Group-based whale optimization algorithm

Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based intelligence, where the latter is divided into imitation based and sign based. The whale algorithm is a meta-heuristic biological swarm-based...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 24; číslo 5; s. 3647 - 3673
Hlavní autori: Hemasian-Etefagh, Farinaz, Safi-Esfahani, Faramarz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based intelligence, where the latter is divided into imitation based and sign based. The whale algorithm is a meta-heuristic biological swarm-based intelligence algorithm (based on imitation). This algorithm suffers from the early convergence problem which means the population convergences early to an unfavorable optimum point. Usually, the early convergence occurs because of the weakness in exploration capability (global search). In this study, an optimized version of the whale algorithm is proposed that introduces a new idea in grouping of whales (called GWOA) to overcome the early convergence problem. The proposed whale optimization algorithm is compared with the standard whale algorithm (WOA), CWOA improved whale algorithm, particle swarm optimization, and BAT algorithms applying CEC2017 functions. The results of the experiments show that the proposed method applying Friedman’s test on 30 standard benchmark functions has a better performance than the other baseline algorithms.
AbstractList Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based intelligence, where the latter is divided into imitation based and sign based. The whale algorithm is a meta-heuristic biological swarm-based intelligence algorithm (based on imitation). This algorithm suffers from the early convergence problem which means the population convergences early to an unfavorable optimum point. Usually, the early convergence occurs because of the weakness in exploration capability (global search). In this study, an optimized version of the whale algorithm is proposed that introduces a new idea in grouping of whales (called GWOA) to overcome the early convergence problem. The proposed whale optimization algorithm is compared with the standard whale algorithm (WOA), CWOA improved whale algorithm, particle swarm optimization, and BAT algorithms applying CEC2017 functions. The results of the experiments show that the proposed method applying Friedman’s test on 30 standard benchmark functions has a better performance than the other baseline algorithms.
Author Hemasian-Etefagh, Farinaz
Safi-Esfahani, Faramarz
Author_xml – sequence: 1
  givenname: Farinaz
  surname: Hemasian-Etefagh
  fullname: Hemasian-Etefagh, Farinaz
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University
– sequence: 2
  givenname: Faramarz
  orcidid: 0000-0001-7539-3089
  surname: Safi-Esfahani
  fullname: Safi-Esfahani, Faramarz
  email: fsafi@iaun.ac.ir
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University
BookMark eNp9kDFPwzAQhS1UJNrCH2CqxMJiuLOTuBlRBQWpEgvMlpOcW1dpHOxUqPx6QoOExNDpbnjfvXtvwkaNb4ixa4Q7BFD3ESAF4IA5hwQl8sMZG2MiJVeJykfHXXCVJfKCTWLcAghUqRyz22Xw-5YXJlI1-9yYmma-7dzOfZnO-WZm6rUPrtvsLtm5NXWkq985Ze9Pj2-LZ756Xb4sHla8lJh3vFBlhdlcplakwmJlUpMVpiRr59ZARqkxokoowUxJskAgkUoqEllWQqIkOWU3w902-I89xU5v_T40vaUWOaq8DwJZrxKDqgw-xkBWt8HtTDhoBP3TiB4a0X0j-tiIPvTQ_B9Uuu4YswvG1adROaCx92nWFP6-OkF9A-tMeBI
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3324130
crossref_primary_10_1007_s11227_021_04116_5
crossref_primary_10_1007_s11269_025_04110_z
crossref_primary_10_3390_land13111731
crossref_primary_10_1155_2021_8130378
crossref_primary_10_32604_cmc_2023_037611
crossref_primary_10_1177_1045389X221109246
crossref_primary_10_1155_2021_5491017
crossref_primary_10_7717_peerj_cs_1729
crossref_primary_10_1007_s12145_021_00717_z
crossref_primary_10_1016_j_biosystemseng_2025_104218
crossref_primary_10_1007_s11227_024_06856_6
crossref_primary_10_1016_j_displa_2024_102799
crossref_primary_10_1016_j_indcrop_2022_115999
crossref_primary_10_1007_s00500_020_05340_6
crossref_primary_10_1109_ACCESS_2020_3028064
crossref_primary_10_1016_j_ijdrr_2023_104068
crossref_primary_10_1080_0305215X_2021_1969560
crossref_primary_10_1016_j_oceaneng_2022_112862
crossref_primary_10_1038_s41598_024_67600_x
crossref_primary_10_1002_dac_4738
crossref_primary_10_1016_j_asoc_2023_110130
crossref_primary_10_1007_s11042_024_19064_4
crossref_primary_10_1016_j_conbuildmat_2023_131261
crossref_primary_10_1038_s41598_023_29342_0
crossref_primary_10_1007_s00603_023_03364_6
crossref_primary_10_1016_j_compeleceng_2022_108377
crossref_primary_10_1007_s11227_020_03317_8
crossref_primary_10_3390_math12203195
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_1002_cpe_5979
crossref_primary_10_1007_s00366_021_01542_0
Cites_doi 10.17485/ijst/2016/v9i41/109850
10.1016/j.advengsoft.2016.01.008
10.1080/15397734.2016.1213639
10.1016/j.neucom.2017.04.053
10.1109/ACCESS.2017.2695498
10.1016/j.eij.2015.07.001
10.1007/978-981-10-3773-3_6
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-04131-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 3673
ExternalDocumentID 10_1007_s00500_019_04131_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-b7cd16835f252f1da5a6baceff8fa06e5aa2d4e41673ef0e031eceb43cd2313e3
IEDL.DBID K7-
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518603800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 08:07:56 EST 2025
Sat Nov 29 03:35:56 EST 2025
Tue Nov 18 21:35:39 EST 2025
Fri Feb 21 02:33:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Meta-heuristic algorithm
Biological
Whale optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b7cd16835f252f1da5a6baceff8fa06e5aa2d4e41673ef0e031eceb43cd2313e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7539-3089
PQID 2917914306
PQPubID 2043697
PageCount 27
ParticipantIDs proquest_journals_2917914306
crossref_primary_10_1007_s00500_019_04131_y
crossref_citationtrail_10_1007_s00500_019_04131_y
springer_journals_10_1007_s00500_019_04131_y
PublicationCentury 2000
PublicationDate 20200300
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053
BentouatiBChaibLChettihSA hybrid whale algorithm and pattern search technique for optimal power flow problemModelling, identification and control2016AlgeriaIEEE10482018
Levine DM, Berenson ML, Hrehbiel TC, Stephan DF (2011) Friedman rank test: nonparametric analysis for the randomized block design. In: Statistics for Managers using MS Excel. 6/E, pp 1–16
KavehAGhazaanMIEnhanced whale optimization algorithm for sizing optimization of skeletal structures enhanced whale optimization algorithm for sizing optimization of skeletal structuresMech Based Des Struct Mach201745334536210.1080/15397734.2016.1213639
Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report, NTU, Singapore
KaurGAroraSChaotic whale optimization algorithmJ Comput Des Eng201853275284
KalraMSinghSA review of metaheuristic scheduling techniques in cloud computingEgypt Inform J2015163827529510.1016/j.eij.2015.07.001
TrivediINJangirPKumarAJangirNTotlaniRBhatiaSKMishraKKTiwariSSinghVKA novel hybrid PSO–WOA algorithm for global numerical functions optimizationAdvances in computer and computational sciences2018SingaporeSpringer536010.1007/978-981-10-3773-3_6
JangirPTrivediINJangirNKumarALadumorDA novel adaptive whale optimization algorithm for global optimizationIndian J Sci Technol201693816
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
LingYZhouYLuoQLévy flight trajectory-based whale optimization algorithm for global optimizationIEEE Access201656168618610.1109/ACCESS.2017.2695498
HuHBaiYXuTA whale optimization algorithm with inertia weightWSEAS Trans Comput201615319326
A Kaveh (4131_CR5) 2017; 45
P Jangir (4131_CR10) 2016; 9
MM Mafarja (4131_CR8) 2017; 260
H Hu (4131_CR2) 2016; 15
4131_CR6
4131_CR1
B Bentouati (4131_CR11) 2016
G Kaur (4131_CR4) 2018; 5
M Kalra (4131_CR3) 2015; 16
S Mirjalili (4131_CR9) 2016; 95
Y Ling (4131_CR7) 2016; 5
IN Trivedi (4131_CR12) 2018
References_xml – reference: KavehAGhazaanMIEnhanced whale optimization algorithm for sizing optimization of skeletal structures enhanced whale optimization algorithm for sizing optimization of skeletal structuresMech Based Des Struct Mach201745334536210.1080/15397734.2016.1213639
– reference: LingYZhouYLuoQLévy flight trajectory-based whale optimization algorithm for global optimizationIEEE Access201656168618610.1109/ACCESS.2017.2695498
– reference: Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report, NTU, Singapore
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: TrivediINJangirPKumarAJangirNTotlaniRBhatiaSKMishraKKTiwariSSinghVKA novel hybrid PSO–WOA algorithm for global numerical functions optimizationAdvances in computer and computational sciences2018SingaporeSpringer536010.1007/978-981-10-3773-3_6
– reference: HuHBaiYXuTA whale optimization algorithm with inertia weightWSEAS Trans Comput201615319326
– reference: KaurGAroraSChaotic whale optimization algorithmJ Comput Des Eng201853275284
– reference: Levine DM, Berenson ML, Hrehbiel TC, Stephan DF (2011) Friedman rank test: nonparametric analysis for the randomized block design. In: Statistics for Managers using MS Excel. 6/E, pp 1–16
– reference: BentouatiBChaibLChettihSA hybrid whale algorithm and pattern search technique for optimal power flow problemModelling, identification and control2016AlgeriaIEEE10482018
– reference: JangirPTrivediINJangirNKumarALadumorDA novel adaptive whale optimization algorithm for global optimizationIndian J Sci Technol201693816
– reference: MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053
– reference: KalraMSinghSA review of metaheuristic scheduling techniques in cloud computingEgypt Inform J2015163827529510.1016/j.eij.2015.07.001
– volume: 9
  start-page: 1
  issue: 38
  year: 2016
  ident: 4131_CR10
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i41/109850
– ident: 4131_CR6
– volume: 95
  start-page: 51
  year: 2016
  ident: 4131_CR9
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 45
  start-page: 345
  issue: 3
  year: 2017
  ident: 4131_CR5
  publication-title: Mech Based Des Struct Mach
  doi: 10.1080/15397734.2016.1213639
– ident: 4131_CR1
– volume: 5
  start-page: 275
  issue: 3
  year: 2018
  ident: 4131_CR4
  publication-title: J Comput Des Eng
– volume: 260
  start-page: 302
  year: 2017
  ident: 4131_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 15
  start-page: 319
  year: 2016
  ident: 4131_CR2
  publication-title: WSEAS Trans Comput
– volume: 5
  start-page: 6168
  year: 2016
  ident: 4131_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– volume: 16
  start-page: 275
  issue: 38
  year: 2015
  ident: 4131_CR3
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2015.07.001
– start-page: 53
  volume-title: Advances in computer and computational sciences
  year: 2018
  ident: 4131_CR12
  doi: 10.1007/978-981-10-3773-3_6
– start-page: 1048
  volume-title: Modelling, identification and control
  year: 2016
  ident: 4131_CR11
SSID ssj0021753
Score 2.4359865
Snippet Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3647
SubjectTerms Artificial Intelligence
Chaos theory
Computational Intelligence
Control
Convergence
Engineering
Evolutionary algorithms
Exploitation
Heuristic
Heuristic methods
Intelligence
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Optimization algorithms
Particle swarm optimization
Robotics
Whales & whaling
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADg8HEYKAeOCBBpSVNX0eEmDigCfGYdqvSNGGT9kBbAe3f42RpBwiQ4NzUrew4_pLYnwFOvBZHHE51whMJXJamxOW6ZVhIBeJlxVhsqly7N2GnE_V68a0tCpsV2e7FlaRZqctiN01VomXqw3ziEXe-CmsY7iLtjnf33XKbZbknEQggdsSAa0tlvpfxORwtMeaXa1ETbdrV__3nNmxZdOlcLKbDDqzIcQ2qRecGxzpyDTY_0BDuwqk5gHJ1QMuctz6GDGeCK8nIlmg6fPg0mQ7y_mgPHttXD5fXru2g4Ap0rdxNQ5GRAEGWoj5VJOM-D1IupFKR4q1A-pzTjEkEZaEnVUuih0shU-aJDHGfJ706VMaTsdwHh0WZj0b1QkJShpgyQiOGyo8z_ARLqWwAKRSZCEsvrrtcDJOSGNkoJkHFJEYxybwBZ-U7zwtyjV9HNwv7JNbRZgmNNb8qw41PA84Leywf_yzt4G_DD2GD6p22yT5rQiWfvsgjWBev-WA2PTYT8B1vJtK1
  priority: 102
  providerName: Springer Nature
Title Group-based whale optimization algorithm
URI https://link.springer.com/article/10.1007/s00500-019-04131-y
https://www.proquest.com/docview/2917914306
Volume 24
WOSCitedRecordID wos000518603800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oePAiPiOKZA8eTLSRdrsPTkYNxERDCCohXjbdbldMeAmo4d87LV2IJnLx0ku33WY60_k605kBOHUrAnE40w-eqE94HFMidMmwgEnEyynnVRPl2n4IGo2w06k2rcFtYp9VZmeiOaiTodQ28ktW1Yk0OSLcq9E70VWjtHfVltBYhzxljGo-vw_I4sJls1DiKESRqHpt0IwJndOJT_QKtWuAupTMfiqmJdr85SA1eqde-O-Kt2HLIk7nes4iO7CmBrtQyKo5OFa49-DMmKGIVmuJ89VFxeEM8Tzp20BNR_RecfZpt78Pz_Xa0-0dsXUUiEQBm5I4kAn1EWqlzGMpTYQn_FhIlaZhKiq-8oRgCVcIzQJXpRWFcq6kirkrE0R_rnIPIDcYDtQhODxMPNxaN6A05ogsQ9zKIPWqCf6Cx0wVgWZEjKRNMq5rXfSiRXpkQ_gICR8ZwkezIpwvxozmKTZWfl3KqB1ZcZtES1IX4SLbr2X337MdrZ7tGDaZvl-bN2clyE3HH-oENuTn9G0yLkP-ptZotsqG6bBtei_Yth7b3ylz2vs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gmuhFfEYUtQdNTLSR3W4pHIwxKoGAhAMa4qVut1sx4SVUCX_K3-js0kI0kRsHz2237X7fznz7mBmAEyvLUYdTdeCJ5EzmecTkqmSYQwXq5YCxgo5yfao6tVq-2SzUE_AVx8KoY5WxTdSG2u8JtUZ-SQsqkSZDhXvdfzdV1Si1uxqX0JjQoiLHI5yyDa_Kd4jvKaXF-8ZtyYyqCpgC6RaaniN8kkPhEVCbBsTnNs95XMggyAc8m5M259RnEoWKY8kgK5H1UkiPWcJHLWRJC9tdgmXGcLKE46duP08neFHWS_xKVK3o6qMgHR2qpxKtqB5RWxHEIub4pyOcqdtfG7LazxVT_62HNmA9UtTGzWQIbEJCdrcgFVerMCLjtQ1nepnNVG7bN0YtdIxGD-1lJwpENXj7Ff8mbHV24HEh37sLyW6vK_fAYHnfRupaDiEeQ-WcR6o6gV3w8RXMozINJAbNFVESdVXLo-1O0z9roF0E2tVAu-M0nE-f6U9SiMy9OxOj60bmZOjOoE3DRcyP2eW_W9uf39oxrJYaD1W3Wq5VDmCNqrUEfb4uA8lw8CEPYUV8hm_DwZEmugEvi-bNN4HAN-4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bidGoffBC0bGnTtX0UdSiOMVDH3kLaJG6wdWOryv57L13bTVFBfG6alrtc7rvk7juAM7vKEYdbOuGJ1EwaBMTkumWYa4WIlxWlflLl2m64zabX6fithSr-JNs9u5Kc1TRolqYoroyEquSFb5q2RM-vD_aJTczpMqxQ3TRIx-uP7TzkSnkoERQgjkTnm5bNfD_HZ9c0x5tfrkgTz1Pf-v8_b8NmijqNq9ky2YElGRVhK-voYKQGXoSNBXrCXThPDqZM7eiE8d5FV2IMcYcZpKWbBu-_DMe9uDvYg-f67dP1nZl2VjBDNLnYDNxQkBqCL2U5liKCO7wW8FAq5SlerUmHc0tQiWDNtaWqSrR8GcqA2qFAPGhLex8K0TCSB2BQTziobNslJKCINT1UrqscX-AnaGDJEpBMqCxMacd194s-ywmTE8EwFAxLBMOmJbjI3xnNSDd-HV3OdMVSA5wwy9e8qxQDohJcZrqZP_55tsO_DT-FtdZNnTXumw9HsG7pYDxJUCtDIR6_ymNYDd_i3mR8kqzLD8T-3n0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group-based+whale+optimization+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Hemasian-Etefagh%2C+Farinaz&rft.au=Safi-Esfahani%2C+Faramarz&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=5&rft.spage=3647&rft.epage=3673&rft_id=info:doi/10.1007%2Fs00500-019-04131-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon