BLEACH: Cleaning Errors in Discrete Computations Over CKKS

Approximated homomorphic encryption (HE) schemes such as CKKS are commonly used to perform computations over encrypted real numbers. It is commonly assumed that these schemes are not “exact” and thus they cannot execute circuits with unbounded depth over discrete sets, such as binary or integer numb...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cryptology Ročník 37; číslo 1; s. 3
Hlavní autoři: Drucker, Nir, Moshkowich, Guy, Pelleg, Tomer, Shaul, Hayim
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2024
Springer Nature B.V
Témata:
ISSN:0933-2790, 1432-1378
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Approximated homomorphic encryption (HE) schemes such as CKKS are commonly used to perform computations over encrypted real numbers. It is commonly assumed that these schemes are not “exact” and thus they cannot execute circuits with unbounded depth over discrete sets, such as binary or integer numbers, without error overflows. These circuits are usually executed using BGV and B/FV for integers and TFHE for binary numbers. This artificial separation can cause users to favor one scheme over another for a given computation, without even exploring other, perhaps better, options. We show that by treating step functions as “clean-up” utilities and by leveraging the SIMD capabilities of CKKS, we can extend the homomorphic encryption toolbox with efficient tools. These tools use CKKS to run unbounded circuits that operate over binary and small-integer elements and even combine these circuits with fixed-point real numbers circuits. We demonstrate the results using the Turing-complete Conway’s Game of Life. In our evaluation, for boards of size 256 × 256, these tools achieved orders of magnitude faster latency than previous implementations using other HE schemes. We argue and demonstrate that for large enough real-world inputs, performing binary circuits over CKKS, while considering it as an “exact” scheme, results in comparable or even better performance than using other schemes tailored for similar inputs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0933-2790
1432-1378
DOI:10.1007/s00145-023-09483-1