Guess Free Maximization of Submodular and Linear Sums

We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 83; číslo 3; s. 853 - 878
Hlavní autor: Feldman, Moran
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2021
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes.
AbstractList We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes.
We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes.
Author Feldman, Moran
Author_xml – sequence: 1
  givenname: Moran
  orcidid: 0000-0002-1535-2979
  surname: Feldman
  fullname: Feldman, Moran
  email: moranfe3@gmail.com
  organization: The Open University of Israel (Currently Affiliated with the University of Haifa, Israel)
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTj91sjlJsK1Q8VM8h2U0kpbtbk11Qf72xKwgeehhmBuaZd-adoUnbtRahawK3BEDcRQCeMwwUcGpzgeUZmhLOKIackwmaAhEl5gURF2gW4w6AUCGLKcpXg40xWwZrsyf94Rv_pXvftVnnsu1gmq4e9jpkuq2zjW9tKrdDEy_RudP7aK9-8xy9Lh9eFmu8eV49Lu43uGJE9tjonOqqKFhtauEY0BRO1yY3pZOMlSUtHaeGcOMMlZUxlbHgpLR1xRkpNJujm3HvIXTv6dBe7bohtElSUQGlKDjNaZqi41QVuhiDdeoQfKPDpyKgfuxRoz0q2aOO9iiZoPIfVPn--HoftN-fRtmIxqTTvtnwd9UJ6hvOqHtB
CitedBy_id crossref_primary_10_1007_s40305_023_00525_w
crossref_primary_10_1007_s00453_022_01028_5
crossref_primary_10_1007_s11590_023_01979_w
crossref_primary_10_1007_s10878_024_01240_9
crossref_primary_10_1287_opre_2023_2468
crossref_primary_10_1287_opre_2022_2370
crossref_primary_10_1007_s10878_024_01224_9
crossref_primary_10_1080_02331934_2023_2173968
crossref_primary_10_26599_TST_2023_9010026
crossref_primary_10_1016_j_tcs_2023_114254
crossref_primary_10_1007_s10898_024_01371_7
crossref_primary_10_1007_s00453_023_01195_z
crossref_primary_10_1007_s40305_025_00633_9
crossref_primary_10_26599_TST_2022_9010068
crossref_primary_10_1007_s10898_024_01406_z
crossref_primary_10_1109_ACCESS_2023_3317691
crossref_primary_10_1109_TIT_2021_3123944
crossref_primary_10_1007_s00453_023_01183_3
crossref_primary_10_1007_s10898_025_01473_w
crossref_primary_10_1007_s10898_021_01103_1
Cites_doi 10.1002/0471722154
10.1109/FOCS.2010.60
10.1287/moor.2018.0955
10.1137/1.9781611974331.ch72
10.1007/BF01588971
10.1137/1.9781611973402.110
10.1007/978-3-642-36694-9_18
10.1145/3070685
10.1287/moor.3.3.177
10.1137/110839655
10.1137/1.9781611973402.106
10.1137/080733991
10.1109/FOCS.2018.00080
10.1609/aaai.v31i1.10653
10.1287/moor.2016.0809
10.1287/moor.2016.0842
10.1109/FOCS.2016.34
10.1109/FOCS.2011.46
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-020-00757-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 878
ExternalDocumentID 10_1007_s00453_020_00757_9
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1357/16
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-ba52ac663dbd7f302f30fadb5b8f9338828f42b14bfb29cbbcbe0f99edc4316a3
IEDL.DBID RSV
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000559650400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 08:53:16 EST 2025
Tue Nov 18 22:33:02 EST 2025
Sat Nov 29 02:20:29 EST 2025
Fri Feb 21 02:44:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 68Q25
Continuous greedy
68W25
90C27
Submodular maximization
Curvature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ba52ac663dbd7f302f30fadb5b8f9338828f42b14bfb29cbbcbe0f99edc4316a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1535-2979
PQID 2708764252
PQPubID 2043795
PageCount 26
ParticipantIDs proquest_journals_2708764252
crossref_primary_10_1007_s00453_020_00757_9
crossref_citationtrail_10_1007_s00453_020_00757_9
springer_journals_10_1007_s00453_020_00757_9
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
Ene, A., Nguyen, H.L.: Constrained submodular maximization: Beyond 1/e. In: FOCS, pp. 248–257 (2016)
BuchbinderNFeldmanMConstrained submodular maximization via a non-symmetric techniqueMath. Oper. Res.20194439881005399665510.1287/moor.2018.0955
BuchbinderNFeldmanMSchwartzRComparing apples and oranges: query trade-off in submodular maximizationMath. Oper. Res.2017422308329365199310.1287/moor.2016.0809
Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: SODA, pp. 1497–1514 (2014)
Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: IPCO, pp. 205–216 (2013)
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781426529450386610.1007/BF01588971
Soma, T., Yoshida, Y.: A new approximation guarantee for monotone submodular function maximization via discrete convexity. In: ICALP, pp. 99:1–99:14 (2018)
Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS, pp. 570–579 (2011)
Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In: ICML, pp. 2634–2643 (2019)
NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177
Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization with cardinality constraints. In: SODA, pp. 1433–1452 (2014)
Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: SODA, pp. 1014–1033 (2016)
Adamczyk, M., Wlodarczyk, M.: Random order contention resolution schemes. In: FOCS, pp. 790–801 (2018)
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS, pp. 575–584 (2010)
ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
Feldman, M.: Maximizing symmetric submodular functions. ACM Trans. Algorithms 13(3), 39:1–39:36 (2017)
SviridenkoMVondrákJWardJOptimal approximation for submodular and supermodular optimization with bounded curvatureMath. Oper. Res.201742411971218372243210.1287/moor.2016.0842
AlonNSpencerJHThe Probabilistic Method20002LondonWiley10.1002/0471722154
N Buchbinder (757_CR6) 2017; 42
757_CR18
757_CR3
C Chekuri (757_CR9) 2014; 43
757_CR1
757_CR15
757_CR14
M Sviridenko (757_CR19) 2017; 42
757_CR13
757_CR12
GL Nemhauser (757_CR16) 1978; 3
757_CR11
757_CR10
G Călinescu (757_CR7) 2011; 40
GL Nemhauser (757_CR17) 1978; 14
N Buchbinder (757_CR4) 2019; 44
757_CR8
757_CR5
N Alon (757_CR2) 2000
References_xml – reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS, pp. 575–584 (2010)
– reference: Adamczyk, M., Wlodarczyk, M.: Random order contention resolution schemes. In: FOCS, pp. 790–801 (2018)
– reference: Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization with cardinality constraints. In: SODA, pp. 1433–1452 (2014)
– reference: Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: IPCO, pp. 205–216 (2013)
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781426529450386610.1007/BF01588971
– reference: Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: SODA, pp. 1014–1033 (2016)
– reference: SviridenkoMVondrákJWardJOptimal approximation for submodular and supermodular optimization with bounded curvatureMath. Oper. Res.201742411971218372243210.1287/moor.2016.0842
– reference: BuchbinderNFeldmanMConstrained submodular maximization via a non-symmetric techniqueMath. Oper. Res.20194439881005399665510.1287/moor.2018.0955
– reference: Soma, T., Yoshida, Y.: A new approximation guarantee for monotone submodular function maximization via discrete convexity. In: ICALP, pp. 99:1–99:14 (2018)
– reference: ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
– reference: BuchbinderNFeldmanMSchwartzRComparing apples and oranges: query trade-off in submodular maximizationMath. Oper. Res.2017422308329365199310.1287/moor.2016.0809
– reference: CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
– reference: NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177
– reference: Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In: ICML, pp. 2634–2643 (2019)
– reference: Feldman, M.: Maximizing symmetric submodular functions. ACM Trans. Algorithms 13(3), 39:1–39:36 (2017)
– reference: Ene, A., Nguyen, H.L.: Constrained submodular maximization: Beyond 1/e. In: FOCS, pp. 248–257 (2016)
– reference: Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS, pp. 570–579 (2011)
– reference: AlonNSpencerJHThe Probabilistic Method20002LondonWiley10.1002/0471722154
– reference: Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: SODA, pp. 1497–1514 (2014)
– volume-title: The Probabilistic Method
  year: 2000
  ident: 757_CR2
  doi: 10.1002/0471722154
– ident: 757_CR8
  doi: 10.1109/FOCS.2010.60
– ident: 757_CR15
– volume: 44
  start-page: 988
  issue: 3
  year: 2019
  ident: 757_CR4
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2018.0955
– ident: 757_CR13
  doi: 10.1137/1.9781611974331.ch72
– volume: 14
  start-page: 265
  year: 1978
  ident: 757_CR17
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– ident: 757_CR3
  doi: 10.1137/1.9781611973402.110
– ident: 757_CR14
  doi: 10.1007/978-3-642-36694-9_18
– ident: 757_CR11
  doi: 10.1145/3070685
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 757_CR16
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.3.3.177
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  ident: 757_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– ident: 757_CR5
  doi: 10.1137/1.9781611973402.106
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 757_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: 757_CR1
  doi: 10.1109/FOCS.2018.00080
– ident: 757_CR18
  doi: 10.1609/aaai.v31i1.10653
– volume: 42
  start-page: 308
  issue: 2
  year: 2017
  ident: 757_CR6
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0809
– volume: 42
  start-page: 1197
  issue: 4
  year: 2017
  ident: 757_CR19
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0842
– ident: 757_CR10
  doi: 10.1109/FOCS.2016.34
– ident: 757_CR12
  doi: 10.1109/FOCS.2011.46
SSID ssj0012796
Score 2.4793105
Snippet We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 853
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Algorithms and Data Structures (WADS 2019)
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Linear functions
Mathematical analysis
Mathematics of Computing
Maximization
Optimization
Polytopes
Theory of Computation
Title Guess Free Maximization of Submodular and Linear Sums
URI https://link.springer.com/article/10.1007/s00453-020-00757-9
https://www.proquest.com/docview/2708764252
Volume 83
WOSCitedRecordID wos000559650400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGP_Q6cGL84nTKTl400KbtktzFHF6cYgvdit5FQauG-sU_3y_ZGmHooIeemmTNHzJ9-J7_ABOTShkjJosSHomDZIsUigHYxUwoamFj9Ys0w5sgg0G2XDI73xRWFVnu9chSSepm2I3a33YmKOthGYpC_gqrKG6yyw73j88N7EDyhwql8Wdxx1EzJfKfL_GZ3W0tDG_hEWdtum3_7fPLdj01iW5WFyHbVgx5Q60a-QG4hl5F9Jr_H9F-jNjyK14H419NSaZFARFyXiibXYqEaUm6KwiM-DbcbUHT_2rx8ubwAMoBAo5ax5IkVKh8CS01KyIQ4pPIbRMZVZw9E3R2yoSKqNEFpJyJaWSJiw4N1rZCnkR70OrnJTmAAiViQgjkXG0GBKTaB4aZTSPRNozDN2sDkQ1HXPlu4tbkIuXvOmL7OiSI11yR5ecd-CsmTNd9Nb4dXS3Pp7c81mVU2Zb6qHcoR04r49j-fnn1Q7_NvwINqhNZnHJZ11ozWev5hjW1dt8VM1O3P37AIgQ0gs
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFPTi_MTp1By8aaFN26U5ijgnbkN0ym4lX4WB62Sd4p_vS9d2KCrooZc2ScNL3hfv4wdwalwhfdRkTtAyoRNEnkI56CuHCU0tfLRmkc7BJli_Hw2H_K4oCsvKbPcyJJlL6qrYzVofNuZoK6FZyBy-DCsBaiybyHf_8FTFDijLUbks7jzuwGNFqcz3a3xWRwsb80tYNNc27fr_9rkJG4V1SS7m12ELlky6DfUSuYEUjLwD4TX-PyPtqTGkJ95H46Iak0wSgqJkPNE2O5WIVBN0VpEZ8O0424XH9tXgsuMUAAqOQs6aOVKEVCg8CS01S3yX4pMILUMZJRx9U_S2koBKL5CJpFxJqaRxE86NVrZCXvh7UEsnqdkHQmUgXE9EHC2GwASau0YZzT0RtgxDN6sBXknHWBXdxS3IxXNc9UXO6RIjXeKcLjFvwFk152XeW-PX0c3yeOKCz7KYMttSD-UObcB5eRyLzz-vdvC34Sew1hn0unH3pn97COvUJrbkiWhNqM2mr-YIVtXbbJRNj_O7-AFqM9Tv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_eNJhskm72KGpV1FLwQW9hX4GCTUsbxZ_vbJqkKiqIh1ySzbLM7OzOMPPNB3BoXCF9vMmcoGVCJ4g8heegrxwmNLX00ZpFOiebYJ1O1Ovx7gcUf17tXqYkp5gG26UpzU5GOjmpgG_WE7H5R4uKZiFz-DwsBJY0yMbr909VHoGynKHLctDjajxWwGa-n-Pz1TTzN7-kSPObp13__5pXYaXwOsnpdJuswZxJ16FeMjqQwsA3ILzEtUxIe2wMuRNv_UGB0iTDhOARMxhqW7VKRKoJBrFoJPh2MNmEx_bFw9mVUxArOAotLnOkCKlQqCEtNUt8l-KTCC1DGSUcY1aMwpKASi-QiaRcSamkcRPOjVYWOS_8Lailw9RsA6EyEK4nIo6eRGACzV2jjOaeCFuGYfjVAK-UaayKruOW_OI5rvol53KJUS5xLpeYN-Co-mc07bnx6-hmqaq4sL9JTJlttYfnEW3Acama2eefZ9v52_ADWOqet-Pb687NLixTW--S16c1oZaNX8weLKrXrD8Z7-fb8h3cwd3T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guess+Free+Maximization+of+Submodular+and+Linear+Sums&rft.jtitle=Algorithmica&rft.au=Feldman%2C+Moran&rft.date=2021-03-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=3&rft.spage=853&rft.epage=878&rft_id=info:doi/10.1007%2Fs00453-020-00757-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_020_00757_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon