Lung cancer segmentation from CT scan images using modified mayfly optimization and particle swarm optimization algorithm
The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for...
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 83; číslo 2; s. 3567 - 3584 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.01.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for lung cancer patients. Due to low-image quality, higher computational difficulties, and other reasons, the existing lung cancer segmentation methods failed to provide better segmentation accuracy. To overcome these challenges, we proposed a novel approach for lung tumor segmentation. Initially, the input CT scan image contrast level is increased using histogram equalization (HE) during pre-processing. The adaptive bilateral filter (ABF) provides enhanced CT scan images for de-noising. Next to pre-processing, we introduced an ensemble deep convolutional neural network (EDNN) based on Modified mayfly optimization and modified particle swarm optimization (M
2
PSO) algorithm for the segmentation of lung cancer from the pre-processed CT images. The proposed model accurately segments the lung disease tumor without manual supervision and the need for fully annotated data. Finally, the measures like dice similarity score (DSS), precision, sensitivity, dice loss, and generalized dice loss analyze the performance of the proposed model. Based on the experimental investigations, the proposed EDCNN- M
2
PSO algorithm demonstrated superior performance in terms of lung tumor segmentation than other existing techniques. The proposed model has average accuracy, sensitivity, and precision scores of 97%, 98%, and 98%, respectively. The proposed model's DSS value is 98.6%, which is relatively higher than the existing approaches. |
|---|---|
| AbstractList | The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for lung cancer patients. Due to low-image quality, higher computational difficulties, and other reasons, the existing lung cancer segmentation methods failed to provide better segmentation accuracy. To overcome these challenges, we proposed a novel approach for lung tumor segmentation. Initially, the input CT scan image contrast level is increased using histogram equalization (HE) during pre-processing. The adaptive bilateral filter (ABF) provides enhanced CT scan images for de-noising. Next to pre-processing, we introduced an ensemble deep convolutional neural network (EDNN) based on Modified mayfly optimization and modified particle swarm optimization (M2PSO) algorithm for the segmentation of lung cancer from the pre-processed CT images. The proposed model accurately segments the lung disease tumor without manual supervision and the need for fully annotated data. Finally, the measures like dice similarity score (DSS), precision, sensitivity, dice loss, and generalized dice loss analyze the performance of the proposed model. Based on the experimental investigations, the proposed EDCNN- M2PSO algorithm demonstrated superior performance in terms of lung tumor segmentation than other existing techniques. The proposed model has average accuracy, sensitivity, and precision scores of 97%, 98%, and 98%, respectively. The proposed model's DSS value is 98.6%, which is relatively higher than the existing approaches. The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for lung cancer patients. Due to low-image quality, higher computational difficulties, and other reasons, the existing lung cancer segmentation methods failed to provide better segmentation accuracy. To overcome these challenges, we proposed a novel approach for lung tumor segmentation. Initially, the input CT scan image contrast level is increased using histogram equalization (HE) during pre-processing. The adaptive bilateral filter (ABF) provides enhanced CT scan images for de-noising. Next to pre-processing, we introduced an ensemble deep convolutional neural network (EDNN) based on Modified mayfly optimization and modified particle swarm optimization (M 2 PSO) algorithm for the segmentation of lung cancer from the pre-processed CT images. The proposed model accurately segments the lung disease tumor without manual supervision and the need for fully annotated data. Finally, the measures like dice similarity score (DSS), precision, sensitivity, dice loss, and generalized dice loss analyze the performance of the proposed model. Based on the experimental investigations, the proposed EDCNN- M 2 PSO algorithm demonstrated superior performance in terms of lung tumor segmentation than other existing techniques. The proposed model has average accuracy, sensitivity, and precision scores of 97%, 98%, and 98%, respectively. The proposed model's DSS value is 98.6%, which is relatively higher than the existing approaches. |
| Author | Poonkodi, S. Kanchana, M. |
| Author_xml | – sequence: 1 givenname: S. surname: Poonkodi fullname: Poonkodi, S. email: rkpoonkodi@gmail.com organization: Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology – sequence: 2 givenname: M. surname: Kanchana fullname: Kanchana, M. organization: Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology |
| BookMark | eNp9kE1rwyAYgGV0sLbbH9hJ2DmbmmiS4yj7gsIu3VmM0cwSNdOE0f36uWUw6KEnhfd59OVZgYXzTgFwjdEtRqi8ixijgmSI5BmmrKoydAaWmJZ5VpYEL9I9r1BWUoQvwCrGPUKYUVIswWE7uQ5K4aQKMKrOKjeK0XgHdfAWbnYwpiE0VnQqwimaRFvfGm1UC6046P4A_TAaa75mTbgWDiKMRvYKxk8R7NG873ww47u9BOda9FFd_Z1r8Pb4sNs8Z9vXp5fN_TaTOa7HrCkFK6RoCW4LplnBpJCCoIZJKmqqS9lKgSratAVSSpOiagotaaNk0hNI8zW4md8dgv-YVBz53k_BpS85qTHGOatJmahqpmTwMQaluTRziDEI03OM-E9oPofmKTT_Dc1RUsmROoTUKxxOS_ksxQS7ToX_rU5Y3_54llU |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106243 crossref_primary_10_1007_s42835_025_02335_x crossref_primary_10_1177_03913988251359522 crossref_primary_10_1007_s11761_024_00428_5 crossref_primary_10_1016_j_compbiomed_2024_109613 crossref_primary_10_1007_s11042_024_18496_2 crossref_primary_10_1016_j_compbiomed_2024_109272 |
| Cites_doi | 10.1109/TIP.2008.919949 10.1016/j.procs.2018.01.104 10.1016/j.neuroimage.2006.01.015 10.1038/s41598-019-53461-2 10.22581/muet1982.1902.10 10.1007/s10489-020-02046-y 10.1016/j.neucom.2017.09.084 10.1002/er.6987 10.3389/fonc.2020.00986 10.1016/j.jvcir.2017.09.008 10.1186/s40537-019-0276-2 10.1504/IJMNDI.2018.090153 10.1109/ACCESS.2019.2921434 10.1109/ACCESS.2020.3035345 10.1118/1.2791035 10.1186/s12938-018-0619-9 10.1007/s10489-020-01829-7 10.1109/JBHI.2020.3039741 10.1155/2021/5196000 10.1007/978-3-319-91008-6_63 10.1016/j.imu.2021.100681 10.1007/978-3-030-62469-9_4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-15688-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 3584 |
| ExternalDocumentID | 10_1007_s11042_023_15688_0 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-b7a64cad21d46f646caca20b6c5a95f7cdca085bd40eef248b4fc5becc31ca253 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992151600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 02:08:49 EST 2025 Sat Nov 29 06:20:29 EST 2025 Tue Nov 18 22:28:49 EST 2025 Fri Feb 21 02:40:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Automatic segmentation Ensemble Deep Convolutional Neural Network Lung computed tomography Lung cancer Modified mayfly optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b7a64cad21d46f646caca20b6c5a95f7cdca085bd40eef248b4fc5becc31ca253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2911136927 |
| PQPubID | 54626 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2911136927 crossref_citationtrail_10_1007_s11042_023_15688_0 crossref_primary_10_1007_s11042_023_15688_0 springer_journals_10_1007_s11042_023_15688_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20240100 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR30) 2006; 31 CR16 CR15 CR14 CR12 CR11 Anita, Chaitanyakumar (CR4) 2018; 8 Skourt, El Hassani, Majda (CR26) 2018; 127 Mary, Dharma (CR19) 2017; 49 Xu, Qi, Yue, Teng, Xu, Yao, Qian (CR28) 2019; 18 Abbas, Abdelsamea, Gaber (CR1) 2021; 51 Zhang, Allebach (CR31) 2008; 17 Baek, He, Allen, Buatti, Smith, Tong, Sun, Wu, Diehn, Loo, Plichta (CR6) 2019; 9 Aristophanous, Penney, Martel, Pelizzari (CR5) 2007; 34 Manoharan (CR18) 2020; 2 Chen, Wei, Peng, Sun, Qiao, Liu (CR9) 2019; 7 Onyema, Elhaj, Bashir, Abdullahi, Hauwa, Hayatu, Edeh, Abdullahi (CR23) 2020; 7 Shaheen, Hasanien, El Moursi, El-Fergany (CR25) 2021; 45 Bari, Ahmed, Sabir, Naveed (CR7) 2019; 38 CR8 Akter, Moni, Islam, Quinn, Kamal (CR2) 2021; 51 Mukilan, Rameshbabu, Velumani (CR21) 2021; 42 Sun, Bauer, Beichel (CR27) 2011; 31 CR24 Men, Geng, Biswas, Liao, Xiao (CR20) 2020; 10 CR22 Liu, Li, Yang, Geng (CR17) 2021; 11 Yadav, Jadhav (CR29) 2019; 6 Jia, Xia, Song, Cai, Fulham, Feng (CR13) 2018; 275 Chen, Duan, Wu, Yang (CR10) 2021; 14 Albahli, Nida, Irtaza, Yousaf, Mahmood (CR3) 2020; 8 M Bari (15688_CR7) 2019; 38 15688_CR24 R Anita (15688_CR4) 2018; 8 15688_CR22 MA Shaheen (15688_CR25) 2021; 45 M Xu (15688_CR28) 2019; 18 SS Yadav (15688_CR29) 2019; 6 H Jia (15688_CR13) 2018; 275 O Akter (15688_CR2) 2021; 51 B Zhang (15688_CR31) 2008; 17 PA Yushkevich (15688_CR30) 2006; 31 W Chen (15688_CR9) 2019; 7 X Chen (15688_CR10) 2021; 14 15688_CR16 15688_CR15 X Liu (15688_CR17) 2021; 11 15688_CR14 K Mukilan (15688_CR21) 2021; 42 15688_CR12 15688_CR11 S Albahli (15688_CR3) 2020; 8 15688_CR8 M Aristophanous (15688_CR5) 2007; 34 A Abbas (15688_CR1) 2021; 51 EM Onyema (15688_CR23) 2020; 7 S Baek (15688_CR6) 2019; 9 S Manoharan (15688_CR18) 2020; 2 K Men (15688_CR20) 2020; 10 BA Skourt (15688_CR26) 2018; 127 NAB Mary (15688_CR19) 2017; 49 S Sun (15688_CR27) 2011; 31 |
| References_xml | – ident: CR22 – volume: 17 start-page: 664 issue: 5 year: 2008 end-page: 678 ident: CR31 article-title: Adaptive bilateral filter for sharpness enhancement and noise removal publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.919949 – volume: 11 start-page: 2599 year: 2021 ident: CR17 article-title: Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy publication-title: Front Oncol – volume: 31 start-page: 449 issue: 2 year: 2011 end-page: 460 ident: CR27 article-title: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach publication-title: IEEE Trans Med Imaging – ident: CR14 – ident: CR16 – ident: CR12 – volume: 42 start-page: 786 year: 2021 end-page: 794 ident: CR21 article-title: A modified particle swarm optimization for risk assessment and claim management in engineering procurement construction projects publication-title: Mater Today: Proc – volume: 127 start-page: 109 year: 2018 end-page: 113 ident: CR26 article-title: Lung CT image segmentation using deep neural networks publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.01.104 – volume: 31 start-page: 1116 issue: 3 year: 2006 end-page: 1128 ident: CR30 article-title: User-guided 3D active contour segmentation of anatomical structures Significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 10 ident: CR6 article-title: Deep segmentation networks predict survival of non-small cell lung cancer publication-title: Sci Rep doi: 10.1038/s41598-019-53461-2 – volume: 38 start-page: 351 issue: 2 year: 2019 end-page: 360 ident: CR7 article-title: Lung cancer detection using digital image processing techniques: A review publication-title: Mehran Univ Res J Eng Technol doi: 10.22581/muet1982.1902.10 – volume: 51 start-page: 3391 issue: 6 year: 2021 end-page: 3404 ident: CR2 article-title: Lung cancer detection using enhanced segmentation accuracy publication-title: Appl Intell doi: 10.1007/s10489-020-02046-y – volume: 275 start-page: 1358 year: 2018 end-page: 1369 ident: CR13 article-title: Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.084 – ident: CR8 – volume: 45 start-page: 18754 issue: 13 year: 2021 end-page: 18769 ident: CR25 article-title: Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm publication-title: Int J Energy Res doi: 10.1002/er.6987 – volume: 10 start-page: 986 year: 2020 ident: CR20 article-title: Automated quality assurance of OAR contouring for lung cancer based on segmentation with deep active learning publication-title: Front Oncol doi: 10.3389/fonc.2020.00986 – volume: 14 start-page: 396 issue: 1 year: 2021 end-page: 403 ident: CR10 article-title: Segmentation of lung computed tomography images based on SegNet in the diagnosis of lung cancer publication-title: J Rad Res Appl Sci – volume: 49 start-page: 225 year: 2017 end-page: 242 ident: CR19 article-title: Coral reef image classification employing improved ldp for feature extraction publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.09.008 – ident: CR15 – volume: 2 start-page: 201 issue: 04 year: 2020 end-page: 206 ident: CR18 article-title: Improved version of Graph-cut algorithm for CT images of lung cancer with clinical property condition publication-title: J Artif Intell – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 18 ident: CR29 article-title: Deep convolutional neural network based medical image classification for disease diagnosis publication-title: J Big Data doi: 10.1186/s40537-019-0276-2 – volume: 8 start-page: 7 issue: 1 year: 2018 end-page: 16 ident: CR4 article-title: An efficient artificial bee colony algorithm for optimising the design of rectangular microstrip patch antenna publication-title: Int J Mobile Network Des Innov doi: 10.1504/IJMNDI.2018.090153 – ident: CR11 – volume: 7 start-page: 75591 year: 2019 end-page: 75603 ident: CR9 article-title: HSN: hybrid segmentation network for small cell lung cancer segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921434 – volume: 8 start-page: 198403 year: 2020 end-page: 198414 ident: CR3 article-title: Melanoma lesion detection and segmentation using YOLOv4-DarkNet and active contour publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3035345 – volume: 7 start-page: 91 issue: 1 year: 2020 end-page: 102 ident: CR23 article-title: Evaluation of the performance of K-nearest neighbor algorithm in determining student learning styles publication-title: Int J Innov Sci Eng Techn – volume: 34 start-page: 4223 issue: 11 year: 2007 end-page: 4235 ident: CR5 article-title: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography publication-title: Med Phys doi: 10.1118/1.2791035 – volume: 18 start-page: 1 issue: 1 year: 2019 end-page: 21 ident: CR28 article-title: Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0619-9 – ident: CR24 – volume: 51 start-page: 854 issue: 2 year: 2021 end-page: 864 ident: CR1 article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network publication-title: Appl Intell doi: 10.1007/s10489-020-01829-7 – ident: 15688_CR16 doi: 10.1109/JBHI.2020.3039741 – volume: 127 start-page: 109 year: 2018 ident: 15688_CR26 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.01.104 – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 15688_CR30 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – ident: 15688_CR8 – volume: 10 start-page: 986 year: 2020 ident: 15688_CR20 publication-title: Front Oncol doi: 10.3389/fonc.2020.00986 – ident: 15688_CR24 doi: 10.1155/2021/5196000 – ident: 15688_CR15 – volume: 7 start-page: 91 issue: 1 year: 2020 ident: 15688_CR23 publication-title: Int J Innov Sci Eng Techn – volume: 17 start-page: 664 issue: 5 year: 2008 ident: 15688_CR31 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.919949 – volume: 49 start-page: 225 year: 2017 ident: 15688_CR19 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.09.008 – volume: 8 start-page: 7 issue: 1 year: 2018 ident: 15688_CR4 publication-title: Int J Mobile Network Des Innov doi: 10.1504/IJMNDI.2018.090153 – volume: 45 start-page: 18754 issue: 13 year: 2021 ident: 15688_CR25 publication-title: Int J Energy Res doi: 10.1002/er.6987 – ident: 15688_CR11 doi: 10.1007/978-3-319-91008-6_63 – ident: 15688_CR12 doi: 10.1007/978-3-319-91008-6_63 – volume: 34 start-page: 4223 issue: 11 year: 2007 ident: 15688_CR5 publication-title: Med Phys doi: 10.1118/1.2791035 – volume: 11 start-page: 2599 year: 2021 ident: 15688_CR17 publication-title: Front Oncol – volume: 42 start-page: 786 year: 2021 ident: 15688_CR21 publication-title: Mater Today: Proc – volume: 7 start-page: 75591 year: 2019 ident: 15688_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921434 – volume: 14 start-page: 396 issue: 1 year: 2021 ident: 15688_CR10 publication-title: J Rad Res Appl Sci – ident: 15688_CR22 doi: 10.1016/j.imu.2021.100681 – volume: 18 start-page: 1 issue: 1 year: 2019 ident: 15688_CR28 publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0619-9 – volume: 8 start-page: 198403 year: 2020 ident: 15688_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3035345 – volume: 2 start-page: 201 issue: 04 year: 2020 ident: 15688_CR18 publication-title: J Artif Intell – volume: 51 start-page: 3391 issue: 6 year: 2021 ident: 15688_CR2 publication-title: Appl Intell doi: 10.1007/s10489-020-02046-y – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 15688_CR6 publication-title: Sci Rep doi: 10.1038/s41598-019-53461-2 – volume: 51 start-page: 854 issue: 2 year: 2021 ident: 15688_CR1 publication-title: Appl Intell doi: 10.1007/s10489-020-01829-7 – volume: 31 start-page: 449 issue: 2 year: 2011 ident: 15688_CR27 publication-title: IEEE Trans Med Imaging – volume: 38 start-page: 351 issue: 2 year: 2019 ident: 15688_CR7 publication-title: Mehran Univ Res J Eng Technol doi: 10.22581/muet1982.1902.10 – volume: 275 start-page: 1358 year: 2018 ident: 15688_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.084 – ident: 15688_CR14 doi: 10.1007/978-3-030-62469-9_4 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 15688_CR29 publication-title: J Big Data doi: 10.1186/s40537-019-0276-2 |
| SSID | ssj0016524 |
| Score | 2.3858814 |
| Snippet | The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3567 |
| SubjectTerms | Algorithms Artificial neural networks Computed tomography Computer Communication Networks Computer Science Critical components Data Structures and Information Theory Image contrast Image enhancement Image quality Image segmentation Lung cancer Lung diseases Medical imaging Model accuracy Multimedia Information Systems Optimization Particle swarm optimization Radiation therapy Special Purpose and Application-Based Systems Tumors |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6K85IENLBIncZIJoQrEAIgBEFvk-FEqNWlpCqj_nnPqUECChdmOZemeOd93H8BRpDkGFWP7cFhAQyUjmmMcpSjsJI5zxeJ6gOnjdXx7mzw9pXeu4Fa5tsrGJ9aOWg2krZGfMmuVAU9ZfDZ8oZY1yr6uOgqNeViwmY1t6bvxOp-vCDxypLaJRzEy-g40M4XO-RaYghGL4h8Maov3PTDNss0fD6R13Llc_e-N12DFZZzkfKoi6zCnyw1YbdgciDPuDVj-MppwEybX6AWItDoxIpXuFg6jVBILSCGde1LhIukV6I8qYrvnu6QYqJ7BlJYUYmL6EzJAd1Q4nCcRpSJDp6ekehej4sd6v4uXHz8XW_BweXHfuaKOpoFKtN8xzWPBQykU81XIDQ-5FFIwL-cyEmlkYqmkwMQuV6GntWFhkodGRlZ3Ah83RsE2tMpBqXeAWAZJ7jFtjEjDQJrEImE1ZiyJSE3kyzb4jYwy6WaYWyqNfjabvmzlmqFcs1qumdeG489vhtMJHn_u3m-EmTlrrrKZJNtw0qjDbPn303b_Pm0PlhjmSNOKzj60xqNXfQCL8m3cq0aHtS5_AO_J-s8 priority: 102 providerName: ProQuest |
| Title | Lung cancer segmentation from CT scan images using modified mayfly optimization and particle swarm optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s11042-023-15688-0 https://www.proquest.com/docview/2911136927 |
| Volume | 83 |
| WOSCitedRecordID | wos000992151600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH-CjQMc2AdMK9sqH7iBpcSJ7eQI1aZJ20q1jTG4RI5jd5WadEoKqP_9nlNnZRMgwcVSZMeK_D5-z7F_7wG85UYgqFh3D4dFNC40pzniKEVhJ1LmBZNtAtOrUzkcJtfX6ciTwprutnt3JNl66hXZLXRUEsQYinsOlC9u1NcR7hJXsOH84ur-7EBwX8o2CSjiYeipMr-f4yEcrWLMR8eiLdocbfzfd27CSx9dkg9LddiCJ6baho2ucgPxhrwNL35JQ_gKFqdo8UQ7-dekMePS85Eq4sgnZHBJGuwkkxJ9T0PcTfkxKWfFxGL4Skq1sNMFmaHrKT2nk6iqILdeJ0nzU9Xlo_7peFZP5jfla_h8dHg5OKa-JAPVaKtzmkslYq0KFhaxsCIWWmnFglxorlJupS60wiAuL-LAGMviJI-t5k5PohAH8mgH1qpZZXaBuGqRImDGWpXGkbaJY70ajE4SlVoe6h6EnWQy7fOVu7IZ02yVadmtdIYrnbUrnQU9eHf_zu0yW8dfR-93As-85TYZc94_EimTPXjfCXjV_efZ3vzb8D14zjA-Wv7N2Ye1ef3dHMAz_WM-aeo-PJVfvvZh_ePhcHSOTyeSYnsWDFzLPmE74t_6rd7fARIE9y0 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41DSTgwGCAKAzwAU5gkTiOnRwQQoNpU0vFoaDdguOPUqlJS1OY-qf4jbxOnBUmsdsOnO1Yiv28H_543gfgeWoFBhXn3-GwhHKjU1piHKW42JmUpWGyLWD6ZSTH4-z0NP-0A796Lox_Vtn7xNZRm4X2Z-SvmbfKRORMvl1-p141yt-u9hIaHSyGdnOGW7bmzcl7XN8XjB19mBwe06AqQDXCbU1LqQTXyrDYcOEEF1ppxaJS6FTlqZPaaIV5SGl4ZK1jPCu506n_1STGjl4lAl3-NZ5k0tvVUNLzWwuRBhHdLKIYieNA0umoerEnwmCEpLhjQnRGfwfCbXZ74UK2jXNHe__bDN2B2yGjJu86E7gLO7beh71erYIE57UPt_4ovXgPNiP0ckR7zK9IY6dV4GDVxBNuyOGENNhIZhX624Z4dsCUVAszc5iyk0pt3HxDFuhuq8BjJao2ZBnskDRnalVdaJ9PcbLW36r78PlKpuMB7NaL2j4E4hUyRcSscyrniXaZZ_pazMgylbs01gOIe0wUOtRo91Ih82JbXdrjqEAcFS2OimgAL8-_WXYVSi7tfdCDpwjeqim2yBnAqx5-2-Z_j_bo8tGewY3jycdRMToZDx_DTYb5YHd6dQC769UP-wSu65_rWbN62toRga9XDcvfD0hcIQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBkJw2GAw0THgHeAEFombOMkBIbRRMa2qehho4hIcf5RKTVqawtR_jb-O58RZYRK77cDZjqXYv_dlv997AC9iI8ioWJeHw_ss0ipmBdlRRoedJkmhedIUMP08TEaj9Pw8G2_Br44L49IqO53YKGo9V-6O_A13UtkXGYXq1qdFjI8H7xbfmesg5V5au3YaLUROzfqCwrf67ckxnfVLzgcfzo4-Mt9hgCmC3ooViRSRkpqHOhJWREJJJXlQCBXLLLaJ0kqST1LoKDDG8igtIqti99v9kCa6jhGk_m8lFGO6dMJx_OXyBUPEvqFuGjCyyqEn7LS0vdCRYshaMoqeCKnB30Zx4-leeZxtbN5g93_erfuw4z1tfN-KxgPYMtUe7HZdLNArtT2490dJxoewHpL2Q-VkYYm1mZSem1WhI-Lg0RnWNIjTkvRwjY41MMFyrqeWXHks5drO1jgnNVx6fivKSuPCyyfWF3JZXhmfTWizVt_KR_DpRrZjH7areWUeA7rOmSLgxlqZRX1lU8cANuSppTKzcah6EHb4yJWv3e5aiMzyTdVph6mcMJU3mMqDHry6_GbRVi65dvZhB6Tca7E636CoB687KG6G_73awfWrPYc7hMZ8eDI6fQJ3ObmJ7aXWIWyvlj_MU7itfq6m9fJZI1IIX28alb8BkLNlRQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+cancer+segmentation+from+CT+scan+images+using+modified+mayfly+optimization+and+particle+swarm+optimization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Poonkodi%2C+S.&rft.au=Kanchana%2C+M.&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=2&rft.spage=3567&rft.epage=3584&rft_id=info:doi/10.1007%2Fs11042-023-15688-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15688_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |