.2017.2726010
10.1007/978-3-319-14445-0_20
10.1016/j.procs.2015.08.504
10.1007/s11042-018-5812-0
10.1016/j.ijleo.2018.01.003
10.1016/j.neucom.2017.08.043
10.1016/j.neucom.2018.12.037
10.1016/j.jpdc.2019.04.017
10.1145/3123266.3123350
10.1016/j.ijleo.2015.08.205
10.1109/FG.2017.107
10.1007/978-981-10-8639-7_18
10.1109/TMM.2016.2598092
10.1109/ICIIP47207.2019.8985829
10.1016/j.compeleceng.2017.04.019
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-08901-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep (ProQuest)
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 21512
ExternalDocumentID 10_1007_s11042_020_08901_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-bb0717363f7d37b0897e6651a4018f2f72b7bbaaea79860dddfeaf16fa3cf1f23
IEDL.DBID BENPR
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 02:07:01 EST 2025
Sat Nov 29 06:20:03 EST 2025
Tue Nov 18 22:14:39 EST 2025
Fri Feb 21 02:37:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29-30
Keywords Feature extraction
FER
DCT
SMO
Deep belief network
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bb0717363f7d37b0897e6651a4018f2f72b7bbaaea79860dddfeaf16fa3cf1f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2432690246
PQPubID 54626
PageCount 26
ParticipantIDs proquest_journals_2432690246
crossref_citationtrail_10_1007_s11042_020_08901_x
crossref_primary_10_1007_s11042_020_08901_x
springer_journals_10_1007_s11042_020_08901_x
PublicationCentury 2000
PublicationDate 20200800
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 8
  year: 2020
  text: 20200800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Munir A, Hussain A, Khan SA, Nadeem M and Arshid S (2018) Illumination-invariant facial expression recognition using selected merged binary patterns for real world images, Optik-International Journal for Light and Electron Optics, Illumination invariant facial expression recognition using selected merged binary patterns for real world images
JiangRHoATSChehebIAl-MaadeedNAl-MaadeedSBouridaneAEmotion recognition from scrambled facial images via many graph embeddingPattern Recogn20176724525110.1016/j.patcog.2017.02.003
Naik S and Jagannath R (2018) GCV-based regularized extreme learning machine for facial expression recognition, advances in intelligent systems and computing, 129-138
Jung H, Lee S, Yim J, Park S and Kim J (2015) Joint fine-tuning in deep neural networks for facial expression recognition, in the IEEE international conference on computer vision (ICCV), IEEE
Zhang K, Huang Y, Du Y (2017) Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE transactions on image processing, 4193-4203
Zhang W, Zhao X, Morvan J and Chen L (2018) Improving shadow suppression for illumination robust face recognition. IEEE Trans Pattern Anal Mach Intell, 1–1
Valstar MF, Sánchez-Lozano E, Cohn JF, Jeni LA, Girard JM, Zhang Z, Yin L and Fera PM (2017) 2017-addressing head pose in the third facial expression recognition and analysis challenge, in Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on IEEE, 839-847
Ijjina EP and Mohan CK (2014) Facial expression recognition using Kinect depth sensor and convolutional neural networks. In machine learning and applications (ICMLA), 2014 13th international conference on IEEE, 392-396
Li M, Xu H, Huang X, Song Z, Liu X, Li X (2018) Facial expression recognition with identity and emotion joint learning. IEEE Trans Affect Comput:1–1
SunZHuZ-pWangMZhaoS-HDictionary learning feature space via sparse representation classification for facial expression recognitionArtif Intell Rev201951111810.1007/s10462-017-9554-6
ZhangZLuoPLoyCCTangXFrom facial expression recognition to interpersonal relation predictionInt J Comput Vis20181265550569377305510.1007/s11263-017-1055-1
Sajjad M, Shah A, Jan Z, Shah SI, Baik SW and Mehmood I (2017) Facial appearance and texture feature-based robust facial expression recognition framework for sentiment knowledge discovery, Cluster Computing, 1-19
Yang R-P, Liu Z-T, Zheng L-D, Wu J-P and C-C Hu (2018) Intelligent Mirror System Based on Facial Expression Recognition and Color Emotion Adaptation iMirror. In 2018 37th Chinese Control Conference (CCC), IEEE, 3227–3232.
YangYFangDZhuDFacial expression recognition using deep belief networkRev Tec Ing Univ Zulia2016392384392
UddinMZHassanMMAlmogrenAAlamriAAlrubaianMFortinoGFacial expression recognition utilizing local direction-based robust features and deep belief networkIEEE Access201754525453610.1109/ACCESS.2017.2676238
SharmaRPatterhMSA new pose-invariant face recognition system using PCA and ANFISOptik-International Journal for Light and Electron Optics2015126233483348710.1016/j.ijleo.2015.08.205
KhanSAHussainAUsmanMReliable facial expression recognition for multi-scale images using weber local binary image based cosine transform featuresMultimed Tools Appl20187711133116510.1007/s11042-016-4324-z
FangYChangLMulti-instance feature learning based on sparse representation for facial expression recognitionInternational conference on multimedia modeling2015ChamSpringer22423310.1007/978-3-319-14445-0_20
Ali K and Hughes CE (2019) Facial expression recognition using disentangled adversarial learning. arXiv preprint arXiv:1909.13135
SarodeNBhatiaSFacial expression recognitionInternational Journal on computer science and Engineering20102515521557
XieWJiaXShenLYangMSparse deep feature learning for facial expression recognitionPattern Recogn20199610696610.1016/j.patcog.2019.106966
GeorgescuM-IIonescuRTPopescuMLocal learning with deep and handcrafted features for facial expression recognitionIEEE Access20197648276483610.1109/ACCESS.2019.2917266
Mavadati M, Sanger P and Mahoor MH (2016) Extended disfa dataset: investigating posed and spontaneous facial expressions. In proceedings of the IEEE conference on computer vision and pattern recognition workshops, 1-8
Jain DK, Zhang Z and Huang K (2017) Multi angle optimal pattern-based deep learning for automatic facial expression recognition. Pattern Recogn Lett
JiYHuYYangYShenFShenHTCross-domain facial expression recognition via an intra-category common feature and inter-category distinction feature fusion networkNeurocomputing201933323123910.1016/j.neucom.2018.12.037
UddinMZHassanMMAlmogrenAZuairMFortinoGTorresenJA facial expression recognition system using robust face features from depth videos and deep learningComputers & Electrical Engineering20176311412510.1016/j.compeleceng.2017.04.019
LiangDLiangHYuZZhangYDeep convolutional BiLSTM fusion network for facial expression recognitionVis Comput202036349950810.1007/s00371-019-01636-3
ZhangTZhengWCuiZZongYYanJYanKA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Transactions on Multimedia201618122528253610.1109/TMM.2016.2598092
LuoYWuCZhangYFacial expression recognition based on fusion feature of PCA and LBP with SVMOptik - International Journal for Light and Electron Optics2013124172767277010.1016/j.ijleo.2012.08.040
KumarSKumariRSharmaVKFitness based position update in spider monkey optimization algorithmProcedia Computer Science20156244244910.1016/j.procs.2015.08.504
RyuBRiveraARKimJChaeOLocal directional ternary pattern for facial expression recognitionIEEE Trans Image Process2017261260066018371097910.1109/TIP.2017.2726010
VermaMVipparthiSKSinghGHinet: hybrid inherited feature learning network for facial expression recognitionIEEE Letters of the Computer Society201924363910.1109/LOCS.2019.2927959
AlphonseSADharmaDNovel directional patterns and a generalized supervised dimension reduction system (GSDRS) for facial emotion recognitionMultimed Tools Appl20187789455948810.1007/s11042-017-5141-8
Shah N and Priyanka (2018) An Improved Framework for Human Face Recognition, Advances in Intelligent Systems and Computing, 175–180
Yuan B, Cao H and Chu J (2012) Combining local binary pattern and local phase quantization for face recognition. In 2012 international symposium on biometrics and security technologies, IEEE 51-53
Tripathi A, Pandey S and Jangir H (2018) Efficient Facial Expression Recognition System Based on Geometric Features Using Neural Network, In Information and Communication Technology for Sustainable Development, Springer, Singapore 181–190.
Sun Z, Hu Z-P, Chiong R, Wang M and Zhao S (2018) An adaptive weighted fusion model with two subspaces for facial expression recognition, Signal, Image, and Video Processing, 1–9
Liu Y, Zeng J, Shan S and Zheng Z (2018) Multi-Channel pose-aware convolution neural networks for multi-view facial expression recognition, in Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE international conference on IEEE, 458-465
Maheswari VU, Raju SV and Reddy KS (2019) Local directional weighted threshold patterns (LDWTP) for facial expression recognition. In 2019 fifth international conference on image information processing (ICIIP), IEEE, 167-170
MandalMVermaMMathurSVipparthiSKMuralaSKumarDKRegional adaptive affinitive patterns (RADAP) with logical operators for facial expression recognitionIET Image Process201913585086110.1049/iet-ipr.2018.5683
Alrjebi MM, Liu W, Li L (2018) Face recognition against illuminations using two directional multi-level threshold-LBP and DCT. Multimed Tools Appl:1–21
Videla SL, Rao MRN, Anand D, Vankayalapati HD and Razia S (2019) Deformable facial fitting using active appearance model for emotion recognition. In Smart Intelligent Computing and Applications, Springer, Singapore 135–144
ChenJLvYXuRXuCAutomatic social signal analysis: facial expression recognition using difference convolution neural networkJournal of Parallel and Distributed Computing20191319710210.1016/j.jpdc.2019.04.017
DabhiMKPancholiBKFace detection system based on viola-jones algorithmInternational Journal of Science and Research (IJSR)201654626410.21275/v5i4.NOV162465
LopesATde AguiarEDe SouzaAFOliveira-SantosTFacial expression recognition with convolutional neural networks: coping with few data and the training sample orderPattern Recogn20176161062810.1016/j.patcog.2016.07.026
Muhammad G, Hussain M, Alenezy F, Bebis G, Mirza AM and Aboalsamh H (2012) Race recognition from face images using weber local descriptor. In systems, signals and image processing (IWSSIP), 2012 19th international conference on IEEE, 421-424
Sajjad M, Zahir S, Ullah A, Akhtar Z and Muhammad K (2019) Human behavior understanding in big multimedia data using CNN based facial expression recognition. Mobile networks and applications, 1-11
FanXTjahjadiTA dynamic framework based on local Zernike moment and motion history image for facial expression recognitionPattern Recogn20176439940610.1016/j.patcog.2016.12.002
Yang J and Wang S (2017) Capturing spatial and temporal patterns for distinguishing between posed and spontaneous expressions. In proceedings of the 2017 ACM on multimedia conference, 469-477
Xu, Lei, Minrui Fei, Wenju Zhou, and Aolei Yang (2008) Face expression recognition based on convolutional neural network. In 2018 Australian & New Zealand Control Conference (ANZCC), pp. 115–118. IEEE
EngKSAliHCheahAYChongYFFacial expression recognition in JAFFE and KDEF datasets using histogram of oriented gradients and support vector machine. In IOP conference series: materials science and engineeringIOP Publishing20197051012031
ZengNZhangHSongBLiuWLiYDobaieAFacial expression recognition via learning deep sparse autoencodersNeurocomputing201827364364910.1016/j.neucom.2017.08.043
SA Khan (8901_CR15) 2018; 77
M Mandal (8901_CR23) 2019; 13
8901_CR19
8901_CR17
MK Dabhi (8901_CR5) 2016; 5
B Ryu (8901_CR28) 2017; 26
Y Yang (8901_CR46) 2016; 39
8901_CR14
8901_CR11
8901_CR10
8901_CR51
SA Alphonse (8901_CR2) 2018; 77
Z Zhang (8901_CR52) 2018; 126
S Kumar (8901_CR16) 2015; 62
T Zhang (8901_CR50) 2016; 18
R Jiang (8901_CR13) 2017; 67
KS Eng (8901_CR6) 2019; 705
W Xie (8901_CR42) 2019; 96
8901_CR49
8901_CR47
8901_CR44
8901_CR45
8901_CR43
8901_CR41
MZ Uddin (8901_CR37) 2017; 5
AT Lopes (8901_CR20) 2017; 61
J Chen (8901_CR4) 2019; 131
M-I Georgescu (8901_CR9) 2019; 7
Y Luo (8901_CR21) 2013; 124
8901_CR39
Y Ji (8901_CR12) 2019; 333
8901_CR36
8901_CR34
X Fan (8901_CR7) 2017; 64
8901_CR32
8901_CR30
N Sarode (8901_CR31) 2010; 2
N Zeng (8901_CR48) 2018; 273
Y Fang (8901_CR8) 2015
Z Sun (8901_CR35) 2019; 51
M Verma (8901_CR40) 2019; 2
D Liang (8901_CR18) 2020; 36
8901_CR1
MZ Uddin (8901_CR38) 2017; 63
8901_CR3
8901_CR29
8901_CR26
8901_CR27
8901_CR24
8901_CR25
8901_CR22
R Sharma (8901_CR33) 2015; 126
References_xml – reference: Munir A, Hussain A, Khan SA, Nadeem M and Arshid S (2018) Illumination-invariant facial expression recognition using selected merged binary patterns for real world images, Optik-International Journal for Light and Electron Optics, Illumination invariant facial expression recognition using selected merged binary patterns for real world images
– reference: JiYHuYYangYShenFShenHTCross-domain facial expression recognition via an intra-category common feature and inter-category distinction feature fusion networkNeurocomputing201933323123910.1016/j.neucom.2018.12.037
– reference: LopesATde AguiarEDe SouzaAFOliveira-SantosTFacial expression recognition with convolutional neural networks: coping with few data and the training sample orderPattern Recogn20176161062810.1016/j.patcog.2016.07.026
– reference: Alrjebi MM, Liu W, Li L (2018) Face recognition against illuminations using two directional multi-level threshold-LBP and DCT. Multimed Tools Appl:1–21
– reference: Shah N and Priyanka (2018) An Improved Framework for Human Face Recognition, Advances in Intelligent Systems and Computing, 175–180
– reference: Sun Z, Hu Z-P, Chiong R, Wang M and Zhao S (2018) An adaptive weighted fusion model with two subspaces for facial expression recognition, Signal, Image, and Video Processing, 1–9
– reference: ZhangZLuoPLoyCCTangXFrom facial expression recognition to interpersonal relation predictionInt J Comput Vis20181265550569377305510.1007/s11263-017-1055-1
– reference: KumarSKumariRSharmaVKFitness based position update in spider monkey optimization algorithmProcedia Computer Science20156244244910.1016/j.procs.2015.08.504
– reference: XieWJiaXShenLYangMSparse deep feature learning for facial expression recognitionPattern Recogn20199610696610.1016/j.patcog.2019.106966
– reference: SunZHuZ-pWangMZhaoS-HDictionary learning feature space via sparse representation classification for facial expression recognitionArtif Intell Rev201951111810.1007/s10462-017-9554-6
– reference: Tripathi A, Pandey S and Jangir H (2018) Efficient Facial Expression Recognition System Based on Geometric Features Using Neural Network, In Information and Communication Technology for Sustainable Development, Springer, Singapore 181–190.
– reference: ChenJLvYXuRXuCAutomatic social signal analysis: facial expression recognition using difference convolution neural networkJournal of Parallel and Distributed Computing20191319710210.1016/j.jpdc.2019.04.017
– reference: LiangDLiangHYuZZhangYDeep convolutional BiLSTM fusion network for facial expression recognitionVis Comput202036349950810.1007/s00371-019-01636-3
– reference: ZengNZhangHSongBLiuWLiYDobaieAFacial expression recognition via learning deep sparse autoencodersNeurocomputing201827364364910.1016/j.neucom.2017.08.043
– reference: Ali K and Hughes CE (2019) Facial expression recognition using disentangled adversarial learning. arXiv preprint arXiv:1909.13135
– reference: Li M, Xu H, Huang X, Song Z, Liu X, Li X (2018) Facial expression recognition with identity and emotion joint learning. IEEE Trans Affect Comput:1–1
– reference: JiangRHoATSChehebIAl-MaadeedNAl-MaadeedSBouridaneAEmotion recognition from scrambled facial images via many graph embeddingPattern Recogn20176724525110.1016/j.patcog.2017.02.003
– reference: GeorgescuM-IIonescuRTPopescuMLocal learning with deep and handcrafted features for facial expression recognitionIEEE Access20197648276483610.1109/ACCESS.2019.2917266
– reference: KhanSAHussainAUsmanMReliable facial expression recognition for multi-scale images using weber local binary image based cosine transform featuresMultimed Tools Appl20187711133116510.1007/s11042-016-4324-z
– reference: Jung H, Lee S, Yim J, Park S and Kim J (2015) Joint fine-tuning in deep neural networks for facial expression recognition, in the IEEE international conference on computer vision (ICCV), IEEE
– reference: VermaMVipparthiSKSinghGHinet: hybrid inherited feature learning network for facial expression recognitionIEEE Letters of the Computer Society201924363910.1109/LOCS.2019.2927959
– reference: Ijjina EP and Mohan CK (2014) Facial expression recognition using Kinect depth sensor and convolutional neural networks. In machine learning and applications (ICMLA), 2014 13th international conference on IEEE, 392-396
– reference: Zhang W, Zhao X, Morvan J and Chen L (2018) Improving shadow suppression for illumination robust face recognition. IEEE Trans Pattern Anal Mach Intell, 1–1
– reference: SarodeNBhatiaSFacial expression recognitionInternational Journal on computer science and Engineering20102515521557
– reference: UddinMZHassanMMAlmogrenAZuairMFortinoGTorresenJA facial expression recognition system using robust face features from depth videos and deep learningComputers & Electrical Engineering20176311412510.1016/j.compeleceng.2017.04.019
– reference: Xu, Lei, Minrui Fei, Wenju Zhou, and Aolei Yang (2008) Face expression recognition based on convolutional neural network. In 2018 Australian & New Zealand Control Conference (ANZCC), pp. 115–118. IEEE
– reference: DabhiMKPancholiBKFace detection system based on viola-jones algorithmInternational Journal of Science and Research (IJSR)201654626410.21275/v5i4.NOV162465
– reference: Sajjad M, Zahir S, Ullah A, Akhtar Z and Muhammad K (2019) Human behavior understanding in big multimedia data using CNN based facial expression recognition. Mobile networks and applications, 1-11
