A new lossy compression algorithm for wireless sensor networks using Bayesian predictive coding

Wireless sensor networks (WSNs) generate a variety of continuous data streams. To reduce data storage and transmission cost, compression is recommended to be applied to the data streams from every single sensor node. Local compression falls into two categories: lossless and lossy. Lossy compression...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless networks Ročník 26; číslo 8; s. 5981 - 5995
Hlavní autoři: Chen, Chen, Zhang, Limao, Tiong, Robert Lee Kong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2020
Springer Nature B.V
Témata:
ISSN:1022-0038, 1572-8196
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wireless sensor networks (WSNs) generate a variety of continuous data streams. To reduce data storage and transmission cost, compression is recommended to be applied to the data streams from every single sensor node. Local compression falls into two categories: lossless and lossy. Lossy compression techniques are generally preferable for sensors in commercial nodes than the lossless ones as they provide a better compression ratio at a lower computational cost. However, the traditional approaches for data compression in WSNs are sensitive to sensor accuracy. They are less efficient when there are abnormal and faulty measurements or missing data. This paper proposes a new lossy compression approach using the Bayesian predictive coding (BPC). Instead of the original signals, predictive coding transmits the error terms which are calculated by subtracting the predicted signals from the actual signals to the receiving node. Its compression performance depends on the accuracy of the adopted prediction technique. BPC combines the Bayesian inference with the predictive coding. Prediction is made by the Bayesian inference instead of regression models as in traditional predictive coding. In this way, it can utilize prior information and provide inferences that are conditional on the data without reliance on asymptotic approximation. Experimental tests show that the BPC is the same efficient as the linear predictive coding when handling independent signals which follow a stationary probability distribution. More than that, the BPC is more robust toward occasionally erroneous or missing sensor data. The proposed approach is based on the physical knowledge of the phenomenon in applications. It can be considered as a complementary approach to the existing lossy compression family for WSNs.
AbstractList Wireless sensor networks (WSNs) generate a variety of continuous data streams. To reduce data storage and transmission cost, compression is recommended to be applied to the data streams from every single sensor node. Local compression falls into two categories: lossless and lossy. Lossy compression techniques are generally preferable for sensors in commercial nodes than the lossless ones as they provide a better compression ratio at a lower computational cost. However, the traditional approaches for data compression in WSNs are sensitive to sensor accuracy. They are less efficient when there are abnormal and faulty measurements or missing data. This paper proposes a new lossy compression approach using the Bayesian predictive coding (BPC). Instead of the original signals, predictive coding transmits the error terms which are calculated by subtracting the predicted signals from the actual signals to the receiving node. Its compression performance depends on the accuracy of the adopted prediction technique. BPC combines the Bayesian inference with the predictive coding. Prediction is made by the Bayesian inference instead of regression models as in traditional predictive coding. In this way, it can utilize prior information and provide inferences that are conditional on the data without reliance on asymptotic approximation. Experimental tests show that the BPC is the same efficient as the linear predictive coding when handling independent signals which follow a stationary probability distribution. More than that, the BPC is more robust toward occasionally erroneous or missing sensor data. The proposed approach is based on the physical knowledge of the phenomenon in applications. It can be considered as a complementary approach to the existing lossy compression family for WSNs.
Author Zhang, Limao
Tiong, Robert Lee Kong
Chen, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: School of Civil and Environmental Engineering, Nanyang Technological University
– sequence: 2
  givenname: Limao
  orcidid: 0000-0002-7245-3741
  surname: Zhang
  fullname: Zhang, Limao
  email: limao.zhang@ntu.edu.sg
  organization: School of Civil and Environmental Engineering, Nanyang Technological University
– sequence: 3
  givenname: Robert Lee Kong
  surname: Tiong
  fullname: Tiong, Robert Lee Kong
  organization: School of Civil and Environmental Engineering, Nanyang Technological University
BookMark eNp9kEtLAzEQgINUsK3-AU8Bz6uT7Cs51uILCl70HLK7szV1m9Rk69J_b3QFwUMPITPMfDPJNyMT6ywScsngmgGUN4ExXhYJcIgn43kynJApy0ueCCaLSYyB8wQgFWdkFsIGAEQq5ZSoBbU40M6FcKC12-48hmCcpbpbO2_6ty1tnaeD8djFCg1oQ8wt9oPz74Hug7FreqsPGIy2NOKNqXvziXFYE0vn5LTVXcCL33tOXu_vXpaPyer54Wm5WCV1ymSfVLIVVZVjUTLMGMtRijoTopYVsKIAqNK6ydMyjwHTVdkUMi14KZEhZIKzNp2Tq3HuzruPPYZebdze27hS8SyTWQ5S8tjFx67axw97bNXOm632B8VAfYtUo0gVRaofkWqIkPgH1abXfZTUe22642g6oiHusWv0f686Qn0BTvmLXg
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3060317
crossref_primary_10_3390_s22197685
crossref_primary_10_1109_ACCESS_2024_3476424
crossref_primary_10_1016_j_ins_2022_08_054
crossref_primary_10_1016_j_neucom_2021_07_071
crossref_primary_10_1109_LSENS_2024_3367044
Cites_doi 10.1016/j.is.2016.11.001
10.1109/JRPROC.1952.273898
10.1061/(ASCE)CP.1943-5487.0000721
10.1007/s12065-010-0044-x
10.1007/s11276-017-1570-6
10.1109/PROC.1975.9792
10.1109/TIP.2019.2934565
10.1016/j.compgeo.2017.01.014
10.1109/MCOM.2007.343615
10.1109/INFCOMW.2016.7562104
10.1147/rd.232.0149
10.4102/sajems.v18i4.966
10.1080/02564602.2016.1233835
10.1109/TNNLS.2018.2820019
10.1007/s11276-017-1543-9
10.1016/j.is.2015.10.006
10.1111/risa.12448
10.1109/JSEN.2016.2550599
10.1016/j.ress.2014.10.021
10.1016/j.ssci.2019.08.015
10.1109/TIT.1978.1055934
10.1109/TSP.2012.2201149
10.3390/s90906869
10.1109/COMST.2017.2691551
10.1109/MC.1984.1659158
10.1016/j.phycom.2009.07.001
10.2299/jsp.17.283
10.1016/j.is.2014.06.005
10.1016/j.jnca.2011.03.001
10.1109/ICCircuitsAndSystems.2012.6408307
10.1016/j.future.2016.01.015
10.1155/2013/253257
10.1016/j.ins.2010.01.027
10.1007/s11276-017-1471-8
10.3390/s19204540
10.1145/2990196
10.1016/j.is.2011.03.004
10.1080/01621459.1968.11009335
10.1109/ICC.2010.5502565
10.1109/SENSORCOMM.2009.84
10.1109/WSC.2015.7408498
10.1145/1614320.1614337
10.1109/LCN.2004.72
10.1109/INDIN.2007.4384776
10.1016/j.jksuci.2018.05.006
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
L.-
L7M
L~C
L~D
M0C
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11276-020-02425-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8196
EndPage 5995
ExternalDocumentID 10_1007_s11276_020_02425_w
GrantInformation_xml – fundername: Start-Up Grant at Nanyang Technological University, Singapore
  grantid: M4082160.030
– fundername: Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique (MA)
  grantid: M4011971.030
GroupedDBID -59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAHTB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABGDV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWIH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
KZ1
LAK
LLZTM
M0C
M2P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-b9f8bb5e671e4115e98c488c9b016600b3cd53750b31ab7d6936279e1e04821f3
IEDL.DBID 7WY
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000547243000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1022-0038
IngestDate Wed Nov 05 02:21:54 EST 2025
Sat Nov 29 04:44:22 EST 2025
Tue Nov 18 21:48:47 EST 2025
Fri Feb 21 02:31:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Lossy compression
Predictive coding
Wireless sensor networks
Bayesian inference
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b9f8bb5e671e4115e98c488c9b016600b3cd53750b31ab7d6936279e1e04821f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7245-3741
PQID 2449450992
PQPubID 26318
PageCount 15
ParticipantIDs proquest_journals_2449450992
crossref_primary_10_1007_s11276_020_02425_w
crossref_citationtrail_10_1007_s11276_020_02425_w
springer_journals_10_1007_s11276_020_02425_w
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of Mobile Communication, Computation and Information
PublicationTitle Wireless networks
PublicationTitleAbbrev Wireless Netw
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Welch (CR41) 1984; 17
Pan, Zhang, Wu, Zhang, Skibniewski (CR31) 2019; 120
Sharma (CR36) 2010; 10
Chen, Liu, Wang, Wu (CR6) 2019; 25
Dang, Bulusu, Feng (CR9) 2013
CR35
Li, Liang (CR23) 2016; 12
Marcelloni, Vecchio (CR28) 2010; 180
CR33
Alsheikh, Lin, Niyato, Tan (CR2) 2016; 16
Makhoul (CR27) 1975; 63
Liu, Shimamura (CR24) 2013; 17
Banerjee, Bit (CR3) 2017; 25
Dan, Qian, Zhi, Baoling (CR8) 2016; 2016
Dumas, Roumy, Guillemot (CR13) 2020; 29
Wu, Liu, Zhang, Skibniewski, Deng, Teng (CR43) 2015; 134
Iqbal, Abdullah, Ahsan, Qureshi (CR18) 2017; 24
CR5
Ziv, Lempel (CR50) 1978; 24
Tandon, Huggins, Maclachlan, Dubrawski, Nelson, Labov (CR39) 2016; 57
CR47
Srisooksai, Keamarungsi, Lamsrichan, Araki (CR38) 2012; 35
CR40
Deligiannakis, Kotidis (CR11) 2011; 36
Noel, Abdaoui (CR30) 2017; 19
Rissanen, Langdon (CR34) 1979; 23
Zhang, Wu, Qin, Skibniewski, Liu (CR49) 2016; 36
Hollmig, Horne, Leimkühler, Schöll, Strunk, Englhardt, Efros, Buchmann, Böhm (CR15) 2017; 65
Wheeler (CR42) 2007; 45
Fu, Liang, Lei, Bian, Zhang, Akbari, Liang, Tu (CR14) 2020; 82
CR19
Xu, Chen, Lian, Li (CR45) 2018; 29
Zhan, Chen, Wang, Chen (CR46) 2017; 86
CR12
Kim, Han, Yu, Kim (CR22) 2015; 48
Davenport, Laska, Treichler, Baraniuk (CR10) 2012; 60
Rajarshi Middya (CR32) 2017; 34
Kaushik, Gautam, Elamaran (CR20) 2014; 2014
Chen, Guiling, Weixiang, Yi, Lequn (CR7) 2009; 1
Marcelloni, Vecchio (CR29) 2010; 3
Hosseini-Nejad, Jannesari, Sodagar (CR16) 2012; 2012
Kemda, Huang (CR21) 2015; 18
Akansu, Serdijn, Selesnick (CR1) 2010; 3
CR26
CR25
Zhang, Wen, Ashuri (CR48) 2018; 32
Xiong, Zhao, Shi, Wang (CR44) 2019; 19
Buratti, Conti, Dardari, Verdone (CR4) 2009; 9
Huffman (CR17) 1952; 40
Sheltami, Musaddiq, Shakshuki (CR37) 2016; 64
F Marcelloni (2425_CR28) 2010; 180
X Wu (2425_CR43) 2015; 134
K Xiong (2425_CR44) 2019; 19
T Sheltami (2425_CR37) 2016; 64
2425_CR19
A Deligiannakis (2425_CR11) 2011; 36
M Sharma (2425_CR36) 2010; 10
2425_CR12
G Hollmig (2425_CR15) 2017; 65
AN Akansu (2425_CR1) 2010; 3
T Dang (2425_CR9) 2013
L Zhang (2425_CR48) 2018; 32
Y Li (2425_CR23) 2016; 12
L Zhang (2425_CR49) 2016; 36
T Dumas (2425_CR13) 2020; 29
Z Chen (2425_CR7) 2009; 1
MA Alsheikh (2425_CR2) 2016; 16
2425_CR26
2425_CR25
S Iqbal (2425_CR18) 2017; 24
DA Huffman (2425_CR17) 1952; 40
AB Noel (2425_CR30) 2017; 19
L-T Zhan (2425_CR46) 2017; 86
NCMKN Rajarshi Middya (2425_CR32) 2017; 34
CSH Kaushik (2425_CR20) 2014; 2014
2425_CR5
R Banerjee (2425_CR3) 2017; 25
LE Kemda (2425_CR21) 2015; 18
S Chen (2425_CR6) 2019; 25
P Tandon (2425_CR39) 2016; 57
H Hosseini-Nejad (2425_CR16) 2012; 2012
2425_CR33
L Dan (2425_CR8) 2016; 2016
2425_CR35
Y Pan (2425_CR31) 2019; 120
J Rissanen (2425_CR34) 1979; 23
A Wheeler (2425_CR42) 2007; 45
A Kim (2425_CR22) 2015; 48
C Buratti (2425_CR4) 2009; 9
T Srisooksai (2425_CR38) 2012; 35
J Makhoul (2425_CR27) 1975; 63
L Liu (2425_CR24) 2013; 17
F Marcelloni (2425_CR29) 2010; 3
X Xu (2425_CR45) 2018; 29
2425_CR47
J Ziv (2425_CR50) 1978; 24
MA Davenport (2425_CR10) 2012; 60
2425_CR40
H Fu (2425_CR14) 2020; 82
A Welch (2425_CR41) 1984; 17
References_xml – volume: 65
  start-page: 65
  year: 2017
  end-page: 77
  ident: CR15
  article-title: An evaluation of combinations of lossy compression and change-detection approaches for time-series data
  publication-title: Information Systems
  doi: 10.1016/j.is.2016.11.001
– volume: 40
  start-page: 1098
  issue: 9
  year: 1952
  end-page: 1101
  ident: CR17
  article-title: A method for the construction of minimum-redundancy codes
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1952.273898
– ident: CR12
– volume: 32
  start-page: 04017071
  issue: 1
  year: 2018
  ident: CR48
  article-title: BIM log mining: Measuring design productivity
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000721
– volume: 3
  start-page: 137
  year: 2010
  end-page: 153
  ident: CR29
  article-title: A two-objective evolutionary approach to design lossy compression algorithms for tiny nodes of wireless sensor networks
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-010-0044-x
– ident: CR35
– volume: 25
  start-page: 429
  issue: 1
  year: 2019
  end-page: 438
  ident: CR6
  article-title: A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1570-6
– volume: 63
  start-page: 561
  year: 1975
  end-page: 580
  ident: CR27
  article-title: Linear prediction: A tutorial review
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1975.9792
– volume: 29
  start-page: 679
  year: 2020
  end-page: 693
  ident: CR13
  article-title: Context-Adaptive Neural Network-Based Prediction for Image Compression
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2934565
– ident: CR25
– volume: 86
  start-page: 230
  year: 2017
  end-page: 242
  ident: CR46
  article-title: Failure probability assessment and parameter sensitivity analysis of a contaminant’s transit time through a compacted clay liner
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2017.01.014
– volume: 45
  start-page: 70
  issue: 4
  year: 2007
  end-page: 77
  ident: CR42
  article-title: Commercial applications of wireless sensor networks using ZigBee
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2007.343615
– volume: 2016
  start-page: 372
  year: 2016
  end-page: 376
  ident: CR8
  article-title: Cluster-based energy-efficient transmission using a new hybrid compressed sensing in WSN
  publication-title: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
  doi: 10.1109/INFCOMW.2016.7562104
– volume: 23
  start-page: 149
  issue: 2
  year: 1979
  end-page: 162
  ident: CR34
  article-title: Arithmetic coding
  publication-title: IBM Journal of Research and Development
  doi: 10.1147/rd.232.0149
– ident: CR19
– volume: 18
  start-page: 551
  issue: 4
  year: 2015
  end-page: 566
  ident: CR21
  article-title: Value-at-risk for the USD/ZAR exchange rate: The Variance-Gamma model
  publication-title: South African Journal of Economic and Management Sciences
  doi: 10.4102/sajems.v18i4.966
– volume: 34
  start-page: 642
  issue: 6
  year: 2017
  end-page: 654
  ident: CR32
  article-title: Compressive sensing in wireless sensor networks - a survey
  publication-title: IETE Technical Review
  doi: 10.1080/02564602.2016.1233835
– volume: 29
  start-page: 6202
  issue: 12
  year: 2018
  end-page: 6213
  ident: CR45
  article-title: Learning-based predictive control for discrete-time nonlinear systems with stochastic disturbances
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2820019
– volume: 25
  start-page: 167
  issue: 1
  year: 2017
  end-page: 183
  ident: CR3
  article-title: An energy efficient image compression scheme for wireless multimedia sensor network using curve fitting technique
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1543-9
– volume: 57
  start-page: 195
  year: 2016
  end-page: 206
  ident: CR39
  article-title: Detection of radioactive sources in urban scenes using Bayesian aggregation of data from mobile spectrometers
  publication-title: Information Systems
  doi: 10.1016/j.is.2015.10.006
– ident: CR5
– ident: CR26
– volume: 36
  start-page: 278
  issue: 2
  year: 2016
  end-page: 301
  ident: CR49
  article-title: Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage
  publication-title: Risk Analysis
  doi: 10.1111/risa.12448
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 6
  ident: CR20
  article-title: A tutorial review on discrete fourier transform with data compression application
  publication-title: International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE)
– ident: CR47
– volume: 16
  start-page: 5072
  issue: 12
  year: 2016
  end-page: 5083
  ident: CR2
  article-title: Rate-distortion balanced data compression for wireless sensor networks
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2016.2550599
– ident: CR33
– volume: 134
  start-page: 157
  year: 2015
  end-page: 168
  ident: CR43
  article-title: A dynamic Bayesian network based approach to safety decision support in tunnel construction
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2014.10.021
– volume: 120
  start-page: 652
  year: 2019
  end-page: 665
  ident: CR31
  article-title: Structural health monitoring and assessment using wavelet packet energy spectrum
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2019.08.015
– volume: 24
  start-page: 530
  issue: 5
  year: 1978
  end-page: 536
  ident: CR50
  article-title: Compression of individual sequences via variable-rate coding
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1978.1055934
– volume: 60
  start-page: 4628
  issue: 9
  year: 2012
  end-page: 4642
  ident: CR10
  article-title: The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2201149
– ident: CR40
– volume: 1
  start-page: 283
  year: 2009
  end-page: 286
  ident: CR7
  article-title: Research on data compression algorithm based on prediction coding for wireless sensor network nodes
  publication-title: International Forum on Information Technology and Applications
– volume: 10
  start-page: 133
  issue: 5
  year: 2010
  end-page: 141
  ident: CR36
  article-title: Compression using Huffman coding
  publication-title: International Journal of Computer Science and Network Security
– volume: 9
  start-page: 6869
  year: 2009
  end-page: 6896
  ident: CR4
  article-title: An overview on wireless sensor networks technology and evolution
  publication-title: Sensors
  doi: 10.3390/s90906869
– volume: 19
  start-page: 1403
  issue: 3
  year: 2017
  end-page: 1423
  ident: CR30
  article-title: Structural health monitoring using wireless sensor networks: A comprehensive survey
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2017.2691551
– volume: 17
  start-page: 8
  issue: 6
  year: 1984
  end-page: 19
  ident: CR41
  article-title: Technique for high-performance data compression
  publication-title: Computer
  doi: 10.1109/MC.1984.1659158
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  end-page: 18
  ident: CR1
  article-title: Emerging applications of wavelets: A review
  publication-title: Physical Communication
  doi: 10.1016/j.phycom.2009.07.001
– volume: 17
  start-page: 283
  issue: 6
  year: 2013
  end-page: 292
  ident: CR24
  article-title: A noise compensation LPC method based on pitch synchronous analysis for speech
  publication-title: Journal of Signal Processing
  doi: 10.2299/jsp.17.283
– volume: 48
  start-page: 320
  year: 2015
  end-page: 326
  ident: CR22
  article-title: Hybrid wireless sensor network for building energy management systems based on the 2.4 GHz and 400 MHz bands
  publication-title: Information Systems
  doi: 10.1016/j.is.2014.06.005
– volume: 35
  start-page: 37
  year: 2012
  end-page: 59
  ident: CR38
  article-title: Practical data compression in wireless sensor networks: A survey
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2011.03.001
– volume: 2012
  start-page: 209
  year: 2012
  end-page: 213
  ident: CR16
  article-title: Data compression based on discrete cosine transform for implantable neural recording microsystems
  publication-title: IEEE International Conference on Circuits and Systems (ICCAS)
  doi: 10.1109/ICCircuitsAndSystems.2012.6408307
– volume: 64
  start-page: 151
  year: 2016
  end-page: 162
  ident: CR37
  article-title: Data compression techniques in wireless sensor networks
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2016.01.015
– year: 2013
  ident: CR9
  publication-title: Robust data compression for irregular wireless sensor networks using logical mapping
  doi: 10.1155/2013/253257
– volume: 180
  start-page: 1924
  year: 2010
  end-page: 1941
  ident: CR28
  article-title: Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.01.027
– volume: 24
  start-page: 2685
  year: 2017
  end-page: 2697
  ident: CR18
  article-title: Critical link identification and prioritization using Bayesian theorem for dynamic channel assignment in wireless mesh networks
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1471-8
– volume: 19
  start-page: 4540
  issue: 20
  year: 2019
  ident: CR44
  article-title: A convex optimization algorithm for compressed sensing in a complex domain: The complex-valued split bregman method
  publication-title: Sensors Basel, Switzerlad
  doi: 10.3390/s19204540
– volume: 82
  start-page: 115774
  year: 2020
  ident: CR14
  article-title: Improved hybrid layered image compression using deep learning and traditional codecs
  publication-title: Signal Processing: Image Communication
– volume: 12
  year: 2016
  ident: CR23
  article-title: Temporal lossless and lossy compression in wireless sensor networks
  publication-title: ACM Transactions on Sensor Networks
  doi: 10.1145/2990196
– volume: 36
  start-page: 1044
  issue: 7
  year: 2011
  end-page: 1063
  ident: CR11
  article-title: Detecting proximity events in sensor networks
  publication-title: Information Systems
  doi: 10.1016/j.is.2011.03.004
– ident: 2425_CR19
  doi: 10.1080/01621459.1968.11009335
– volume: 12
  year: 2016
  ident: 2425_CR23
  publication-title: ACM Transactions on Sensor Networks
  doi: 10.1145/2990196
– volume: 36
  start-page: 278
  issue: 2
  year: 2016
  ident: 2425_CR49
  publication-title: Risk Analysis
  doi: 10.1111/risa.12448
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  ident: 2425_CR1
  publication-title: Physical Communication
  doi: 10.1016/j.phycom.2009.07.001
– volume: 45
  start-page: 70
  issue: 4
  year: 2007
  ident: 2425_CR42
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2007.343615
– volume: 64
  start-page: 151
  year: 2016
  ident: 2425_CR37
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2016.01.015
– volume: 57
  start-page: 195
  year: 2016
  ident: 2425_CR39
  publication-title: Information Systems
  doi: 10.1016/j.is.2015.10.006
– volume: 65
  start-page: 65
  year: 2017
  ident: 2425_CR15
  publication-title: Information Systems
  doi: 10.1016/j.is.2016.11.001
– volume: 48
  start-page: 320
  year: 2015
  ident: 2425_CR22
  publication-title: Information Systems
  doi: 10.1016/j.is.2014.06.005
– volume: 86
  start-page: 230
  year: 2017
  ident: 2425_CR46
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2017.01.014
– ident: 2425_CR26
  doi: 10.1109/ICC.2010.5502565
– ident: 2425_CR33
– volume: 180
  start-page: 1924
  year: 2010
  ident: 2425_CR28
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.01.027
– volume: 19
  start-page: 1403
  issue: 3
  year: 2017
  ident: 2425_CR30
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2017.2691551
– ident: 2425_CR5
  doi: 10.1109/SENSORCOMM.2009.84
– volume: 34
  start-page: 642
  issue: 6
  year: 2017
  ident: 2425_CR32
  publication-title: IETE Technical Review
  doi: 10.1080/02564602.2016.1233835
– volume: 10
  start-page: 133
  issue: 5
  year: 2010
  ident: 2425_CR36
  publication-title: International Journal of Computer Science and Network Security
– volume: 63
  start-page: 561
  year: 1975
  ident: 2425_CR27
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1975.9792
– volume: 19
  start-page: 4540
  issue: 20
  year: 2019
  ident: 2425_CR44
  publication-title: Sensors Basel, Switzerlad
  doi: 10.3390/s19204540
– volume: 60
  start-page: 4628
  issue: 9
  year: 2012
  ident: 2425_CR10
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2201149
– volume: 1
  start-page: 283
  year: 2009
  ident: 2425_CR7
  publication-title: International Forum on Information Technology and Applications
– volume-title: Robust data compression for irregular wireless sensor networks using logical mapping
  year: 2013
  ident: 2425_CR9
  doi: 10.1155/2013/253257
– volume: 3
  start-page: 137
  year: 2010
  ident: 2425_CR29
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-010-0044-x
– volume: 24
  start-page: 530
  issue: 5
  year: 1978
  ident: 2425_CR50
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1978.1055934
– volume: 2016
  start-page: 372
  year: 2016
  ident: 2425_CR8
  publication-title: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
  doi: 10.1109/INFCOMW.2016.7562104
– volume: 17
  start-page: 283
  issue: 6
  year: 2013
  ident: 2425_CR24
  publication-title: Journal of Signal Processing
  doi: 10.2299/jsp.17.283
– ident: 2425_CR47
  doi: 10.1109/WSC.2015.7408498
– volume: 18
  start-page: 551
  issue: 4
  year: 2015
  ident: 2425_CR21
  publication-title: South African Journal of Economic and Management Sciences
  doi: 10.4102/sajems.v18i4.966
– volume: 29
  start-page: 6202
  issue: 12
  year: 2018
  ident: 2425_CR45
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2820019
– volume: 36
  start-page: 1044
  issue: 7
  year: 2011
  ident: 2425_CR11
  publication-title: Information Systems
  doi: 10.1016/j.is.2011.03.004
– volume: 40
  start-page: 1098
  issue: 9
  year: 1952
  ident: 2425_CR17
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1952.273898
– volume: 25
  start-page: 167
  issue: 1
  year: 2017
  ident: 2425_CR3
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1543-9
– volume: 24
  start-page: 2685
  year: 2017
  ident: 2425_CR18
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1471-8
– volume: 82
  start-page: 115774
  year: 2020
  ident: 2425_CR14
  publication-title: Signal Processing: Image Communication
– volume: 35
  start-page: 37
  year: 2012
  ident: 2425_CR38
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2011.03.001
– volume: 29
  start-page: 679
  year: 2020
  ident: 2425_CR13
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2934565
– volume: 16
  start-page: 5072
  issue: 12
  year: 2016
  ident: 2425_CR2
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2016.2550599
– volume: 32
  start-page: 04017071
  issue: 1
  year: 2018
  ident: 2425_CR48
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000721
– volume: 134
  start-page: 157
  year: 2015
  ident: 2425_CR43
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2014.10.021
– ident: 2425_CR25
  doi: 10.1145/1614320.1614337
– volume: 25
  start-page: 429
  issue: 1
  year: 2019
  ident: 2425_CR6
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1570-6
– ident: 2425_CR35
  doi: 10.1109/LCN.2004.72
– volume: 9
  start-page: 6869
  year: 2009
  ident: 2425_CR4
  publication-title: Sensors
  doi: 10.3390/s90906869
– ident: 2425_CR12
  doi: 10.1109/INDIN.2007.4384776
– volume: 2012
  start-page: 209
  year: 2012
  ident: 2425_CR16
  publication-title: IEEE International Conference on Circuits and Systems (ICCAS)
  doi: 10.1109/ICCircuitsAndSystems.2012.6408307
– volume: 23
  start-page: 149
  issue: 2
  year: 1979
  ident: 2425_CR34
  publication-title: IBM Journal of Research and Development
  doi: 10.1147/rd.232.0149
– volume: 120
  start-page: 652
  year: 2019
  ident: 2425_CR31
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2019.08.015
– volume: 2014
  start-page: 1
  year: 2014
  ident: 2425_CR20
  publication-title: International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE)
– ident: 2425_CR40
  doi: 10.1016/j.jksuci.2018.05.006
– volume: 17
  start-page: 8
  issue: 6
  year: 1984
  ident: 2425_CR41
  publication-title: Computer
  doi: 10.1109/MC.1984.1659158
SSID ssj0008399
Score 2.3379557
Snippet Wireless sensor networks (WSNs) generate a variety of continuous data streams. To reduce data storage and transmission cost, compression is recommended to be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5981
SubjectTerms Accuracy
Algorithms
Bayesian analysis
Coding
Communications Engineering
Compression ratio
Computer Communication Networks
Computing costs
Data compression
Data storage
Data transmission
Digital media
Electrical Engineering
Engineering
IT in Business
Missing data
Networks
Predictions
Regression models
Sensors
Statistical analysis
Statistical inference
Wireless networks
Wireless sensor networks
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBy4QaWlj6U5DsTEaULiod2iJE3HpNKhtTDt3-P0QQEBEhyrNFbkxPYX-bMDcBr7oWTaGpLLu46PMcORseWIBUZ7LjWGsvKxCTYchqMRv6mKwrKa7V6nJAtP3RS7UZdZwmzXKXCyM1-GlcB2m7F39NuHd_-LIZ8XOU68ZtnEV1Uq872Mz-GowZhf0qJFtBls_m-dW7BRoUvSL4_DNiyZdAfWP_Qc3AXRJ4ikSYKrWRBLKC-JsCmRyXg6m-SPTwRxLLEtjBMcIRnec_E7LeniGbFE-TG5kAtjyy8JTo8mhc9EYTYO7sH94Oru8tqpXllwNJpf7igeh0oFpseo8REfGh5qtGrNFaJBhEPK01HgIbBQHpWKRT2OMY9xQw0av0tjbx9a6TQ1B0ACVyoasshnKMJ4KgxkHPfQQ_ielghc2kBrZQtdtSC3L2EkommebJUnUHmiUJ6Yt-Hsfc5z2YDj17879R6KyhgzgQiG-3hSuNuG83rPmuGfpR3-7fcjWHPttheVih1o5bMXcwyr-jWfZLOT4pC-AVwD4OA
  priority: 102
  providerName: Springer Nature
Title A new lossy compression algorithm for wireless sensor networks using Bayesian predictive coding
URI https://link.springer.com/article/10.1007/s11276-020-02425-w
https://www.proquest.com/docview/2449450992
Volume 26
WOSCitedRecordID wos000547243000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5yQMbRNR51PGECqJioarKq7BEseOUSiUFUqj677lL0haQYGGxZDk-WTn7vs_2-Q7gMHb9UGhaSLasWi5ihhXG5CPmGe3Y3Bgu8mQTotn0Ox3ZKg7c0sKtcmITM0MdDTSdkZ8gDEkX0U3apy-vFmWNotvVIoXGPJQRqD3KYCDuH6aWGMFfZreduOGiK7Di0Uz-dI7bgtxvq1bGuq3Rd2Casc0fF6QZ7jRW_jviVVguGCer51NkDeZMsg5LX-IQbkBQZ8iuWR_HNWbkZJ47xyYs7HdR4vDpmSG3ZRTWuI8tLMW9L9aT3IU8ZeQ832Vn4djQk0yG3aNeZkdRGGHjJtw2Lm7OL60i84KlcUkOLSVjXynP1AQ3LnJGI32NK11LhQwRKZJydOQ5SDaUw0MloppEHBTScIMGweaxswWlZJCYbWCeHSrui8gVKMI4yvfCOK6h1XAdHSKZqQCf_PZAF2HJKTtGP5gFVCZVBaiqIFNVMKrA0bTPSx6U48-v9yb6CYoFmgYz5VTgeKLhWfPv0nb-lrYLizZNquy14h6Uhm_vZh8W9Mewl74dZNPzAMpnF81WG2tX1XMq7RaWLe8Ry_b13ScGTO_1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RFKntgbaUqimB7qGcikV2bWe9B4TCS6CEiEMqcdt612tASg2N00b5U_2NzPhBoFJz48DRWu9I6_12vhnvPAC-pkEUS0sHSai2FyBneHFKMWKhs77gznFZNpuQg0F0caHOl-BvnQtDYZW1TiwUdXJj6R_5DtKQCpDdlNi7_eVR1yi6Xa1baJSw6LnZFF22fPf0EPd3S4jjo-HBiVd1FfAswm3iGZVGxoSuI7kL0B5yKrKIYqsMWj9I_8a3SegjkRqfx0YmHYU6XirHHYJd8NRHuS_gZYCOF52rs_bBveZHY0MVt6vo4NGVW5WkU6bqcSEp3LftFVa-N31MhHPr9p8L2YLnjt8-ty_0DlYqi5p1yyPwHpZctgpvHtRZ_AC6y9B7YCP8DjNGQfRl8G_G4tElrmBy9ZOh7c6obPMIR1iOvj0-Z2WIfM4oOeCS7cczRymnDKcn1wVPoDDi_jX4_iQr_AiN7CZzn4CFIjY8kkkgUYTzTRTGadpBrRj4NkZjrQm83mZtq7Lr1P1jpOcFowkaGqGhC2joaRO-3c-5LYuOLHy7VeNBVwoo13MwNGG7RtR8-P_SPi-W9gVenQzP-rp_Ouitw2tBgC4yM1vQmIx_uw1Ytn8m1_l4szgaDH48NdLuABCNRJs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdGDb3F95qAnLZq03TQHEV-LoiyLKHiLTZqqsHZXu7rsX_PXOenDVUFvHjyWNANpvsx808wDYCP2gpBre5CY2HU8tBlOGNsYMd9ol1FjKM-bTfBGI7i5Ec0heCtzYWxYZakTM0UdtbX9R76DZkh4aN0E24mLsIjmcX2_8-TYDlL2prVsp5FD5Nz0e-i-pXtnx7jXm4zVT66OTp2iw4CjEXpdR4k4UMo3NU6Nh9zIiEAjorVQyISQCihXR76LRlW5NFQ8qgnU91wYahD4jMYuyh2GEe6i01OBkcOTRvPyww4g9RDZXSu6e_YCrkjZyRP3KOM2-HfXyTi_0_tqFgdc99v1bGb16lP_-XtNw2TBtclBfjhmYMgkszDxqQLjHMgDgn4FaeE36RMbXp-HBSckbN3hCrr3jwRZPbEFnVs4QlL0-vE5yYPnU2LTBu7IYdg3NhmV4PToIbMgKMyygnm4_pMVLkAlaSdmEYjPQkUDHnkcRRhXBX4YxzXUl56rQ6RxVaDllktdFGS3fUFaclBK2sJEIkxkBhPZq8LWx5xOXo7k17dXSmzIQjWlcgCMKmyX6BoM_yxt6Xdp6zCGAJMXZ43zZRhnFttZyuYKVLrPL2YVRvVr9yF9XivOCYHbv4baOydZTtk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+lossy+compression+algorithm+for+wireless+sensor+networks+using+Bayesian+predictive+coding&rft.jtitle=Wireless+networks&rft.au=Chen%2C+Chen&rft.au=Zhang+Limao&rft.au=Lee+Kong%2C+Tiong+Robert&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1022-0038&rft.eissn=1572-8196&rft.volume=26&rft.issue=8&rft.spage=5981&rft.epage=5995&rft_id=info:doi/10.1007%2Fs11276-020-02425-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-0038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-0038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-0038&client=summon