Research on vehicle intelligent wireless location algorithm based on convolutional neural network
Vehicle positioning and vehicle identification of natural scene images are an important part of intelligent transportation systems and unmanned driving research. In current situation, there are still some problems in vehicle intelligent wireless positioning. In order to improve the intelligent wirel...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 33; číslo 14; s. 8131 - 8141 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.07.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Vehicle positioning and vehicle identification of natural scene images are an important part of intelligent transportation systems and unmanned driving research. In current situation, there are still some problems in vehicle intelligent wireless positioning. In order to improve the intelligent wireless positioning efficiency of vehicles, based on the convolutional neural network, this research combines the concept of deep learning to carry out algorithm innovation in the research. Moreover, this paper combines the actual vehicle positioning problem points to collect data, simulates the vehicle positioning situation in a variety of complex situations, and designs a controlled test to verify. The results show that the algorithm of this study has certain effects, which can provide reference for subsequent related research and has certain practical significance. |
|---|---|
| AbstractList | Vehicle positioning and vehicle identification of natural scene images are an important part of intelligent transportation systems and unmanned driving research. In current situation, there are still some problems in vehicle intelligent wireless positioning. In order to improve the intelligent wireless positioning efficiency of vehicles, based on the convolutional neural network, this research combines the concept of deep learning to carry out algorithm innovation in the research. Moreover, this paper combines the actual vehicle positioning problem points to collect data, simulates the vehicle positioning situation in a variety of complex situations, and designs a controlled test to verify. The results show that the algorithm of this study has certain effects, which can provide reference for subsequent related research and has certain practical significance. |
| Author | Feng, Yuehong Wang, Yazi Sun, Huaibo |
| Author_xml | – sequence: 1 givenname: Yazi surname: Wang fullname: Wang, Yazi organization: School of Mathematics and Statistics, ZhouKou Normal University – sequence: 2 givenname: Yuehong surname: Feng fullname: Feng, Yuehong organization: College of Applied Sciences, Beijing University of Technology – sequence: 3 givenname: Huaibo surname: Sun fullname: Sun, Huaibo email: 2004112@muc.edu.cn organization: School of Mathematics and Statistics, Fuyang Normal University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Lnlcnm2R3c5TiFxQE0XPIptk2Nd3UJNvFf2_aCoKHngYy7zMzeSZo1LlOI3SN4RYDVHcBgBU4hwJyoBzjfDhDY0wJyQmweoTGwGlql5RcoEkIawCgZc3GSL7poKVXq8x12U6vjLI6M13U1pql7mI2GK-tDiGzTsloUkrapfMmrjZZI4Ne7EHlup2z_b4tbdbp3h9KHJz_vETnrbRBX_3WKfp4fHifPefz16eX2f08VwTzmDe8qVusgMhStpTVqlZlw0peLRgrWKMUZ1xV6REk5VypqmSY4IKxiqUPQ0um6OY4d-vdV69DFGvX-3RPEAWjpOZlTWhKFceU8i4Er1ux9WYj_bfAIPYqxVGlSCrFQaUYElT_g5SJBxnRS2NPo-SIhrSnW2r_d9UJ6gflPoxJ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3216872 crossref_primary_10_1007_s00521_021_06186_1 crossref_primary_10_1117_1_JEI_32_1_011203 crossref_primary_10_2478_amns_2024_0586 crossref_primary_10_1007_s00521_021_06468_8 |
| Cites_doi | 10.1109/LSP.2016.2569666 10.3390/s18010169 10.1016/j.procir.2017.02.031 10.3390/s17040848 10.15302/J-FEM-2017008 10.1002/dac.2352 10.3390/s18051442 10.1109/TVT.2018.2843459 10.1002/wcm.2678 10.3390/s18030711 10.1109/I4CT.2014.6914143 10.1109/VPPC.2015.7352903 10.1109/ITSC.2016.7795533 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-020-04911-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 8141 |
| ExternalDocumentID | 10_1007_s00521_020_04911_w |
| GrantInformation_xml | – fundername: Education teaching reform project of Henan grantid: 2019-JSJYYB-056 – fundername: Education teaching reform project of Zhoukou normal university grantid: J2019002 – fundername: National Natural Science Foundation of China grantid: 31702232 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-b9b8f1c03a6af458c8c6b5697d5525bcc959c78c60a499cc765131255754910f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528969000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 02:24:15 EST 2025 Tue Nov 18 22:15:19 EST 2025 Sat Nov 29 02:59:15 EST 2025 Fri Feb 21 02:48:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Vehicle positioning Intelligence Convolutional neural network Algorithm improvement Wireless positioning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b9b8f1c03a6af458c8c6b5697d5525bcc959c78c60a499cc765131255754910f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2543896834 |
| PQPubID | 2043988 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2543896834 crossref_primary_10_1007_s00521_020_04911_w crossref_citationtrail_10_1007_s00521_020_04911_w springer_journals_10_1007_s00521_020_04911_w |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | JinmingH (CR12) 2017; 42 CR4 Auer, Rehborn, Molzahn (CR13) 2017; 4 CR5 Netland, Farstad, Welo (CR1) 2017; 60 Nguyen, Nguyen, Nguyen (CR3) 2017; 99 Shi, Anderson, Mao (CR6) 2016; 23 CR11 CR10 Li, Yang, Bhuiyan (CR9) 2016; 16 Zhining, Wei, Chaoyang (CR2) 2018; 18 Wenwei, Chi, Jingnan (CR16) 2018; 18 Li, Pei, Markwood (CR17) 2018; 67 Ou (CR7) 2014; 27 Sheng-Shih (CR15) 2018; 18 Alejandro, Guillem, Antoni (CR14) 2017; 17 Hsu, Chen (CR8) 2010; 6 G Zhining (4911_CR2) 2018; 18 Z Li (4911_CR17) 2018; 67 HH Hsu (4911_CR8) 2010; 6 CH Ou (4911_CR7) 2014; 27 C Alejandro (4911_CR14) 2017; 17 Z Wenwei (4911_CR16) 2018; 18 M Auer (4911_CR13) 2017; 4 L Li (4911_CR9) 2016; 16 4911_CR5 X Shi (4911_CR6) 2016; 23 A JinmingH (4911_CR12) 2017; 42 P Nguyen (4911_CR3) 2017; 99 Ø Netland (4911_CR1) 2017; 60 4911_CR4 4911_CR10 4911_CR11 W Sheng-Shih (4911_CR15) 2018; 18 |
| References_xml | – volume: 6 start-page: 341 issue: 4 year: 2010 end-page: 354 ident: CR8 article-title: RFID-based human behavior modeling and anomaly detection for elderly care publication-title: Mob Inf Syst – volume: 23 start-page: 1320 issue: 10 year: 2016 end-page: 1324 ident: CR6 article-title: Robust localization using time difference of arrivals publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2569666 – volume: 18 start-page: 169 issue: 2 year: 2018 ident: CR16 article-title: A police and insurance joint management system based on high precision BDS/GPS positioning publication-title: Sensors doi: 10.3390/s18010169 – volume: 60 start-page: 8 year: 2017 end-page: 13 ident: CR1 article-title: Design of a modular extrusion-based aluminum monorail system for highly accurate car positioning publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.02.031 – volume: 17 start-page: 848 issue: 4 year: 2017 ident: CR14 article-title: Autonomous car parking system through a cooperative vehicular positioning network publication-title: Sensors doi: 10.3390/s17040848 – ident: CR4 – volume: 4 start-page: 490 issue: 4 year: 2017 end-page: 497 ident: CR13 article-title: Traffic services for vehicles: the process from receiving raw probe data to space-time diagrams and the resulting traffic service publication-title: Front Eng Manag doi: 10.15302/J-FEM-2017008 – ident: CR10 – ident: CR11 – volume: 27 start-page: 135 issue: 1 year: 2014 end-page: 150 ident: CR7 article-title: A roadside unit-based localization scheme for vehicular ad hoc networks publication-title: Int J Commun Syst doi: 10.1002/dac.2352 – volume: 18 start-page: 1442 issue: 5 year: 2018 ident: CR15 article-title: A BLE-based pedestrian navigation system for car searching in indoor parking garages publication-title: Sensors doi: 10.3390/s18051442 – ident: CR5 – volume: 67 start-page: 1 issue: 6 year: 2018 ident: CR17 article-title: Location privacy violation via GPS-agnostic smart phone car tracking publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2843459 – volume: 42 start-page: 1216 issue: 9 year: 2017 end-page: 1222 ident: CR12 article-title: Method of BDS/GPS RTK positioning based on MCAR algorithm for medium-baseline publication-title: Geomat Inf Sci Wuhan Univ – volume: 16 start-page: 2225 issue: 15 year: 2016 end-page: 2237 ident: CR9 article-title: Unsupervised learning of indoor localization based on received signal strength: unsupervised learning of indoor localization publication-title: Wirel Commun Mob Comput doi: 10.1002/wcm.2678 – volume: 18 start-page: 711 issue: 3 year: 2018 ident: CR2 article-title: An adaptive method for switching between pedestrian/car indoor positioning algorithms based on multilayer time sequences publication-title: Sensors doi: 10.3390/s18030711 – volume: 99 start-page: 1 year: 2017 ident: CR3 article-title: ParkSense: automatic parking positioning by leveraging in-vehicle magnetic field variation publication-title: IEEE Access – volume: 4 start-page: 490 issue: 4 year: 2017 ident: 4911_CR13 publication-title: Front Eng Manag doi: 10.15302/J-FEM-2017008 – volume: 18 start-page: 1442 issue: 5 year: 2018 ident: 4911_CR15 publication-title: Sensors doi: 10.3390/s18051442 – volume: 67 start-page: 1 issue: 6 year: 2018 ident: 4911_CR17 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2843459 – volume: 17 start-page: 848 issue: 4 year: 2017 ident: 4911_CR14 publication-title: Sensors doi: 10.3390/s17040848 – volume: 27 start-page: 135 issue: 1 year: 2014 ident: 4911_CR7 publication-title: Int J Commun Syst doi: 10.1002/dac.2352 – volume: 6 start-page: 341 issue: 4 year: 2010 ident: 4911_CR8 publication-title: Mob Inf Syst – volume: 42 start-page: 1216 issue: 9 year: 2017 ident: 4911_CR12 publication-title: Geomat Inf Sci Wuhan Univ – ident: 4911_CR4 – volume: 16 start-page: 2225 issue: 15 year: 2016 ident: 4911_CR9 publication-title: Wirel Commun Mob Comput doi: 10.1002/wcm.2678 – volume: 60 start-page: 8 year: 2017 ident: 4911_CR1 publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.02.031 – volume: 18 start-page: 711 issue: 3 year: 2018 ident: 4911_CR2 publication-title: Sensors doi: 10.3390/s18030711 – ident: 4911_CR5 doi: 10.1109/I4CT.2014.6914143 – volume: 18 start-page: 169 issue: 2 year: 2018 ident: 4911_CR16 publication-title: Sensors doi: 10.3390/s18010169 – ident: 4911_CR10 doi: 10.1109/VPPC.2015.7352903 – volume: 23 start-page: 1320 issue: 10 year: 2016 ident: 4911_CR6 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2569666 – volume: 99 start-page: 1 year: 2017 ident: 4911_CR3 publication-title: IEEE Access – ident: 4911_CR11 doi: 10.1109/ITSC.2016.7795533 |
| SSID | ssj0004685 |
| Score | 2.2687025 |
| Snippet | Vehicle positioning and vehicle identification of natural scene images are an important part of intelligent transportation systems and unmanned driving... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8131 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Autonomous cars Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Intelligent transportation systems Machine learning Neural networks Probability and Statistics in Computer Science S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications Special Issue on Intelligent Computing Methodologies in Machine learning for IoT Applications Transportation networks Vehicle identification |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8BCeYpCQR7YwCIvJ_aEABUxoKpCIHWLEsehlUpa2tD-fXyu0wISXZgiOXYc-fP5zvbddwAXGmIRRCKnnswFxUgqmkapoi6XbsCkUH5u2PWfok6H93qiaw_cptatsloTzUKdjSSekV9j0DYXIfeDm_EHxaxReLtqU2hsQh2Zyrwa1O_ane7zt8hIk5RT72HQvyfwbdiMCZ7DE1Fd6qF7oxZ5Ov-pmlb25q8rUqN5Hhr__edd2LE2J7ldTJI92FDFPjSqfA7EivcBJJUbHhkVZKb6WJsMlpydJUFe46FeGglqQESUJMM33WHZfyeoDjNsiH7sdj7rTpEv0zyMt_khvD60X-4fqU3BQKWWzZKmIuW5Kx0_CZM8YFxyGaYsFFHGmMdSKQUTMtKFTqK3TlJGIXN9bTNpI1CPqZP7R1ArRoU6BsKCTLFIRTz1ROAozvNct0kTL_Fd3UnWBLca_VhafnJMkzGMl8zKBrFYIxYbxOJ5Ey6XbcYLdo61tVsVTLGV1Gm8wqgJVxXQq9d_f-1k_ddOYdtD9xfj2duCWjn5VGewJWflYDo5t_P0C1V171A priority: 102 providerName: ProQuest |
| Title | Research on vehicle intelligent wireless location algorithm based on convolutional neural network |
| URI | https://link.springer.com/article/10.1007/s00521-020-04911-w https://www.proquest.com/docview/2543896834 |
| Volume | 33 |
| WOSCitedRecordID | wos000528969000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYxoEL4ykGY8qBG1TqK01yBLSJA5qm8dDEpWrThE0aHdrK9vdJsnQDBEhwqtTm0dpxbDefbYAzxWIWEiYdn0vm6EgqJyWpcDzKvRBzJgJpsuvfkm6XDgasZ4PCZiXavTySNDv1KthN_8FUrq-v4YhKRJ1FBWpK3RFdsKF_9_ghGtIU4lR-i8b0hIENlfl-jM_qaG1jfjkWNdqmU__fe-7AtrUu0eVyOezChsj3oF5WbkBWkPchKQF3aJKjuRjq1mi0ys5ZIJ3BeKw2QaR1neYdSsbPk-moGL4grfgy3VEj1u3KVZPqzJjmYnDlB_DQad9f3zi22ILDlRQWTspSKj3uBkmUyBBTTnmU4oiRDGMfp5wzzDhRN91EOUmckwh7gbKOlLmnvtKVwSFU80kujgDhMBOYCEJTn4WuoFRK1SdN_CTw1CRZA7yS5jG3mch1QYxxvMqhbGgYKxrGhobxogHnqz6vyzwcv7ZulqyMrUzOYh32T1lEg7ABFyXr1o9_Hu34b81PYMvXwBeD6W1CtZi-iVPY5PNiNJu2oHbV7vb6Laj08FPLrNx3yB3nFA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5TVBziBRbM4sQ8IIRaBKBUHkBCXkDgORSot0EDFT_GNzLhJC0hw48ApkmM7cvw8M7bfzABs4BQrP1QZd3WmOHlS8SRMDHekdnyhlfEyG12_Ftbr8vpaXQzBe-kLQ7TKUiZaQZ22NZ2R75DTtlSB9Py9xydOWaPodrVModGDxZl56-KWrbN7eojzu-m6x0eXBye8yCrANcIt54lKZOboqhcHceYLqaUOEhGoMBXCFYnWSigdYmE1xt2A1mEgHA_NALRrfNStmYf9DsMomhGKVtGFuPnkh2lTgOKOidhEvlc46VhXPTp_xVKXyJQoYHj3qyIcWLffLmStnjue-m9_aBomC4ua7feWwAwMmdYsTJXZKlghvOYgLkmGrN1ir6ZBtdl9PyJpzihqcxMFPyP9TnhlcfMOB5g3Hhgp-5QaEku_WK34UYoGah-WSz8PV38y0AUYabVbZhGY8FMjQhPKxFV-1UiZZdgmid3Yc_AjaQWccrYjXURfpyQgzagfN9oiJEKERBYhUbcCW_02j73YI7_WXilhERVyqBMNMFGB7RJYg9c_97b0e2_rMH5yeV6Laqf1s2WYcInoYznMKzCSP7-YVRjTr_l953nNrhAGt38NuA9gd0jn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oGuOL-BlR1D74povso1v7aFSikRDiV3hbtq4VEhwEJvz79soGaNTE-LRka7vtrrferb_7HcCpVjH3Aq4sRyhuYSaVFQextGwmbI8KLl1l2PUbQbPJ2m3eWsjiN2j3YktymtOALE1pdjFI1MUs8Q3_Zuow2EFoojZXa7IMK56OZBDU9_D4spAZaYpy6hgG8T2em6fNfD_G56Vp7m9-2SI1K0-9_P9n3oSN3Oskl9NpsgVLMt2GclHRgeQGvgNRAcQj_ZSMZQdbk-6MtTMjyGzc0x9Hgmsg6pREvdf-sJt13gguiAl2RCR7PqP1TZEx0xwM3nwXnus3T1e3Vl6EwRLaOjMr5jFTtqi5kR8pjzLBhB9TnwcJpQ6NheCUi0CfrEU6eBIi8Kntaq9Ju4H6LWvK3YNS2k_lPhDqJZIGMmCxw72aZEwp3SeOnMi19U2SCtiF_EORM5RjoYxeOONWNjIMtQxDI8NwUoGzWZ_BlJ_j19bVQq1hbqujEOkAGPeZ61XgvFDj_PLPox38rfkJrLWu62Hjrnl_COsOYmMM7LcKpWz4Lo9gVYyz7mh4bKbwB_Rt8EI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+vehicle+intelligent+wireless+location+algorithm+based+on+convolutional+neural+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Wang%2C+Yazi&rft.au=Feng%2C+Yuehong&rft.au=Sun%2C+Huaibo&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=14&rft.spage=8131&rft.epage=8141&rft_id=info:doi/10.1007%2Fs00521-020-04911-w&rft.externalDocID=10_1007_s00521_020_04911_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |