Guess Free Maximization of Submodular and Linear Sums

We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 83; číslo 3; s. 853 - 878
Hlavný autor: Feldman, Moran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2021
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the problem of maximizing the sum of a monotone submodular function and a linear function subject to a general solvable polytope constraint. Recently, Sviridenko et al. (Math Oper Res 42(4):1197–1218, 2017) described an algorithm for this problem whose approximation guarantee is optimal in some intuitive and formal senses. Unfortunately, this algorithm involves a guessing step which makes it less clean and significantly affects its time complexity. In this work we describe a clean alternative algorithm that uses a novel weighting technique in order to avoid the problematic guessing step while keeping the same approximation guarantee as the algorithm of Sviridenko et al. (2017). We also show that the guarantee of our algorithm becomes slightly better when the polytope is down-monotone, and that this better guarantee is tight for such polytopes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-020-00757-9