– reference: Maheswari VU, Raju SV and Reddy KS (2019) Local directional weighted threshold patterns (LDWTP) for facial expression recognition. In 2019 fifth international conference on image information processing (ICIIP), IEEE, 167-170
– reference: Liu Y, Zeng J, Shan S and Zheng Z (2018) Multi-Channel pose-aware convolution neural networks for multi-view facial expression recognition, in Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE international conference on IEEE, 458-465
– reference: Zhang K, Huang Y, Du Y (2017) Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE transactions on image processing, 4193-4203
– reference: EngKSAliHCheahAYChongYFFacial expression recognition in JAFFE and KDEF datasets using histogram of oriented gradients and support vector machine. In IOP conference series: materials science and engineeringIOP Publishing20197051012031
– reference: FangYChangLMulti-instance feature learning based on sparse representation for facial expression recognitionInternational conference on multimedia modeling2015ChamSpringer22423310.1007/978-3-319-14445-0_20
– reference: Sajjad M, Shah A, Jan Z, Shah SI, Baik SW and Mehmood I (2017) Facial appearance and texture feature-based robust facial expression recognition framework for sentiment knowledge discovery, Cluster Computing, 1-19
– reference: Yang J and Wang S (2017) Capturing spatial and temporal patterns for distinguishing between posed and spontaneous expressions. In proceedings of the 2017 ACM on multimedia conference, 469-477
– reference: RyuBRiveraARKimJChaeOLocal directional ternary pattern for facial expression recognitionIEEE Trans Image Process2017261260066018371097910.1109/TIP.2017.2726010
– reference: MandalMVermaMMathurSVipparthiSKMuralaSKumarDKRegional adaptive affinitive patterns (RADAP) with logical operators for facial expression recognitionIET Image Process201913585086110.1049/iet-ipr.2018.5683
– reference: Mavadati M, Sanger P and Mahoor MH (2016) Extended disfa dataset: investigating posed and spontaneous facial expressions. In proceedings of the IEEE conference on computer vision and pattern recognition workshops, 1-8
– reference: Naik S and Jagannath R (2018) GCV-based regularized extreme learning machine for facial expression recognition, advances in intelligent systems and computing, 129-138
– reference: Jain DK, Zhang Z and Huang K (2017) Multi angle optimal pattern-based deep learning for automatic facial expression recognition. Pattern Recogn Lett
– reference: Muhammad G, Hussain M, Alenezy F, Bebis G, Mirza AM and Aboalsamh H (2012) Race recognition from face images using weber local descriptor. In systems, signals and image processing (IWSSIP), 2012 19th international conference on IEEE, 421-424
– reference: ZhangTZhengWCuiZZongYYanJYanKA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Transactions on Multimedia201618122528253610.1109/TMM.2016.2598092
– reference: FanXTjahjadiTA dynamic framework based on local Zernike moment and motion history image for facial expression recognitionPattern Recogn20176439940610.1016/j.patcog.2016.12.002
– reference: Valstar MF, Sánchez-Lozano E, Cohn JF, Jeni LA, Girard JM, Zhang Z, Yin L and Fera PM (2017) 2017-addressing head pose in the third facial expression recognition and analysis challenge, in Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on IEEE, 839-847
– reference: AlphonseSADharmaDNovel directional patterns and a generalized supervised dimension reduction system (GSDRS) for facial emotion recognitionMultimed Tools Appl20187789455948810.1007/s11042-017-5141-8
– reference: UddinMZHassanMMAlmogrenAAlamriAAlrubaianMFortinoGFacial expression recognition utilizing local direction-based robust features and deep belief networkIEEE Access201754525453610.1109/ACCESS.2017.2676238
– reference: SharmaRPatterhMSA new pose-invariant face recognition system using PCA and ANFISOptik-International Journal for Light and Electron Optics2015126233483348710.1016/j.ijleo.2015.08.205
– reference: Videla SL, Rao MRN, Anand D, Vankayalapati HD and Razia S (2019) Deformable facial fitting using active appearance model for emotion recognition. In Smart Intelligent Computing and Applications, Springer, Singapore 135–144
– reference: Yuan B, Cao H and Chu J (2012) Combining local binary pattern and local phase quantization for face recognition. In 2012 international symposium on biometrics and security technologies, IEEE 51-53
– reference: LuoYWuCZhangYFacial expression recognition based on fusion feature of PCA and LBP with SVMOptik - International Journal for Light and Electron Optics2013124172767277010.1016/j.ijleo.2012.08.040
– reference: Yang R-P, Liu Z-T, Zheng L-D, Wu J-P and C-C Hu (2018) Intelligent Mirror System Based on Facial Expression Recognition and Color Emotion Adaptation iMirror. In 2018 37th Chinese Control Conference (CCC), IEEE, 3227–3232.
– reference: YangYFangDZhuDFacial expression recognition using deep belief networkRev Tec Ing Univ Zulia2016392384392
– ident: 8901_CR25
– ident: 8901_CR19
  doi: 10.1109/FG.2018.00074
– volume: 51
  start-page: 1
  issue: 1
  year: 2019
  ident: 8901_CR35
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9554-6
– ident: 8901_CR27
  doi: 10.1007/978-981-10-8569-7_14
– volume: 126
  start-page: 550
  issue: 5
  year: 2018
  ident: 8901_CR52
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1055-1
– ident: 8901_CR14
  doi: 10.1109/ICCV.2015.341
– ident: 8901_CR1
– volume: 5
  start-page: 4525
  year: 2017
  ident: 8901_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2676238
– volume: 61
  start-page: 610
  year: 2017
  ident: 8901_CR20
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.07.026
– ident: 8901_CR30
  doi: 10.1007/s11036-019-01366-9
– ident: 8901_CR49
  doi: 10.1109/TIP.2017.2689999
– volume: 5
  start-page: 62
  issue: 4
  year: 2016
  ident: 8901_CR5
  publication-title: International Journal of Science and Research (IJSR)
  doi: 10.21275/v5i4.NOV162465
– volume: 705
  start-page: 012031
  issue: 1
  year: 2019
  ident: 8901_CR6
  publication-title: IOP Publishing
– volume: 64
  start-page: 399
  year: 2017
  ident: 8901_CR7
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.12.002
– ident: 8901_CR17
  doi: 10.1109/TAFFC.2018.2880201
– ident: 8901_CR29
  doi: 10.1007/s10586-017-0935-z
– volume: 77
  start-page: 1133
  issue: 1
  year: 2018
  ident: 8901_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-4324-z
– volume: 67
  start-page: 245
  year: 2017
  ident: 8901_CR13
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.003
– ident: 8901_CR45
  doi: 10.23919/ChiCC.2018.8483540
– ident: 8901_CR51
– volume: 36
  start-page: 499
  issue: 3
  year: 2020
  ident: 8901_CR18
  publication-title: Vis Comput
  doi: 10.1007/s00371-019-01636-3
– ident: 8901_CR43
  doi: 10.1109/ANZCC.2018.8606597
– volume: 96
  start-page: 106966
  year: 2019
  ident: 8901_CR42
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.106966
– ident: 8901_CR24
  doi: 10.1109/CVPRW.2016.182
– ident: 8901_CR36
  doi: 10.1007/978-981-10-3920-1_18
– ident: 8901_CR10
  doi: 10.1109/ICMLA.2014.70
– volume: 7
  start-page: 64827
  year: 2019
  ident: 8901_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917266
– ident: 8901_CR34
  doi: 10.1007/s11760-017-1226-0
– volume: 2
  start-page: 36
  issue: 4
  year: 2019
  ident: 8901_CR40
  publication-title: IEEE Letters of the Computer Society
  doi: 10.1109/LOCS.2019.2927959
– ident: 8901_CR47
  doi: 10.1109/ISBAST.2012.14
– ident: 8901_CR41
  doi: 10.1007/978-981-13-1921-1_13
– volume: 124
  start-page: 2767
  issue: 17
  year: 2013
  ident: 8901_CR21
  publication-title: Optik - International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2012.08.040
– volume: 2
  start-page: 1552
  issue: 5
  year: 2010
  ident: 8901_CR31
  publication-title: International Journal on computer science and Engineering
– volume: 77
  start-page: 9455
  issue: 8
  year: 2018
  ident: 8901_CR2
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5141-8
– volume: 13
  start-page: 850
  issue: 5
  year: 2019
  ident: 8901_CR23
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2018.5683
– volume: 26
  start-page: 6006
  issue: 12
  year: 2017
  ident: 8901_CR28
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2726010
– start-page: 224
  volume-title: International conference on multimedia modeling
  year: 2015
  ident: 8901_CR8
  doi: 10.1007/978-3-319-14445-0_20
– volume: 62
  start-page: 442
  year: 2015
  ident: 8901_CR16
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.08.504
– ident: 8901_CR3
  doi: 10.1007/s11042-018-5812-0
– ident: 8901_CR26
  doi: 10.1016/j.ijleo.2018.01.003
– volume: 273
  start-page: 643
  year: 2018
  ident: 8901_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.043
– volume: 333
  start-page: 231
  year: 2019
  ident: 8901_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.037
– volume: 131
  start-page: 97
  year: 2019
  ident: 8901_CR4
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2019.04.017
– ident: 8901_CR44
  doi: 10.1145/3123266.3123350
– volume: 126
  start-page: 3483
  issue: 23
  year: 2015
  ident: 8901_CR33
  publication-title: Optik-International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2015.08.205
– ident: 8901_CR39
  doi: 10.1109/FG.2017.107
– ident: 8901_CR32
  doi: 10.1007/978-981-10-8639-7_18
– volume: 18
  start-page: 2528
  issue: 12
  year: 2016
  ident: 8901_CR50
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2016.2598092
– ident: 8901_CR22
  doi: 10.1109/ICIIP47207.2019.8985829
– volume: 63
  start-page: 114
  year: 2017
  ident: 8901_CR38
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.04.019
– ident: 8901_CR11
– volume: 39
  start-page: 384
  issue: 2
  year: 2016
  ident: 8901_CR46
  publication-title: Rev Tec Ing Univ Zulia
SSID ssj0016524
Score 2.2988548
Snippet Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21487
SubjectTerms Algorithms
Belief networks
Computer Communication Networks
Computer Science
Cost analysis
Data Structures and Information Theory
Discrete cosine transform
Face recognition
Feature extraction
Multimedia Information Systems
Optimization
Principal components analysis
Robustness
Special Purpose and Application-Based Systems
Texture recognition
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTg6qq4ukoO3jTQZ9oe18fixVVwlb2VPGFBW-l2Rfz1Ttp0q6KCXnppGoaZZOZLJ_MNQseCUUcEkQLkFmsSyMAhiYaH9CPOvVAozUTVbCIajeLJJLm1RWGz5rZ7k5KsPHVb7OaaUhJz3HFiiGIEkONKaNhmzBn97mGRO6ChbWUbOwTioWtLZb6f43M4ajHml7RoFW2Gnf_JuYk2LLrEg3o5bKEllXVRp-ncgO1G7qL1DzSE22g8wEXO57MSa1XxfGLw2EVd8YDNj1qcg2N5mr4piS_OwAVf32DAuhgUDKsXBtvLtBleXEfKsx10P7wcn18R222BCNiGJeG8yshTX0fGUCB7pCgNXQYnsFh7OvI4mI8xxaIkpo6UEmTSLtXMF9rVnr-LlrM8U3sIB7HSmkmlTRkdFz6nApCeocLnIuEy6SG3UXoqLBW56YjxmLYkykaJKSgxrZSYvvbQyeKb55qI49fR_caWqd2Us9QLQIYEQAntodPGdu3rn2fb_9vwA7Tm1eYnjttHy2UxV4doVbyU01lxVC3WdyWW5UQ
  priority: 102
  providerName: Springer Nature
Title A robust feature extraction with optimized DBN-SMO for facial expression recognition
URI https://link.springer.com/article/10.1007/s11042-020-08901-x
https://www.proquest.com/docview/2432690246
Volume 79
WOSCitedRecordID wos000530987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5OBNg31t0p7EJ4K4Lr71UpoXLGiru6uIv95Jm-6qoBcvA6VJCPkmM5NMZgZgU2bMkxHXaLnFhkYq8mhikKiQCxE0pTaZLItN8FYrvrtL2u7CreeeVdYysRTUqpD2jnwniNDQSFCjsN3nF2qrRlnvqiuhMQrjNlMZ8vn4_lGrfTHwI7CmK2sbexR1o-_CZqrgOd-GptjjkxejVqTv31XT0N784SItNc_xzH_nPAvTzuYkexWTzMGIzudhpq7nQNz2noepL8kJF-Bqj3QL8drrE6PL7J8E5Xi3ioMg9vqWFChunjofWpHDfRTMZ-cELWCCy448jY3dE9ucDB4pFfkiXB8fXR2cUFeDgUrcnH0qROmnZ6HhFj5cKa4Za_oZnstiExgeCAQ1y3TGk5h5Simck_GZyUJpfBOESzCWF7leBhLF2phMaWOD64QMBZNo_9kE-UImQiUN8OvlT6VLUG7rZDymw9TKFrIUIUtLyNL3BmwN-jxX6Tn-bL1W45S6rdpLhyA1YLtGevj799FW_h5tFSaDirmo56_BWL_7qtdhQr71O73uBozy2_sNx674dcop0jPvwNLgHGm7-YD04vLmExeW9aY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEB1FgAQU3IhwbgEVWNiOs7YLhDgVlAOKINGZPSUksCEHBD6Kb2TWRwJI0FHQuPF6vPa-uXZ2ZgC2BaO28HyFllugLU96thVqvMiKz7lbFUozkTab8Fut4OYmvCrBe5ELY45VFjIxFdQyEWaPfN_10NAIUaPQw8cny3SNMtHVooVGBou6en1Bl617cHGK67vjuudn7ZOalXcVsATCrWdxnkaeaUX7ZkJ2EPqK0qrD0NMItKt9l-M0GVPMDwNqSym1YtqhmlWEdrQpdIAif9xDx8vwVdM-GUYtaDVvohvYFmpiJ0_SyVL1HJMIY5w1fCO68IOvinBk3X4LyKZ67nz2v_2hOZjJLWpylLHAPJRUvACzRbcKkguvBZj-VHpxEdpHpJPwfrdHkKqJohDUUp0sy4OYzWmSoDB9uHtTkpweo9ppXhK07wmCCjkWB-cHiGMyPIKVxEtw_SdfugxjcRKrFSBeoLRmUmmTOshFhVOB1q0p_89FyGVYBqdY7kjk5ddNF5D7aFQ42kAkQohEKUSiQRl2h888ZsVHfh29XuAiygVRNxqBogx7BbJGt3-mtvo7tS2YrLWbjahx0aqvwZSbAduynXUY63X6agMmxHPvrtvZTFmEwO1fI-4DvBJNVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LL8RAGP8iiHDwFus5B0402m532h5EsDYEy4HEreaZSGjZB8uf5q_zTTvdRcLNwaWXTqedzu97zfcC2BCMuiIIFWpukXYCGbhOrPEiqyHnfk0ozUTebCJsNqObm_hyCN7LXBgTVlnyxJxRy0yYM_IdP0BFI0aJQne0DYu4rDf2Hp8c00HKeFrLdhoFRE7V6wuab-3dkzru9abvN46uDo8d22HAEQi9jsN57oWmVR2aj3OjOFSU1jyGVkekfR36HD-ZMcXCOKKulFIrpj2qWVVoT5uiB8j-R8KgFhjqOvcv-h4MWrMNdSPXQans2YSdIm3PM0kxxnDDN6I53_sqFAea7jfnbC7zGlP_-W9Nw6TVtMl-QRozMKTSWZgqu1gQy9RmYeJTScY5uNonrYx32x2CsxrvCsFFtYrsD2IOrUmGTPbh7k1JUj9AcXR-QVDvJwg2pGQcbAOLU9IPzcrSebj-k5UuwHCapWoRSBAprZlU2qQUclHlVKDWa9oCcBFzGVfAK7c-EbYsu-kOcp8MCkobuCQIlySHS9KrwFb_mceiKMmvo1dKjCSWQbWTAUAqsF2ibHD759mWfp9tHcYQaMnZSfN0Gcb9AuOO663AcKfVVaswKp47d-3WWk4tBG7_GnAfonRWPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+feature+extraction+with+optimized+DBN-SMO+for+facial+expression+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ramachandran%2C+Vedantham&rft.au=Reddy%2C+Edara+Sreenivasa&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=29-30&rft.spage=21487&rft.epage=21512&rft_id=info:doi/10.1007%2Fs11042-020-08901-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon