A robust feature extraction with optimized DBN-SMO for facial expression recognition
Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one individual to another so that an automatic facial expression analysis and recognition is a difficult operation. To solve this difficulty, this p...
Uložené v:
| Vydané v: | Multimedia tools and applications Ročník 79; číslo 29-30; s. 21487 - 21512 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.08.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one individual to another so that an automatic facial expression analysis and recognition is a difficult operation. To solve this difficulty, this paper proposes a robust feature extraction with optimized DBN-SMO for facial expression recognition (FER). Initially, the pre-processing stage is performed then texture descriptors of Local Phase Quantization (LPQ), Weber Local Descriptor (WLD) and Local Binary Pattern (LBP) are used to extract the features. Moreover, Discrete Cosine Transform (DCT) features are extracted to enhance the recognition rate and reduce the computational cost. After that, the Principal component analysis (PCA) is used for dimension reduction. Finally, a deep belief network (DBN) with Spider monkey optimization (SMO) algorithm is used to classify basic expressions for FER. Here, SMO algorithm is used to optimize bias factors and initial connection weights that control the efficiency of the DBN. The proposed work is performed in the MATLAB environment. Experiments performed on Karolinska Directed Emotional Faces (KDEF), Man-Machine Interaction (MMI), Cohn Kanade (CK+), Extended Denver Intensity of Spontaneous Facial Actions (DISFA+) and Oulu-Chinese Academy of Science Institute of Automation (Oulu-CASIA) datasets and it provides a classification accuracy of 97.93%, 95.42%, 97.58%, 95.76%, and 92.38% respectively, this is higher than other current procedures for seven-class emotion. |
|---|---|
| AbstractList | Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one individual to another so that an automatic facial expression analysis and recognition is a difficult operation. To solve this difficulty, this paper proposes a robust feature extraction with optimized DBN-SMO for facial expression recognition (FER). Initially, the pre-processing stage is performed then texture descriptors of Local Phase Quantization (LPQ), Weber Local Descriptor (WLD) and Local Binary Pattern (LBP) are used to extract the features. Moreover, Discrete Cosine Transform (DCT) features are extracted to enhance the recognition rate and reduce the computational cost. After that, the Principal component analysis (PCA) is used for dimension reduction. Finally, a deep belief network (DBN) with Spider monkey optimization (SMO) algorithm is used to classify basic expressions for FER. Here, SMO algorithm is used to optimize bias factors and initial connection weights that control the efficiency of the DBN. The proposed work is performed in the MATLAB environment. Experiments performed on Karolinska Directed Emotional Faces (KDEF), Man-Machine Interaction (MMI), Cohn Kanade (CK+), Extended Denver Intensity of Spontaneous Facial Actions (DISFA+) and Oulu-Chinese Academy of Science Institute of Automation (Oulu-CASIA) datasets and it provides a classification accuracy of 97.93%, 95.42%, 97.58%, 95.76%, and 92.38% respectively, this is higher than other current procedures for seven-class emotion. |
| Author | Vedantham, Ramachandran Reddy, Edara Sreenivasa |
| Author_xml | – sequence: 1 givenname: Ramachandran surname: Vedantham fullname: Vedantham, Ramachandran email: vrc.bhatt@gmail.com organization: IT Department, Vasireddy Venkatadri Institute of Technology – sequence: 2 givenname: Edara Sreenivasa surname: Reddy fullname: Reddy, Edara Sreenivasa organization: Principal, ANU College of Engineering & Technology, Acharya Nagarjuna University |
| BookMark | eNp9kL1OwzAURi1UJNrCCzBFYjZc20mcjKX8SoUOlNlyEru4auNiu6Lw9DgECYmh0_Vwju93vxEatLZVCJ0TuCQA_MoTAinFQAFDUQLB-yM0JBlnmHNKBvHNCsA8A3KCRt6vAEie0XSIFpPE2WrnQ6KVDDunErUPTtbB2Db5MOEtsdtgNuZLNcnN9TN-eZon2rpEy9rIdYS3TnnfwU7VdtmaTjxFx1quvTr7nWP0ene7mD7g2fz-cTqZ4ZqRMuCqAk44y5nmDeNVDM5VnmdEpkAKTTWnFa8qKZXkZZFD0zQxoya5lqzWRFM2Rhf9v1tn33fKB7GyO9fGlYKmjOYl0DSPVNFTtbPeO6VFbYLscsZDzVoQEF2Hou9QxA7FT4diH1X6T906s5Hu87DEeslHuF0q95fqgPUNFveHlQ |
| CitedBy_id | crossref_primary_10_1007_s11042_023_14491_1 crossref_primary_10_1007_s11042_022_12438_6 crossref_primary_10_1007_s10791_025_09699_8 crossref_primary_10_1080_01431161_2025_2538829 crossref_primary_10_1093_comjnl_bxab088 crossref_primary_10_1007_s10878_022_00935_1 crossref_primary_10_1016_j_aej_2025_01_078 crossref_primary_10_1007_s12652_020_02235_0 crossref_primary_10_1007_s00500_023_08230_9 crossref_primary_10_1016_j_asoc_2021_107173 crossref_primary_10_1080_13682199_2022_2157956 crossref_primary_10_3389_fbioe_2022_855667 crossref_primary_10_1007_s11042_023_15982_x |
| Cites_doi | 10.1109/FG.2018.00074 10.1007/s10462-017-9554-6 10.1007/978-981-10-8569-7_14 10.1007/s11263-017-1055-1 10.1109/ICCV.2015.341 10.1109/ACCESS.2017.2676238 10.1016/j.patcog.2016.07.026 10.1007/s11036-019-01366-9 10.1109/TIP.2017.2689999 10.21275/v5i4.NOV162465 10.1016/j.patcog.2016.12.002 10.1109/TAFFC.2018.2880201 10.1007/s10586-017-0935-z 10.1007/s11042-016-4324-z 10.1016/j.patcog.2017.02.003 10.23919/ChiCC.2018.8483540 10.1007/s00371-019-01636-3 10.1109/ANZCC.2018.8606597 10.1016/j.patcog.2019.106966 10.1109/CVPRW.2016.182 10.1007/978-981-10-3920-1_18 10.1109/ICMLA.2014.70 10.1109/ACCESS.2019.2917266 10.1007/s11760-017-1226-0 10.1109/LOCS.2019.2927959 10.1109/ISBAST.2012.14 10.1007/978-981-13-1921-1_13 10.1016/j.ijleo.2012.08.040 10.1007/s11042-017-5141-8 10.1049/iet-ipr.2018.5683 10.1109/TIP.2017.2726010 10.1007/978-3-319-14445-0_20 10.1016/j.procs.2015.08.504 10.1007/s11042-018-5812-0 10.1016/j.ijleo.2018.01.003 10.1016/j.neucom.2017.08.043 10.1016/j.neucom.2018.12.037 10.1016/j.jpdc.2019.04.017 10.1145/3123266.3123350 10.1016/j.ijleo.2015.08.205 10.1109/FG.2017.107 10.1007/978-981-10-8639-7_18 10.1109/TMM.2016.2598092 10.1109/ICIIP47207.2019.8985829 10.1016/j.compeleceng.2017.04.019 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-020-08901-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep (ProQuest) SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 21512 |
| ExternalDocumentID | 10_1007_s11042_020_08901_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-bb0717363f7d37b0897e6651a4018f2f72b7bbaaea79860dddfeaf16fa3cf1f23 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 02:07:01 EST 2025 Sat Nov 29 06:20:03 EST 2025 Tue Nov 18 22:14:39 EST 2025 Fri Feb 21 02:37:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29-30 |
| Keywords | Feature extraction FER DCT SMO Deep belief network PCA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-bb0717363f7d37b0897e6651a4018f2f72b7bbaaea79860dddfeaf16fa3cf1f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2432690246 |
| PQPubID | 54626 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2432690246 crossref_citationtrail_10_1007_s11042_020_08901_x crossref_primary_10_1007_s11042_020_08901_x springer_journals_10_1007_s11042_020_08901_x |
| PublicationCentury | 2000 |
| PublicationDate | 20200800 2020-08-00 20200801 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 8 year: 2020 text: 20200800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Munir A, Hussain A, Khan SA, Nadeem M and Arshid S (2018) Illumination-invariant facial expression recognition using selected merged binary patterns for real world images, Optik-International Journal for Light and Electron Optics, Illumination invariant facial expression recognition using selected merged binary patterns for real world images JiangRHoATSChehebIAl-MaadeedNAl-MaadeedSBouridaneAEmotion recognition from scrambled facial images via many graph embeddingPattern Recogn20176724525110.1016/j.patcog.2017.02.003 Naik S and Jagannath R (2018) GCV-based regularized extreme learning machine for facial expression recognition, advances in intelligent systems and computing, 129-138 Jung H, Lee S, Yim J, Park S and Kim J (2015) Joint fine-tuning in deep neural networks for facial expression recognition, in the IEEE international conference on computer vision (ICCV), IEEE Zhang K, Huang Y, Du Y (2017) Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE transactions on image processing, 4193-4203 Zhang W, Zhao X, Morvan J and Chen L (2018) Improving shadow suppression for illumination robust face recognition. IEEE Trans Pattern Anal Mach Intell, 1–1 Valstar MF, Sánchez-Lozano E, Cohn JF, Jeni LA, Girard JM, Zhang Z, Yin L and Fera PM (2017) 2017-addressing head pose in the third facial expression recognition and analysis challenge, in Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on IEEE, 839-847 Ijjina EP and Mohan CK (2014) Facial expression recognition using Kinect depth sensor and convolutional neural networks. In machine learning and applications (ICMLA), 2014 13th international conference on IEEE, 392-396 Li M, Xu H, Huang X, Song Z, Liu X, Li X (2018) Facial expression recognition with identity and emotion joint learning. IEEE Trans Affect Comput:1–1 SunZHuZ-pWangMZhaoS-HDictionary learning feature space via sparse representation classification for facial expression recognitionArtif Intell Rev201951111810.1007/s10462-017-9554-6 ZhangZLuoPLoyCCTangXFrom facial expression recognition to interpersonal relation predictionInt J Comput Vis20181265550569377305510.1007/s11263-017-1055-1 Sajjad M, Shah A, Jan Z, Shah SI, Baik SW and Mehmood I (2017) Facial appearance and texture feature-based robust facial expression recognition framework for sentiment knowledge discovery, Cluster Computing, 1-19 Yang R-P, Liu Z-T, Zheng L-D, Wu J-P and C-C Hu (2018) Intelligent Mirror System Based on Facial Expression Recognition and Color Emotion Adaptation iMirror. In 2018 37th Chinese Control Conference (CCC), IEEE, 3227–3232. YangYFangDZhuDFacial expression recognition using deep belief networkRev Tec Ing Univ Zulia2016392384392 UddinMZHassanMMAlmogrenAAlamriAAlrubaianMFortinoGFacial expression recognition utilizing local direction-based robust features and deep belief networkIEEE Access201754525453610.1109/ACCESS.2017.2676238 SharmaRPatterhMSA new pose-invariant face recognition system using PCA and ANFISOptik-International Journal for Light and Electron Optics2015126233483348710.1016/j.ijleo.2015.08.205 KhanSAHussainAUsmanMReliable facial expression recognition for multi-scale images using weber local binary image based cosine transform featuresMultimed Tools Appl20187711133116510.1007/s11042-016-4324-z FangYChangLMulti-instance feature learning based on sparse representation for facial expression recognitionInternational conference on multimedia modeling2015ChamSpringer22423310.1007/978-3-319-14445-0_20 Ali K and Hughes CE (2019) Facial expression recognition using disentangled adversarial learning. arXiv preprint arXiv:1909.13135 SarodeNBhatiaSFacial expression recognitionInternational Journal on computer science and Engineering20102515521557 XieWJiaXShenLYangMSparse deep feature learning for facial expression recognitionPattern Recogn20199610696610.1016/j.patcog.2019.106966 GeorgescuM-IIonescuRTPopescuMLocal learning with deep and handcrafted features for facial expression recognitionIEEE Access20197648276483610.1109/ACCESS.2019.2917266 Mavadati M, Sanger P and Mahoor MH (2016) Extended disfa dataset: investigating posed and spontaneous facial expressions. In proceedings of the IEEE conference on computer vision and pattern recognition workshops, 1-8 Jain DK, Zhang Z and Huang K (2017) Multi angle optimal pattern-based deep learning for automatic facial expression recognition. Pattern Recogn Lett JiYHuYYangYShenFShenHTCross-domain facial expression recognition via an intra-category common feature and inter-category distinction feature fusion networkNeurocomputing201933323123910.1016/j.neucom.2018.12.037 UddinMZHassanMMAlmogrenAZuairMFortinoGTorresenJA facial expression recognition system using robust face features from depth videos and deep learningComputers & Electrical Engineering20176311412510.1016/j.compeleceng.2017.04.019 LiangDLiangHYuZZhangYDeep convolutional BiLSTM fusion network for facial expression recognitionVis Comput202036349950810.1007/s00371-019-01636-3 ZhangTZhengWCuiZZongYYanJYanKA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Transactions on Multimedia201618122528253610.1109/TMM.2016.2598092 LuoYWuCZhangYFacial expression recognition based on fusion feature of PCA and LBP with SVMOptik - International Journal for Light and Electron Optics2013124172767277010.1016/j.ijleo.2012.08.040 KumarSKumariRSharmaVKFitness based position update in spider monkey optimization algorithmProcedia Computer Science20156244244910.1016/j.procs.2015.08.504 RyuBRiveraARKimJChaeOLocal directional ternary pattern for facial expression recognitionIEEE Trans Image Process2017261260066018371097910.1109/TIP.2017.2726010 VermaMVipparthiSKSinghGHinet: hybrid inherited feature learning network for facial expression recognitionIEEE Letters of the Computer Society201924363910.1109/LOCS.2019.2927959 AlphonseSADharmaDNovel directional patterns and a generalized supervised dimension reduction system (GSDRS) for facial emotion recognitionMultimed Tools Appl20187789455948810.1007/s11042-017-5141-8 Shah N and Priyanka (2018) An Improved Framework for Human Face Recognition, Advances in Intelligent Systems and Computing, 175–180 Yuan B, Cao H and Chu J (2012) Combining local binary pattern and local phase quantization for face recognition. In 2012 international symposium on biometrics and security technologies, IEEE 51-53 Tripathi A, Pandey S and Jangir H (2018) Efficient Facial Expression Recognition System Based on Geometric Features Using Neural Network, In Information and Communication Technology for Sustainable Development, Springer, Singapore 181–190. Sun Z, Hu Z-P, Chiong R, Wang M and Zhao S (2018) An adaptive weighted fusion model with two subspaces for facial expression recognition, Signal, Image, and Video Processing, 1–9 Liu Y, Zeng J, Shan S and Zheng Z (2018) Multi-Channel pose-aware convolution neural networks for multi-view facial expression recognition, in Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE international conference on IEEE, 458-465 Maheswari VU, Raju SV and Reddy KS (2019) Local directional weighted threshold patterns (LDWTP) for facial expression recognition. In 2019 fifth international conference on image information processing (ICIIP), IEEE, 167-170 MandalMVermaMMathurSVipparthiSKMuralaSKumarDKRegional adaptive affinitive patterns (RADAP) with logical operators for facial expression recognitionIET Image Process201913585086110.1049/iet-ipr.2018.5683 Alrjebi MM, Liu W, Li L (2018) Face recognition against illuminations using two directional multi-level threshold-LBP and DCT. Multimed Tools Appl:1–21 Videla SL, Rao MRN, Anand D, Vankayalapati HD and Razia S (2019) Deformable facial fitting using active appearance model for emotion recognition. In Smart Intelligent Computing and Applications, Springer, Singapore 135–144 ChenJLvYXuRXuCAutomatic social signal analysis: facial expression recognition using difference convolution neural networkJournal of Parallel and Distributed Computing20191319710210.1016/j.jpdc.2019.04.017 DabhiMKPancholiBKFace detection system based on viola-jones algorithmInternational Journal of Science and Research (IJSR)201654626410.21275/v5i4.NOV162465 LopesATde AguiarEDe SouzaAFOliveira-SantosTFacial expression recognition with convolutional neural networks: coping with few data and the training sample orderPattern Recogn20176161062810.1016/j.patcog.2016.07.026 Muhammad G, Hussain M, Alenezy F, Bebis G, Mirza AM and Aboalsamh H (2012) Race recognition from face images using weber local descriptor. In systems, signals and image processing (IWSSIP), 2012 19th international conference on IEEE, 421-424 Sajjad M, Zahir S, Ullah A, Akhtar Z and Muhammad K (2019) Human behavior understanding in big multimedia data using CNN based facial expression recognition. Mobile networks and applications, 1-11 FanXTjahjadiTA dynamic framework based on local Zernike moment and motion history image for facial expression recognitionPattern Recogn20176439940610.1016/j.patcog.2016.12.002 Yang J and Wang S (2017) Capturing spatial and temporal patterns for distinguishing between posed and spontaneous expressions. In proceedings of the 2017 ACM on multimedia conference, 469-477 Xu, Lei, Minrui Fei, Wenju Zhou, and Aolei Yang (2008) Face expression recognition based on convolutional neural network. In 2018 Australian & New Zealand Control Conference (ANZCC), pp. 115–118. IEEE EngKSAliHCheahAYChongYFFacial expression recognition in JAFFE and KDEF datasets using histogram of oriented gradients and support vector machine. In IOP conference series: materials science and engineeringIOP Publishing20197051012031 ZengNZhangHSongBLiuWLiYDobaieAFacial expression recognition via learning deep sparse autoencodersNeurocomputing201827364364910.1016/j.neucom.2017.08.043 SA Khan (8901_CR15) 2018; 77 M Mandal (8901_CR23) 2019; 13 8901_CR19 8901_CR17 MK Dabhi (8901_CR5) 2016; 5 B Ryu (8901_CR28) 2017; 26 Y Yang (8901_CR46) 2016; 39 8901_CR14 8901_CR11 8901_CR10 8901_CR51 SA Alphonse (8901_CR2) 2018; 77 Z Zhang (8901_CR52) 2018; 126 S Kumar (8901_CR16) 2015; 62 T Zhang (8901_CR50) 2016; 18 R Jiang (8901_CR13) 2017; 67 KS Eng (8901_CR6) 2019; 705 W Xie (8901_CR42) 2019; 96 8901_CR49 8901_CR47 8901_CR44 8901_CR45 8901_CR43 8901_CR41 MZ Uddin (8901_CR37) 2017; 5 AT Lopes (8901_CR20) 2017; 61 J Chen (8901_CR4) 2019; 131 M-I Georgescu (8901_CR9) 2019; 7 Y Luo (8901_CR21) 2013; 124 8901_CR39 Y Ji (8901_CR12) 2019; 333 8901_CR36 8901_CR34 X Fan (8901_CR7) 2017; 64 8901_CR32 8901_CR30 N Sarode (8901_CR31) 2010; 2 N Zeng (8901_CR48) 2018; 273 Y Fang (8901_CR8) 2015 Z Sun (8901_CR35) 2019; 51 M Verma (8901_CR40) 2019; 2 D Liang (8901_CR18) 2020; 36 8901_CR1 MZ Uddin (8901_CR38) 2017; 63 8901_CR3 8901_CR29 8901_CR26 8901_CR27 8901_CR24 8901_CR25 8901_CR22 R Sharma (8901_CR33) 2015; 126 |
| References_xml | – reference: Munir A, Hussain A, Khan SA, Nadeem M and Arshid S (2018) Illumination-invariant facial expression recognition using selected merged binary patterns for real world images, Optik-International Journal for Light and Electron Optics, Illumination invariant facial expression recognition using selected merged binary patterns for real world images – reference: JiYHuYYangYShenFShenHTCross-domain facial expression recognition via an intra-category common feature and inter-category distinction feature fusion networkNeurocomputing201933323123910.1016/j.neucom.2018.12.037 – reference: LopesATde AguiarEDe SouzaAFOliveira-SantosTFacial expression recognition with convolutional neural networks: coping with few data and the training sample orderPattern Recogn20176161062810.1016/j.patcog.2016.07.026 – reference: Alrjebi MM, Liu W, Li L (2018) Face recognition against illuminations using two directional multi-level threshold-LBP and DCT. Multimed Tools Appl:1–21 – reference: Shah N and Priyanka (2018) An Improved Framework for Human Face Recognition, Advances in Intelligent Systems and Computing, 175–180 – reference: Sun Z, Hu Z-P, Chiong R, Wang M and Zhao S (2018) An adaptive weighted fusion model with two subspaces for facial expression recognition, Signal, Image, and Video Processing, 1–9 – reference: ZhangZLuoPLoyCCTangXFrom facial expression recognition to interpersonal relation predictionInt J Comput Vis20181265550569377305510.1007/s11263-017-1055-1 – reference: KumarSKumariRSharmaVKFitness based position update in spider monkey optimization algorithmProcedia Computer Science20156244244910.1016/j.procs.2015.08.504 – reference: XieWJiaXShenLYangMSparse deep feature learning for facial expression recognitionPattern Recogn20199610696610.1016/j.patcog.2019.106966 – reference: SunZHuZ-pWangMZhaoS-HDictionary learning feature space via sparse representation classification for facial expression recognitionArtif Intell Rev201951111810.1007/s10462-017-9554-6 – reference: Tripathi A, Pandey S and Jangir H (2018) Efficient Facial Expression Recognition System Based on Geometric Features Using Neural Network, In Information and Communication Technology for Sustainable Development, Springer, Singapore 181–190. – reference: ChenJLvYXuRXuCAutomatic social signal analysis: facial expression recognition using difference convolution neural networkJournal of Parallel and Distributed Computing20191319710210.1016/j.jpdc.2019.04.017 – reference: LiangDLiangHYuZZhangYDeep convolutional BiLSTM fusion network for facial expression recognitionVis Comput202036349950810.1007/s00371-019-01636-3 – reference: ZengNZhangHSongBLiuWLiYDobaieAFacial expression recognition via learning deep sparse autoencodersNeurocomputing201827364364910.1016/j.neucom.2017.08.043 – reference: Ali K and Hughes CE (2019) Facial expression recognition using disentangled adversarial learning. arXiv preprint arXiv:1909.13135 – reference: Li M, Xu H, Huang X, Song Z, Liu X, Li X (2018) Facial expression recognition with identity and emotion joint learning. IEEE Trans Affect Comput:1–1 – reference: JiangRHoATSChehebIAl-MaadeedNAl-MaadeedSBouridaneAEmotion recognition from scrambled facial images via many graph embeddingPattern Recogn20176724525110.1016/j.patcog.2017.02.003 – reference: GeorgescuM-IIonescuRTPopescuMLocal learning with deep and handcrafted features for facial expression recognitionIEEE Access20197648276483610.1109/ACCESS.2019.2917266 – reference: KhanSAHussainAUsmanMReliable facial expression recognition for multi-scale images using weber local binary image based cosine transform featuresMultimed Tools Appl20187711133116510.1007/s11042-016-4324-z – reference: Jung H, Lee S, Yim J, Park S and Kim J (2015) Joint fine-tuning in deep neural networks for facial expression recognition, in the IEEE international conference on computer vision (ICCV), IEEE – reference: VermaMVipparthiSKSinghGHinet: hybrid inherited feature learning network for facial expression recognitionIEEE Letters of the Computer Society201924363910.1109/LOCS.2019.2927959 – reference: Ijjina EP and Mohan CK (2014) Facial expression recognition using Kinect depth sensor and convolutional neural networks. In machine learning and applications (ICMLA), 2014 13th international conference on IEEE, 392-396 – reference: Zhang W, Zhao X, Morvan J and Chen L (2018) Improving shadow suppression for illumination robust face recognition. IEEE Trans Pattern Anal Mach Intell, 1–1 – reference: SarodeNBhatiaSFacial expression recognitionInternational Journal on computer science and Engineering20102515521557 – reference: UddinMZHassanMMAlmogrenAZuairMFortinoGTorresenJA facial expression recognition system using robust face features from depth videos and deep learningComputers & Electrical Engineering20176311412510.1016/j.compeleceng.2017.04.019 – reference: Xu, Lei, Minrui Fei, Wenju Zhou, and Aolei Yang (2008) Face expression recognition based on convolutional neural network. In 2018 Australian & New Zealand Control Conference (ANZCC), pp. 115–118. IEEE – reference: DabhiMKPancholiBKFace detection system based on viola-jones algorithmInternational Journal of Science and Research (IJSR)201654626410.21275/v5i4.NOV162465 – reference: Sajjad M, Zahir S, Ullah A, Akhtar Z and Muhammad K (2019) Human behavior understanding in big multimedia data using CNN based facial expression recognition. Mobile networks and applications, 1-11 – reference: Maheswari VU, Raju SV and Reddy KS (2019) Local directional weighted threshold patterns (LDWTP) for facial expression recognition. In 2019 fifth international conference on image information processing (ICIIP), IEEE, 167-170 – reference: Liu Y, Zeng J, Shan S and Zheng Z (2018) Multi-Channel pose-aware convolution neural networks for multi-view facial expression recognition, in Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE international conference on IEEE, 458-465 – reference: Zhang K, Huang Y, Du Y (2017) Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE transactions on image processing, 4193-4203 – reference: EngKSAliHCheahAYChongYFFacial expression recognition in JAFFE and KDEF datasets using histogram of oriented gradients and support vector machine. In IOP conference series: materials science and engineeringIOP Publishing20197051012031 – reference: FangYChangLMulti-instance feature learning based on sparse representation for facial expression recognitionInternational conference on multimedia modeling2015ChamSpringer22423310.1007/978-3-319-14445-0_20 – reference: Sajjad M, Shah A, Jan Z, Shah SI, Baik SW and Mehmood I (2017) Facial appearance and texture feature-based robust facial expression recognition framework for sentiment knowledge discovery, Cluster Computing, 1-19 – reference: Yang J and Wang S (2017) Capturing spatial and temporal patterns for distinguishing between posed and spontaneous expressions. In proceedings of the 2017 ACM on multimedia conference, 469-477 – reference: RyuBRiveraARKimJChaeOLocal directional ternary pattern for facial expression recognitionIEEE Trans Image Process2017261260066018371097910.1109/TIP.2017.2726010 – reference: MandalMVermaMMathurSVipparthiSKMuralaSKumarDKRegional adaptive affinitive patterns (RADAP) with logical operators for facial expression recognitionIET Image Process201913585086110.1049/iet-ipr.2018.5683 – reference: Mavadati M, Sanger P and Mahoor MH (2016) Extended disfa dataset: investigating posed and spontaneous facial expressions. In proceedings of the IEEE conference on computer vision and pattern recognition workshops, 1-8 – reference: Naik S and Jagannath R (2018) GCV-based regularized extreme learning machine for facial expression recognition, advances in intelligent systems and computing, 129-138 – reference: Jain DK, Zhang Z and Huang K (2017) Multi angle optimal pattern-based deep learning for automatic facial expression recognition. Pattern Recogn Lett – reference: Muhammad G, Hussain M, Alenezy F, Bebis G, Mirza AM and Aboalsamh H (2012) Race recognition from face images using weber local descriptor. In systems, signals and image processing (IWSSIP), 2012 19th international conference on IEEE, 421-424 – reference: ZhangTZhengWCuiZZongYYanJYanKA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Transactions on Multimedia201618122528253610.1109/TMM.2016.2598092 – reference: FanXTjahjadiTA dynamic framework based on local Zernike moment and motion history image for facial expression recognitionPattern Recogn20176439940610.1016/j.patcog.2016.12.002 – reference: Valstar MF, Sánchez-Lozano E, Cohn JF, Jeni LA, Girard JM, Zhang Z, Yin L and Fera PM (2017) 2017-addressing head pose in the third facial expression recognition and analysis challenge, in Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on IEEE, 839-847 – reference: AlphonseSADharmaDNovel directional patterns and a generalized supervised dimension reduction system (GSDRS) for facial emotion recognitionMultimed Tools Appl20187789455948810.1007/s11042-017-5141-8 – reference: UddinMZHassanMMAlmogrenAAlamriAAlrubaianMFortinoGFacial expression recognition utilizing local direction-based robust features and deep belief networkIEEE Access201754525453610.1109/ACCESS.2017.2676238 – reference: SharmaRPatterhMSA new pose-invariant face recognition system using PCA and ANFISOptik-International Journal for Light and Electron Optics2015126233483348710.1016/j.ijleo.2015.08.205 – reference: Videla SL, Rao MRN, Anand D, Vankayalapati HD and Razia S (2019) Deformable facial fitting using active appearance model for emotion recognition. In Smart Intelligent Computing and Applications, Springer, Singapore 135–144 – reference: Yuan B, Cao H and Chu J (2012) Combining local binary pattern and local phase quantization for face recognition. In 2012 international symposium on biometrics and security technologies, IEEE 51-53 – reference: LuoYWuCZhangYFacial expression recognition based on fusion feature of PCA and LBP with SVMOptik - International Journal for Light and Electron Optics2013124172767277010.1016/j.ijleo.2012.08.040 – reference: Yang R-P, Liu Z-T, Zheng L-D, Wu J-P and C-C Hu (2018) Intelligent Mirror System Based on Facial Expression Recognition and Color Emotion Adaptation iMirror. In 2018 37th Chinese Control Conference (CCC), IEEE, 3227–3232. – reference: YangYFangDZhuDFacial expression recognition using deep belief networkRev Tec Ing Univ Zulia2016392384392 – ident: 8901_CR25 – ident: 8901_CR19 doi: 10.1109/FG.2018.00074 – volume: 51 start-page: 1 issue: 1 year: 2019 ident: 8901_CR35 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9554-6 – ident: 8901_CR27 doi: 10.1007/978-981-10-8569-7_14 – volume: 126 start-page: 550 issue: 5 year: 2018 ident: 8901_CR52 publication-title: Int J Comput Vis doi: 10.1007/s11263-017-1055-1 – ident: 8901_CR14 doi: 10.1109/ICCV.2015.341 – ident: 8901_CR1 – volume: 5 start-page: 4525 year: 2017 ident: 8901_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2676238 – volume: 61 start-page: 610 year: 2017 ident: 8901_CR20 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.07.026 – ident: 8901_CR30 doi: 10.1007/s11036-019-01366-9 – ident: 8901_CR49 doi: 10.1109/TIP.2017.2689999 – volume: 5 start-page: 62 issue: 4 year: 2016 ident: 8901_CR5 publication-title: International Journal of Science and Research (IJSR) doi: 10.21275/v5i4.NOV162465 – volume: 705 start-page: 012031 issue: 1 year: 2019 ident: 8901_CR6 publication-title: IOP Publishing – volume: 64 start-page: 399 year: 2017 ident: 8901_CR7 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.12.002 – ident: 8901_CR17 doi: 10.1109/TAFFC.2018.2880201 – ident: 8901_CR29 doi: 10.1007/s10586-017-0935-z – volume: 77 start-page: 1133 issue: 1 year: 2018 ident: 8901_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-4324-z – volume: 67 start-page: 245 year: 2017 ident: 8901_CR13 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.003 – ident: 8901_CR45 doi: 10.23919/ChiCC.2018.8483540 – ident: 8901_CR51 – volume: 36 start-page: 499 issue: 3 year: 2020 ident: 8901_CR18 publication-title: Vis Comput doi: 10.1007/s00371-019-01636-3 – ident: 8901_CR43 doi: 10.1109/ANZCC.2018.8606597 – volume: 96 start-page: 106966 year: 2019 ident: 8901_CR42 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.106966 – ident: 8901_CR24 doi: 10.1109/CVPRW.2016.182 – ident: 8901_CR36 doi: 10.1007/978-981-10-3920-1_18 – ident: 8901_CR10 doi: 10.1109/ICMLA.2014.70 – volume: 7 start-page: 64827 year: 2019 ident: 8901_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917266 – ident: 8901_CR34 doi: 10.1007/s11760-017-1226-0 – volume: 2 start-page: 36 issue: 4 year: 2019 ident: 8901_CR40 publication-title: IEEE Letters of the Computer Society doi: 10.1109/LOCS.2019.2927959 – ident: 8901_CR47 doi: 10.1109/ISBAST.2012.14 – ident: 8901_CR41 doi: 10.1007/978-981-13-1921-1_13 – volume: 124 start-page: 2767 issue: 17 year: 2013 ident: 8901_CR21 publication-title: Optik - International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2012.08.040 – volume: 2 start-page: 1552 issue: 5 year: 2010 ident: 8901_CR31 publication-title: International Journal on computer science and Engineering – volume: 77 start-page: 9455 issue: 8 year: 2018 ident: 8901_CR2 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5141-8 – volume: 13 start-page: 850 issue: 5 year: 2019 ident: 8901_CR23 publication-title: IET Image Process doi: 10.1049/iet-ipr.2018.5683 – volume: 26 start-page: 6006 issue: 12 year: 2017 ident: 8901_CR28 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2726010 – start-page: 224 volume-title: International conference on multimedia modeling year: 2015 ident: 8901_CR8 doi: 10.1007/978-3-319-14445-0_20 – volume: 62 start-page: 442 year: 2015 ident: 8901_CR16 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.08.504 – ident: 8901_CR3 doi: 10.1007/s11042-018-5812-0 – ident: 8901_CR26 doi: 10.1016/j.ijleo.2018.01.003 – volume: 273 start-page: 643 year: 2018 ident: 8901_CR48 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.043 – volume: 333 start-page: 231 year: 2019 ident: 8901_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.037 – volume: 131 start-page: 97 year: 2019 ident: 8901_CR4 publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2019.04.017 – ident: 8901_CR44 doi: 10.1145/3123266.3123350 – volume: 126 start-page: 3483 issue: 23 year: 2015 ident: 8901_CR33 publication-title: Optik-International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2015.08.205 – ident: 8901_CR39 doi: 10.1109/FG.2017.107 – ident: 8901_CR32 doi: 10.1007/978-981-10-8639-7_18 – volume: 18 start-page: 2528 issue: 12 year: 2016 ident: 8901_CR50 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2016.2598092 – ident: 8901_CR22 doi: 10.1109/ICIIP47207.2019.8985829 – volume: 63 start-page: 114 year: 2017 ident: 8901_CR38 publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2017.04.019 – ident: 8901_CR11 – volume: 39 start-page: 384 issue: 2 year: 2016 ident: 8901_CR46 publication-title: Rev Tec Ing Univ Zulia |
| SSID | ssj0016524 |
| Score | 2.2988548 |
| Snippet | Facial expression is the most common technique is used to convey the expressions of human beings. Due to different ethnicity and age, faces differ from one... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21487 |
| SubjectTerms | Algorithms Belief networks Computer Communication Networks Computer Science Cost analysis Data Structures and Information Theory Discrete cosine transform Face recognition Feature extraction Multimedia Information Systems Optimization Principal components analysis Robustness Special Purpose and Application-Based Systems Texture recognition |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTg6qq4ukoO3jTQZ9oe18fixVVwlb2VPGFBW-l2Rfz1Ttp0q6KCXnppGoaZZOZLJ_MNQseCUUcEkQLkFmsSyMAhiYaH9CPOvVAozUTVbCIajeLJJLm1RWGz5rZ7k5KsPHVb7OaaUhJz3HFiiGIEkONKaNhmzBn97mGRO6ChbWUbOwTioWtLZb6f43M4ajHml7RoFW2Gnf_JuYk2LLrEg3o5bKEllXVRp-ncgO1G7qL1DzSE22g8wEXO57MSa1XxfGLw2EVd8YDNj1qcg2N5mr4piS_OwAVf32DAuhgUDKsXBtvLtBleXEfKsx10P7wcn18R222BCNiGJeG8yshTX0fGUCB7pCgNXQYnsFh7OvI4mI8xxaIkpo6UEmTSLtXMF9rVnr-LlrM8U3sIB7HSmkmlTRkdFz6nApCeocLnIuEy6SG3UXoqLBW56YjxmLYkykaJKSgxrZSYvvbQyeKb55qI49fR_caWqd2Us9QLQIYEQAntodPGdu3rn2fb_9vwA7Tm1eYnjttHy2UxV4doVbyU01lxVC3WdyWW5UQ priority: 102 providerName: Springer Nature |
| Title | A robust feature extraction with optimized DBN-SMO for facial expression recognition |
| URI | https://link.springer.com/article/10.1007/s11042-020-08901-x https://www.proquest.com/docview/2432690246 |
| Volume | 79 |
| WOSCitedRecordID | wos000530987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5OBNg31t0p7EJ4K4Lr71UpoXLGiru6uIv95Jm-6qoBcvA6VJCPkmM5NMZgZgU2bMkxHXaLnFhkYq8mhikKiQCxE0pTaZLItN8FYrvrtL2u7CreeeVdYysRTUqpD2jnwniNDQSFCjsN3nF2qrRlnvqiuhMQrjNlMZ8vn4_lGrfTHwI7CmK2sbexR1o-_CZqrgOd-GptjjkxejVqTv31XT0N784SItNc_xzH_nPAvTzuYkexWTzMGIzudhpq7nQNz2noepL8kJF-Bqj3QL8drrE6PL7J8E5Xi3ioMg9vqWFChunjofWpHDfRTMZ-cELWCCy448jY3dE9ucDB4pFfkiXB8fXR2cUFeDgUrcnH0qROmnZ6HhFj5cKa4Za_oZnstiExgeCAQ1y3TGk5h5Simck_GZyUJpfBOESzCWF7leBhLF2phMaWOD64QMBZNo_9kE-UImQiUN8OvlT6VLUG7rZDymw9TKFrIUIUtLyNL3BmwN-jxX6Tn-bL1W45S6rdpLhyA1YLtGevj799FW_h5tFSaDirmo56_BWL_7qtdhQr71O73uBozy2_sNx674dcop0jPvwNLgHGm7-YD04vLmExeW9aY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEB1FgAQU3IhwbgEVWNiOs7YLhDgVlAOKINGZPSUksCEHBD6Kb2TWRwJI0FHQuPF6vPa-uXZ2ZgC2BaO28HyFllugLU96thVqvMiKz7lbFUozkTab8Fut4OYmvCrBe5ELY45VFjIxFdQyEWaPfN_10NAIUaPQw8cny3SNMtHVooVGBou6en1Bl617cHGK67vjuudn7ZOalXcVsATCrWdxnkaeaUX7ZkJ2EPqK0qrD0NMItKt9l-M0GVPMDwNqSym1YtqhmlWEdrQpdIAif9xDx8vwVdM-GUYtaDVvohvYFmpiJ0_SyVL1HJMIY5w1fCO68IOvinBk3X4LyKZ67nz2v_2hOZjJLWpylLHAPJRUvACzRbcKkguvBZj-VHpxEdpHpJPwfrdHkKqJohDUUp0sy4OYzWmSoDB9uHtTkpweo9ppXhK07wmCCjkWB-cHiGMyPIKVxEtw_SdfugxjcRKrFSBeoLRmUmmTOshFhVOB1q0p_89FyGVYBqdY7kjk5ddNF5D7aFQ42kAkQohEKUSiQRl2h888ZsVHfh29XuAiygVRNxqBogx7BbJGt3-mtvo7tS2YrLWbjahx0aqvwZSbAduynXUY63X6agMmxHPvrtvZTFmEwO1fI-4DvBJNVQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LL8RAGP8iiHDwFus5B0402m532h5EsDYEy4HEreaZSGjZB8uf5q_zTTvdRcLNwaWXTqedzu97zfcC2BCMuiIIFWpukXYCGbhOrPEiqyHnfk0ozUTebCJsNqObm_hyCN7LXBgTVlnyxJxRy0yYM_IdP0BFI0aJQne0DYu4rDf2Hp8c00HKeFrLdhoFRE7V6wuab-3dkzru9abvN46uDo8d22HAEQi9jsN57oWmVR2aj3OjOFSU1jyGVkekfR36HD-ZMcXCOKKulFIrpj2qWVVoT5uiB8j-R8KgFhjqOvcv-h4MWrMNdSPXQans2YSdIm3PM0kxxnDDN6I53_sqFAea7jfnbC7zGlP_-W9Nw6TVtMl-QRozMKTSWZgqu1gQy9RmYeJTScY5uNonrYx32x2CsxrvCsFFtYrsD2IOrUmGTPbh7k1JUj9AcXR-QVDvJwg2pGQcbAOLU9IPzcrSebj-k5UuwHCapWoRSBAprZlU2qQUclHlVKDWa9oCcBFzGVfAK7c-EbYsu-kOcp8MCkobuCQIlySHS9KrwFb_mceiKMmvo1dKjCSWQbWTAUAqsF2ibHD759mWfp9tHcYQaMnZSfN0Gcb9AuOO663AcKfVVaswKp47d-3WWk4tBG7_GnAfonRWPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+feature+extraction+with+optimized+DBN-SMO+for+facial+expression+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ramachandran%2C+Vedantham&rft.au=Reddy%2C+Edara+Sreenivasa&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=29-30&rft.spage=21487&rft.epage=21512&rft_id=info:doi/10.1007%2Fs11042-020-08901-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |