Guess Free Maximization of Submodular and Linear Sums
We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 83; číslo 3; s. 853 - 878 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes. |
|---|---|
| AbstractList | We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes. We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes. |
| Author | Feldman, Moran |
| Author_xml | – sequence: 1 givenname: Moran orcidid: 0000-0002-1535-2979 surname: Feldman fullname: Feldman, Moran email: moranfe3@gmail.com organization: The Open University of Israel (Currently Affiliated with the University of Haifa, Israel) |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTj91sjlJsK1Q8VM8h2U0kpbtbk11Qf72xKwgeehhmBuaZd-adoUnbtRahawK3BEDcRQCeMwwUcGpzgeUZmhLOKIackwmaAhEl5gURF2gW4w6AUCGLKcpXg40xWwZrsyf94Rv_pXvftVnnsu1gmq4e9jpkuq2zjW9tKrdDEy_RudP7aK9-8xy9Lh9eFmu8eV49Lu43uGJE9tjonOqqKFhtauEY0BRO1yY3pZOMlSUtHaeGcOMMlZUxlbHgpLR1xRkpNJujm3HvIXTv6dBe7bohtElSUQGlKDjNaZqi41QVuhiDdeoQfKPDpyKgfuxRoz0q2aOO9iiZoPIfVPn--HoftN-fRtmIxqTTvtnwd9UJ6hvOqHtB |
| CitedBy_id | crossref_primary_10_1007_s40305_023_00525_w crossref_primary_10_1007_s00453_022_01028_5 crossref_primary_10_1007_s11590_023_01979_w crossref_primary_10_1007_s10878_024_01240_9 crossref_primary_10_1287_opre_2023_2468 crossref_primary_10_1287_opre_2022_2370 crossref_primary_10_1007_s10878_024_01224_9 crossref_primary_10_1080_02331934_2023_2173968 crossref_primary_10_26599_TST_2023_9010026 crossref_primary_10_1016_j_tcs_2023_114254 crossref_primary_10_1007_s10898_024_01371_7 crossref_primary_10_1007_s00453_023_01195_z crossref_primary_10_1007_s40305_025_00633_9 crossref_primary_10_26599_TST_2022_9010068 crossref_primary_10_1007_s10898_024_01406_z crossref_primary_10_1109_ACCESS_2023_3317691 crossref_primary_10_1109_TIT_2021_3123944 crossref_primary_10_1007_s00453_023_01183_3 crossref_primary_10_1007_s10898_025_01473_w crossref_primary_10_1007_s10898_021_01103_1 |
| Cites_doi | 10.1002/0471722154 10.1109/FOCS.2010.60 10.1287/moor.2018.0955 10.1137/1.9781611974331.ch72 10.1007/BF01588971 10.1137/1.9781611973402.110 10.1007/978-3-642-36694-9_18 10.1145/3070685 10.1287/moor.3.3.177 10.1137/110839655 10.1137/1.9781611973402.106 10.1137/080733991 10.1109/FOCS.2018.00080 10.1609/aaai.v31i1.10653 10.1287/moor.2016.0809 10.1287/moor.2016.0842 10.1109/FOCS.2016.34 10.1109/FOCS.2011.46 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-020-00757-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 878 |
| ExternalDocumentID | 10_1007_s00453_020_00757_9 |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 1357/16 funderid: http://dx.doi.org/10.13039/501100003977 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-ba52ac663dbd7f302f30fadb5b8f9338828f42b14bfb29cbbcbe0f99edc4316a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000559650400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Sun Nov 09 08:53:16 EST 2025 Tue Nov 18 22:33:02 EST 2025 Sat Nov 29 02:20:29 EST 2025 Fri Feb 21 02:44:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 68Q25 Continuous greedy 68W25 90C27 Submodular maximization Curvature |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ba52ac663dbd7f302f30fadb5b8f9338828f42b14bfb29cbbcbe0f99edc4316a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1535-2979 |
| PQID | 2708764252 |
| PQPubID | 2043795 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2708764252 crossref_primary_10_1007_s00453_020_00757_9 crossref_citationtrail_10_1007_s00453_020_00757_9 springer_journals_10_1007_s00453_020_00757_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991 Ene, A., Nguyen, H.L.: Constrained submodular maximization: Beyond 1/e. In: FOCS, pp. 248–257 (2016) BuchbinderNFeldmanMConstrained submodular maximization via a non-symmetric techniqueMath. Oper. Res.20194439881005399665510.1287/moor.2018.0955 BuchbinderNFeldmanMSchwartzRComparing apples and oranges: query trade-off in submodular maximizationMath. Oper. Res.2017422308329365199310.1287/moor.2016.0809 Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: SODA, pp. 1497–1514 (2014) Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: IPCO, pp. 205–216 (2013) NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781426529450386610.1007/BF01588971 Soma, T., Yoshida, Y.: A new approximation guarantee for monotone submodular function maximization via discrete convexity. In: ICALP, pp. 99:1–99:14 (2018) Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS, pp. 570–579 (2011) Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In: ICML, pp. 2634–2643 (2019) NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177 Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization with cardinality constraints. In: SODA, pp. 1433–1452 (2014) Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: SODA, pp. 1014–1033 (2016) Adamczyk, M., Wlodarczyk, M.: Random order contention resolution schemes. In: FOCS, pp. 790–801 (2018) Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS, pp. 575–584 (2010) ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655 Feldman, M.: Maximizing symmetric submodular functions. ACM Trans. Algorithms 13(3), 39:1–39:36 (2017) SviridenkoMVondrákJWardJOptimal approximation for submodular and supermodular optimization with bounded curvatureMath. Oper. Res.201742411971218372243210.1287/moor.2016.0842 AlonNSpencerJHThe Probabilistic Method20002LondonWiley10.1002/0471722154 N Buchbinder (757_CR6) 2017; 42 757_CR18 757_CR3 C Chekuri (757_CR9) 2014; 43 757_CR1 757_CR15 757_CR14 M Sviridenko (757_CR19) 2017; 42 757_CR13 757_CR12 GL Nemhauser (757_CR16) 1978; 3 757_CR11 757_CR10 G Călinescu (757_CR7) 2011; 40 GL Nemhauser (757_CR17) 1978; 14 N Buchbinder (757_CR4) 2019; 44 757_CR8 757_CR5 N Alon (757_CR2) 2000 |
| References_xml | – reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS, pp. 575–584 (2010) – reference: Adamczyk, M., Wlodarczyk, M.: Random order contention resolution schemes. In: FOCS, pp. 790–801 (2018) – reference: Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization with cardinality constraints. In: SODA, pp. 1433–1452 (2014) – reference: Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: IPCO, pp. 205–216 (2013) – reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781426529450386610.1007/BF01588971 – reference: Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: SODA, pp. 1014–1033 (2016) – reference: SviridenkoMVondrákJWardJOptimal approximation for submodular and supermodular optimization with bounded curvatureMath. Oper. Res.201742411971218372243210.1287/moor.2016.0842 – reference: BuchbinderNFeldmanMConstrained submodular maximization via a non-symmetric techniqueMath. Oper. Res.20194439881005399665510.1287/moor.2018.0955 – reference: Soma, T., Yoshida, Y.: A new approximation guarantee for monotone submodular function maximization via discrete convexity. In: ICALP, pp. 99:1–99:14 (2018) – reference: ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655 – reference: BuchbinderNFeldmanMSchwartzRComparing apples and oranges: query trade-off in submodular maximizationMath. Oper. Res.2017422308329365199310.1287/moor.2016.0809 – reference: CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991 – reference: NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177 – reference: Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In: ICML, pp. 2634–2643 (2019) – reference: Feldman, M.: Maximizing symmetric submodular functions. ACM Trans. Algorithms 13(3), 39:1–39:36 (2017) – reference: Ene, A., Nguyen, H.L.: Constrained submodular maximization: Beyond 1/e. In: FOCS, pp. 248–257 (2016) – reference: Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS, pp. 570–579 (2011) – reference: AlonNSpencerJHThe Probabilistic Method20002LondonWiley10.1002/0471722154 – reference: Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: SODA, pp. 1497–1514 (2014) – volume-title: The Probabilistic Method year: 2000 ident: 757_CR2 doi: 10.1002/0471722154 – ident: 757_CR8 doi: 10.1109/FOCS.2010.60 – ident: 757_CR15 – volume: 44 start-page: 988 issue: 3 year: 2019 ident: 757_CR4 publication-title: Math. Oper. Res. doi: 10.1287/moor.2018.0955 – ident: 757_CR13 doi: 10.1137/1.9781611974331.ch72 – volume: 14 start-page: 265 year: 1978 ident: 757_CR17 publication-title: Math. Program. doi: 10.1007/BF01588971 – ident: 757_CR3 doi: 10.1137/1.9781611973402.110 – ident: 757_CR14 doi: 10.1007/978-3-642-36694-9_18 – ident: 757_CR11 doi: 10.1145/3070685 – volume: 3 start-page: 177 issue: 3 year: 1978 ident: 757_CR16 publication-title: Math. Oper. Res. doi: 10.1287/moor.3.3.177 – volume: 43 start-page: 1831 issue: 6 year: 2014 ident: 757_CR9 publication-title: SIAM J. Comput. doi: 10.1137/110839655 – ident: 757_CR5 doi: 10.1137/1.9781611973402.106 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 757_CR7 publication-title: SIAM J. Comput. doi: 10.1137/080733991 – ident: 757_CR1 doi: 10.1109/FOCS.2018.00080 – ident: 757_CR18 doi: 10.1609/aaai.v31i1.10653 – volume: 42 start-page: 308 issue: 2 year: 2017 ident: 757_CR6 publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0809 – volume: 42 start-page: 1197 issue: 4 year: 2017 ident: 757_CR19 publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0842 – ident: 757_CR10 doi: 10.1109/FOCS.2016.34 – ident: 757_CR12 doi: 10.1109/FOCS.2011.46 |
| SSID | ssj0012796 |
| Score | 2.4793105 |
| Snippet | We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 853 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Algorithms and Data Structures (WADS 2019) Approximation Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Linear functions Mathematical analysis Mathematics of Computing Maximization Optimization Polytopes Theory of Computation |
| Title | Guess Free Maximization of Submodular and Linear Sums |
| URI | https://link.springer.com/article/10.1007/s00453-020-00757-9 https://www.proquest.com/docview/2708764252 |
| Volume | 83 |
| WOSCitedRecordID | wos000559650400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGP_Q6cGL84nTKTl400KbtktzFHF6cYgvdit5FQauG-sU_3y_ZGmHooIeemmTNHzJ9-J7_ABOTShkjJosSHomDZIsUigHYxUwoamFj9Ys0w5sgg0G2XDI73xRWFVnu9chSSepm2I3a33YmKOthGYpC_gqrKG6yyw73j88N7EDyhwql8Wdxx1EzJfKfL_GZ3W0tDG_hEWdtum3_7fPLdj01iW5WFyHbVgx5Q60a-QG4hl5F9Jr_H9F-jNjyK14H419NSaZFARFyXiibXYqEaUm6KwiM-DbcbUHT_2rx8ubwAMoBAo5ax5IkVKh8CS01KyIQ4pPIbRMZVZw9E3R2yoSKqNEFpJyJaWSJiw4N1rZCnkR70OrnJTmAAiViQgjkXG0GBKTaB4aZTSPRNozDN2sDkQ1HXPlu4tbkIuXvOmL7OiSI11yR5ecd-CsmTNd9Nb4dXS3Pp7c81mVU2Zb6qHcoR04r49j-fnn1Q7_NvwINqhNZnHJZ11ozWev5hjW1dt8VM1O3P37AIgQ0gs |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFPTi_MTp1By8aaFN26U5ijgnbkN0ym4lX4WB62Sd4p_vS9d2KCrooZc2ScNL3hfv4wdwalwhfdRkTtAyoRNEnkI56CuHCU0tfLRmkc7BJli_Hw2H_K4oCsvKbPcyJJlL6qrYzVofNuZoK6FZyBy-DCsBaiybyHf_8FTFDijLUbks7jzuwGNFqcz3a3xWRwsb80tYNNc27fr_9rkJG4V1SS7m12ELlky6DfUSuYEUjLwD4TX-PyPtqTGkJ95H46Iak0wSgqJkPNE2O5WIVBN0VpEZ8O0424XH9tXgsuMUAAqOQs6aOVKEVCg8CS01S3yX4pMILUMZJRx9U_S2koBKL5CJpFxJqaRxE86NVrZCXvh7UEsnqdkHQmUgXE9EHC2GwASau0YZzT0RtgxDN6sBXknHWBXdxS3IxXNc9UXO6RIjXeKcLjFvwFk152XeW-PX0c3yeOKCz7KYMttSD-UObcB5eRyLzz-vdvC34Sew1hn0unH3pn97COvUJrbkiWhNqM2mr-YIVtXbbJRNj_O7-AFqM9Tv |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_eNJhskm72KGpV1FLwQW9hX4GCTUsbxZ_vbJqkKiqIh1ySzbLM7OzOMPPNB3BoXCF9vMmcoGVCJ4g8heegrxwmNLX00ZpFOiebYJ1O1Ovx7gcUf17tXqYkp5gG26UpzU5GOjmpgG_WE7H5R4uKZiFz-DwsBJY0yMbr909VHoGynKHLctDjajxWwGa-n-Pz1TTzN7-kSPObp13__5pXYaXwOsnpdJuswZxJ16FeMjqQwsA3ILzEtUxIe2wMuRNv_UGB0iTDhOARMxhqW7VKRKoJBrFoJPh2MNmEx_bFw9mVUxArOAotLnOkCKlQqCEtNUt8l-KTCC1DGSUcY1aMwpKASi-QiaRcSamkcRPOjVYWOS_8Lailw9RsA6EyEK4nIo6eRGACzV2jjOaeCFuGYfjVAK-UaayKruOW_OI5rvol53KJUS5xLpeYN-Co-mc07bnx6-hmqaq4sL9JTJlttYfnEW3Acama2eefZ9v52_ADWOqet-Pb687NLixTW--S16c1oZaNX8weLKrXrD8Z7-fb8h3cwd3T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guess+Free+Maximization+of+Submodular+and+Linear+Sums&rft.jtitle=Algorithmica&rft.au=Feldman%2C+Moran&rft.date=2021-03-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=3&rft.spage=853&rft.epage=878&rft_id=info:doi/10.1007%2Fs00453-020-00757-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_020_00757_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |