Group-based whale optimization algorithm
Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based intelligence, where the latter is divided into imitation based and sign based. The whale algorithm is a meta-heuristic biological swarm-based...
Uložené v:
| Vydané v: | Soft computing (Berlin, Germany) Ročník 24; číslo 5; s. 3647 - 3673 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1432-7643, 1433-7479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based intelligence, where the latter is divided into imitation based and sign based. The whale algorithm is a meta-heuristic biological swarm-based intelligence algorithm (based on imitation). This algorithm suffers from the early convergence problem which means the population convergences early to an unfavorable optimum point. Usually, the early convergence occurs because of the weakness in exploration capability (global search). In this study, an optimized version of the whale algorithm is proposed that introduces a new idea in grouping of whales (called GWOA) to overcome the early convergence problem. The proposed whale optimization algorithm is compared with the standard whale algorithm (WOA), CWOA improved whale algorithm, particle swarm optimization, and BAT algorithms applying CEC2017 functions. The results of the experiments show that the proposed method applying Friedman’s test on 30 standard benchmark functions has a better performance than the other baseline algorithms. |
|---|---|
| AbstractList | Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based intelligence, where the latter is divided into imitation based and sign based. The whale algorithm is a meta-heuristic biological swarm-based intelligence algorithm (based on imitation). This algorithm suffers from the early convergence problem which means the population convergences early to an unfavorable optimum point. Usually, the early convergence occurs because of the weakness in exploration capability (global search). In this study, an optimized version of the whale algorithm is proposed that introduces a new idea in grouping of whales (called GWOA) to overcome the early convergence problem. The proposed whale optimization algorithm is compared with the standard whale algorithm (WOA), CWOA improved whale algorithm, particle swarm optimization, and BAT algorithms applying CEC2017 functions. The results of the experiments show that the proposed method applying Friedman’s test on 30 standard benchmark functions has a better performance than the other baseline algorithms. |
| Author | Hemasian-Etefagh, Farinaz Safi-Esfahani, Faramarz |
| Author_xml | – sequence: 1 givenname: Farinaz surname: Hemasian-Etefagh fullname: Hemasian-Etefagh, Farinaz organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University – sequence: 2 givenname: Faramarz orcidid: 0000-0001-7539-3089 surname: Safi-Esfahani fullname: Safi-Esfahani, Faramarz email: fsafi@iaun.ac.ir organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University |
| BookMark | eNp9kDFPwzAQhS1UJNrCH2CqxMJiuLOTuBlRBQWpEgvMlpOcW1dpHOxUqPx6QoOExNDpbnjfvXtvwkaNb4ixa4Q7BFD3ESAF4IA5hwQl8sMZG2MiJVeJykfHXXCVJfKCTWLcAghUqRyz22Xw-5YXJlI1-9yYmma-7dzOfZnO-WZm6rUPrtvsLtm5NXWkq985Ze9Pj2-LZ756Xb4sHla8lJh3vFBlhdlcplakwmJlUpMVpiRr59ZARqkxokoowUxJskAgkUoqEllWQqIkOWU3w902-I89xU5v_T40vaUWOaq8DwJZrxKDqgw-xkBWt8HtTDhoBP3TiB4a0X0j-tiIPvTQ_B9Uuu4YswvG1adROaCx92nWFP6-OkF9A-tMeBI |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3324130 crossref_primary_10_1007_s11227_021_04116_5 crossref_primary_10_1007_s11269_025_04110_z crossref_primary_10_3390_land13111731 crossref_primary_10_1155_2021_8130378 crossref_primary_10_32604_cmc_2023_037611 crossref_primary_10_1177_1045389X221109246 crossref_primary_10_1155_2021_5491017 crossref_primary_10_7717_peerj_cs_1729 crossref_primary_10_1007_s12145_021_00717_z crossref_primary_10_1016_j_biosystemseng_2025_104218 crossref_primary_10_1007_s11227_024_06856_6 crossref_primary_10_1016_j_displa_2024_102799 crossref_primary_10_1016_j_indcrop_2022_115999 crossref_primary_10_1007_s00500_020_05340_6 crossref_primary_10_1109_ACCESS_2020_3028064 crossref_primary_10_1016_j_ijdrr_2023_104068 crossref_primary_10_1080_0305215X_2021_1969560 crossref_primary_10_1016_j_oceaneng_2022_112862 crossref_primary_10_1038_s41598_024_67600_x crossref_primary_10_1002_dac_4738 crossref_primary_10_1016_j_asoc_2023_110130 crossref_primary_10_1007_s11042_024_19064_4 crossref_primary_10_1016_j_conbuildmat_2023_131261 crossref_primary_10_1038_s41598_023_29342_0 crossref_primary_10_1007_s00603_023_03364_6 crossref_primary_10_1016_j_compeleceng_2022_108377 crossref_primary_10_1007_s11227_020_03317_8 crossref_primary_10_3390_math12203195 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_1002_cpe_5979 crossref_primary_10_1007_s00366_021_01542_0 |
| Cites_doi | 10.17485/ijst/2016/v9i41/109850 10.1016/j.advengsoft.2016.01.008 10.1080/15397734.2016.1213639 10.1016/j.neucom.2017.04.053 10.1109/ACCESS.2017.2695498 10.1016/j.eij.2015.07.001 10.1007/978-981-10-3773-3_6 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-019-04131-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 3673 |
| ExternalDocumentID | 10_1007_s00500_019_04131_y |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-b7cd16835f252f1da5a6baceff8fa06e5aa2d4e41673ef0e031eceb43cd2313e3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518603800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 08:07:56 EST 2025 Sat Nov 29 03:35:56 EST 2025 Tue Nov 18 21:35:39 EST 2025 Fri Feb 21 02:33:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Meta-heuristic algorithm Biological Whale optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b7cd16835f252f1da5a6baceff8fa06e5aa2d4e41673ef0e031eceb43cd2313e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7539-3089 |
| PQID | 2917914306 |
| PQPubID | 2043697 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2917914306 crossref_primary_10_1007_s00500_019_04131_y crossref_citationtrail_10_1007_s00500_019_04131_y springer_journals_10_1007_s00500_019_04131_y |
| PublicationCentury | 2000 |
| PublicationDate | 20200300 2020-3-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053 BentouatiBChaibLChettihSA hybrid whale algorithm and pattern search technique for optimal power flow problemModelling, identification and control2016AlgeriaIEEE10482018 Levine DM, Berenson ML, Hrehbiel TC, Stephan DF (2011) Friedman rank test: nonparametric analysis for the randomized block design. In: Statistics for Managers using MS Excel. 6/E, pp 1–16 KavehAGhazaanMIEnhanced whale optimization algorithm for sizing optimization of skeletal structures enhanced whale optimization algorithm for sizing optimization of skeletal structuresMech Based Des Struct Mach201745334536210.1080/15397734.2016.1213639 Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report, NTU, Singapore KaurGAroraSChaotic whale optimization algorithmJ Comput Des Eng201853275284 KalraMSinghSA review of metaheuristic scheduling techniques in cloud computingEgypt Inform J2015163827529510.1016/j.eij.2015.07.001 TrivediINJangirPKumarAJangirNTotlaniRBhatiaSKMishraKKTiwariSSinghVKA novel hybrid PSO–WOA algorithm for global numerical functions optimizationAdvances in computer and computational sciences2018SingaporeSpringer536010.1007/978-981-10-3773-3_6 JangirPTrivediINJangirNKumarALadumorDA novel adaptive whale optimization algorithm for global optimizationIndian J Sci Technol201693816 MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 LingYZhouYLuoQLévy flight trajectory-based whale optimization algorithm for global optimizationIEEE Access201656168618610.1109/ACCESS.2017.2695498 HuHBaiYXuTA whale optimization algorithm with inertia weightWSEAS Trans Comput201615319326 A Kaveh (4131_CR5) 2017; 45 P Jangir (4131_CR10) 2016; 9 MM Mafarja (4131_CR8) 2017; 260 H Hu (4131_CR2) 2016; 15 4131_CR6 4131_CR1 B Bentouati (4131_CR11) 2016 G Kaur (4131_CR4) 2018; 5 M Kalra (4131_CR3) 2015; 16 S Mirjalili (4131_CR9) 2016; 95 Y Ling (4131_CR7) 2016; 5 IN Trivedi (4131_CR12) 2018 |
| References_xml | – reference: KavehAGhazaanMIEnhanced whale optimization algorithm for sizing optimization of skeletal structures enhanced whale optimization algorithm for sizing optimization of skeletal structuresMech Based Des Struct Mach201745334536210.1080/15397734.2016.1213639 – reference: LingYZhouYLuoQLévy flight trajectory-based whale optimization algorithm for global optimizationIEEE Access201656168618610.1109/ACCESS.2017.2695498 – reference: Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report, NTU, Singapore – reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 – reference: TrivediINJangirPKumarAJangirNTotlaniRBhatiaSKMishraKKTiwariSSinghVKA novel hybrid PSO–WOA algorithm for global numerical functions optimizationAdvances in computer and computational sciences2018SingaporeSpringer536010.1007/978-981-10-3773-3_6 – reference: HuHBaiYXuTA whale optimization algorithm with inertia weightWSEAS Trans Comput201615319326 – reference: KaurGAroraSChaotic whale optimization algorithmJ Comput Des Eng201853275284 – reference: Levine DM, Berenson ML, Hrehbiel TC, Stephan DF (2011) Friedman rank test: nonparametric analysis for the randomized block design. In: Statistics for Managers using MS Excel. 6/E, pp 1–16 – reference: BentouatiBChaibLChettihSA hybrid whale algorithm and pattern search technique for optimal power flow problemModelling, identification and control2016AlgeriaIEEE10482018 – reference: JangirPTrivediINJangirNKumarALadumorDA novel adaptive whale optimization algorithm for global optimizationIndian J Sci Technol201693816 – reference: MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053 – reference: KalraMSinghSA review of metaheuristic scheduling techniques in cloud computingEgypt Inform J2015163827529510.1016/j.eij.2015.07.001 – volume: 9 start-page: 1 issue: 38 year: 2016 ident: 4131_CR10 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i41/109850 – ident: 4131_CR6 – volume: 95 start-page: 51 year: 2016 ident: 4131_CR9 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 45 start-page: 345 issue: 3 year: 2017 ident: 4131_CR5 publication-title: Mech Based Des Struct Mach doi: 10.1080/15397734.2016.1213639 – ident: 4131_CR1 – volume: 5 start-page: 275 issue: 3 year: 2018 ident: 4131_CR4 publication-title: J Comput Des Eng – volume: 260 start-page: 302 year: 2017 ident: 4131_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 15 start-page: 319 year: 2016 ident: 4131_CR2 publication-title: WSEAS Trans Comput – volume: 5 start-page: 6168 year: 2016 ident: 4131_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695498 – volume: 16 start-page: 275 issue: 38 year: 2015 ident: 4131_CR3 publication-title: Egypt Inform J doi: 10.1016/j.eij.2015.07.001 – start-page: 53 volume-title: Advances in computer and computational sciences year: 2018 ident: 4131_CR12 doi: 10.1007/978-981-10-3773-3_6 – start-page: 1048 volume-title: Modelling, identification and control year: 2016 ident: 4131_CR11 |
| SSID | ssj0021753 |
| Score | 2.4359865 |
| Snippet | Meta-heuristic algorithms are divided into two categories: biological and non-biological. Biological algorithms are divided into evolutionary and swarm-based... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3647 |
| SubjectTerms | Artificial Intelligence Chaos theory Computational Intelligence Control Convergence Engineering Evolutionary algorithms Exploitation Heuristic Heuristic methods Intelligence Mathematical Logic and Foundations Mechatronics Methodologies and Application Methods Optimization algorithms Particle swarm optimization Robotics Whales & whaling |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADg8HEYKAeOCBBpSVNX0eEmDigCfGYdqvSNGGT9kBbAe3f42RpBwiQ4NzUrew4_pLYnwFOvBZHHE51whMJXJamxOW6ZVhIBeJlxVhsqly7N2GnE_V68a0tCpsV2e7FlaRZqctiN01VomXqw3ziEXe-CmsY7iLtjnf33XKbZbknEQggdsSAa0tlvpfxORwtMeaXa1ETbdrV__3nNmxZdOlcLKbDDqzIcQ2qRecGxzpyDTY_0BDuwqk5gHJ1QMuctz6GDGeCK8nIlmg6fPg0mQ7y_mgPHttXD5fXru2g4Ap0rdxNQ5GRAEGWoj5VJOM-D1IupFKR4q1A-pzTjEkEZaEnVUuih0shU-aJDHGfJ706VMaTsdwHh0WZj0b1QkJShpgyQiOGyo8z_ARLqWwAKRSZCEsvrrtcDJOSGNkoJkHFJEYxybwBZ-U7zwtyjV9HNwv7JNbRZgmNNb8qw41PA84Leywf_yzt4G_DD2GD6p22yT5rQiWfvsgjWBev-WA2PTYT8B1vJtK1 priority: 102 providerName: Springer Nature |
| Title | Group-based whale optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s00500-019-04131-y https://www.proquest.com/docview/2917914306 |
| Volume | 24 |
| WOSCitedRecordID | wos000518603800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oePAiPiOKZA8eTLSRdrsPTkYNxERDCCohXjbdbldMeAmo4d87LV2IJnLx0ku33WY60_k605kBOHUrAnE40w-eqE94HFMidMmwgEnEyynnVRPl2n4IGo2w06k2rcFtYp9VZmeiOaiTodQ28ktW1Yk0OSLcq9E70VWjtHfVltBYhzxljGo-vw_I4sJls1DiKESRqHpt0IwJndOJT_QKtWuAupTMfiqmJdr85SA1eqde-O-Kt2HLIk7nes4iO7CmBrtQyKo5OFa49-DMmKGIVmuJ89VFxeEM8Tzp20BNR_RecfZpt78Pz_Xa0-0dsXUUiEQBm5I4kAn1EWqlzGMpTYQn_FhIlaZhKiq-8oRgCVcIzQJXpRWFcq6kirkrE0R_rnIPIDcYDtQhODxMPNxaN6A05ogsQ9zKIPWqCf6Cx0wVgWZEjKRNMq5rXfSiRXpkQ_gICR8ZwkezIpwvxozmKTZWfl3KqB1ZcZtES1IX4SLbr2X337MdrZ7tGDaZvl-bN2clyE3HH-oENuTn9G0yLkP-ptZotsqG6bBtei_Yth7b3ylz2vs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gmuhFfEYUtQdNTLSR3W4pHIwxKoGAhAMa4qVut1sx4SVUCX_K3-js0kI0kRsHz2237X7fznz7mBmAEyvLUYdTdeCJ5EzmecTkqmSYQwXq5YCxgo5yfao6tVq-2SzUE_AVx8KoY5WxTdSG2u8JtUZ-SQsqkSZDhXvdfzdV1Si1uxqX0JjQoiLHI5yyDa_Kd4jvKaXF-8ZtyYyqCpgC6RaaniN8kkPhEVCbBsTnNs95XMggyAc8m5M259RnEoWKY8kgK5H1UkiPWcJHLWRJC9tdgmXGcLKE46duP08neFHWS_xKVK3o6qMgHR2qpxKtqB5RWxHEIub4pyOcqdtfG7LazxVT_62HNmA9UtTGzWQIbEJCdrcgFVerMCLjtQ1nepnNVG7bN0YtdIxGD-1lJwpENXj7Ff8mbHV24HEh37sLyW6vK_fAYHnfRupaDiEeQ-WcR6o6gV3w8RXMozINJAbNFVESdVXLo-1O0z9roF0E2tVAu-M0nE-f6U9SiMy9OxOj60bmZOjOoE3DRcyP2eW_W9uf39oxrJYaD1W3Wq5VDmCNqrUEfb4uA8lw8CEPYUV8hm_DwZEmugEvi-bNN4HAN-4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bidGoffBC0bGnTtX0UdSiOMVDH3kLaJG6wdWOryv57L13bTVFBfG6alrtc7rvk7juAM7vKEYdbOuGJ1EwaBMTkumWYa4WIlxWlflLl2m64zabX6fithSr-JNs9u5Kc1TRolqYoroyEquSFb5q2RM-vD_aJTczpMqxQ3TRIx-uP7TzkSnkoERQgjkTnm5bNfD_HZ9c0x5tfrkgTz1Pf-v8_b8NmijqNq9ky2YElGRVhK-voYKQGXoSNBXrCXThPDqZM7eiE8d5FV2IMcYcZpKWbBu-_DMe9uDvYg-f67dP1nZl2VjBDNLnYDNxQkBqCL2U5liKCO7wW8FAq5SlerUmHc0tQiWDNtaWqSrR8GcqA2qFAPGhLex8K0TCSB2BQTziobNslJKCINT1UrqscX-AnaGDJEpBMqCxMacd194s-ywmTE8EwFAxLBMOmJbjI3xnNSDd-HV3OdMVSA5wwy9e8qxQDohJcZrqZP_55tsO_DT-FtdZNnTXumw9HsG7pYDxJUCtDIR6_ymNYDd_i3mR8kqzLD8T-3n0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group-based+whale+optimization+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Hemasian-Etefagh%2C+Farinaz&rft.au=Safi-Esfahani%2C+Faramarz&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=5&rft.spage=3647&rft.epage=3673&rft_id=info:doi/10.1007%2Fs00500-019-04131-y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |