Lung cancer segmentation from CT scan images using modified mayfly optimization and particle swarm optimization algorithm

The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 83; číslo 2; s. 3567 - 3584
Hlavní autoři: Poonkodi, S., Kanchana, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2024
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for lung cancer patients. Due to low-image quality, higher computational difficulties, and other reasons, the existing lung cancer segmentation methods failed to provide better segmentation accuracy. To overcome these challenges, we proposed a novel approach for lung tumor segmentation. Initially, the input CT scan image contrast level is increased using histogram equalization (HE) during pre-processing. The adaptive bilateral filter (ABF) provides enhanced CT scan images for de-noising. Next to pre-processing, we introduced an ensemble deep convolutional neural network (EDNN) based on Modified mayfly optimization and modified particle swarm optimization (M 2 PSO) algorithm for the segmentation of lung cancer from the pre-processed CT images. The proposed model accurately segments the lung disease tumor without manual supervision and the need for fully annotated data. Finally, the measures like dice similarity score (DSS), precision, sensitivity, dice loss, and generalized dice loss analyze the performance of the proposed model. Based on the experimental investigations, the proposed EDCNN- M 2 PSO algorithm demonstrated superior performance in terms of lung tumor segmentation than other existing techniques. The proposed model has average accuracy, sensitivity, and precision scores of 97%, 98%, and 98%, respectively. The proposed model's DSS value is 98.6%, which is relatively higher than the existing approaches.
AbstractList The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for lung cancer patients. Due to low-image quality, higher computational difficulties, and other reasons, the existing lung cancer segmentation methods failed to provide better segmentation accuracy. To overcome these challenges, we proposed a novel approach for lung tumor segmentation. Initially, the input CT scan image contrast level is increased using histogram equalization (HE) during pre-processing. The adaptive bilateral filter (ABF) provides enhanced CT scan images for de-noising. Next to pre-processing, we introduced an ensemble deep convolutional neural network (EDNN) based on Modified mayfly optimization and modified particle swarm optimization (M2PSO) algorithm for the segmentation of lung cancer from the pre-processed CT images. The proposed model accurately segments the lung disease tumor without manual supervision and the need for fully annotated data. Finally, the measures like dice similarity score (DSS), precision, sensitivity, dice loss, and generalized dice loss analyze the performance of the proposed model. Based on the experimental investigations, the proposed EDCNN- M2PSO algorithm demonstrated superior performance in terms of lung tumor segmentation than other existing techniques. The proposed model has average accuracy, sensitivity, and precision scores of 97%, 98%, and 98%, respectively. The proposed model's DSS value is 98.6%, which is relatively higher than the existing approaches.
The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major concern for both men and women. The radiologists need to accurately pinpoint the region of the lung tumor to offer proper radiation therapy for lung cancer patients. Due to low-image quality, higher computational difficulties, and other reasons, the existing lung cancer segmentation methods failed to provide better segmentation accuracy. To overcome these challenges, we proposed a novel approach for lung tumor segmentation. Initially, the input CT scan image contrast level is increased using histogram equalization (HE) during pre-processing. The adaptive bilateral filter (ABF) provides enhanced CT scan images for de-noising. Next to pre-processing, we introduced an ensemble deep convolutional neural network (EDNN) based on Modified mayfly optimization and modified particle swarm optimization (M 2 PSO) algorithm for the segmentation of lung cancer from the pre-processed CT images. The proposed model accurately segments the lung disease tumor without manual supervision and the need for fully annotated data. Finally, the measures like dice similarity score (DSS), precision, sensitivity, dice loss, and generalized dice loss analyze the performance of the proposed model. Based on the experimental investigations, the proposed EDCNN- M 2 PSO algorithm demonstrated superior performance in terms of lung tumor segmentation than other existing techniques. The proposed model has average accuracy, sensitivity, and precision scores of 97%, 98%, and 98%, respectively. The proposed model's DSS value is 98.6%, which is relatively higher than the existing approaches.
Author Poonkodi, S.
Kanchana, M.
Author_xml – sequence: 1
  givenname: S.
  surname: Poonkodi
  fullname: Poonkodi, S.
  email: rkpoonkodi@gmail.com
  organization: Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology
– sequence: 2
  givenname: M.
  surname: Kanchana
  fullname: Kanchana, M.
  organization: Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology
BookMark eNp9kE1rwyAYgGV0sLbbH9hJ2DmbmmiS4yj7gsIu3VmM0cwSNdOE0f36uWUw6KEnhfd59OVZgYXzTgFwjdEtRqi8ixijgmSI5BmmrKoydAaWmJZ5VpYEL9I9r1BWUoQvwCrGPUKYUVIswWE7uQ5K4aQKMKrOKjeK0XgHdfAWbnYwpiE0VnQqwimaRFvfGm1UC6046P4A_TAaa75mTbgWDiKMRvYKxk8R7NG873ww47u9BOda9FFd_Z1r8Pb4sNs8Z9vXp5fN_TaTOa7HrCkFK6RoCW4LplnBpJCCoIZJKmqqS9lKgSratAVSSpOiagotaaNk0hNI8zW4md8dgv-YVBz53k_BpS85qTHGOatJmahqpmTwMQaluTRziDEI03OM-E9oPofmKTT_Dc1RUsmROoTUKxxOS_ksxQS7ToX_rU5Y3_54llU
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106243
crossref_primary_10_1007_s42835_025_02335_x
crossref_primary_10_1177_03913988251359522
crossref_primary_10_1007_s11761_024_00428_5
crossref_primary_10_1016_j_compbiomed_2024_109613
crossref_primary_10_1007_s11042_024_18496_2
crossref_primary_10_1016_j_compbiomed_2024_109272
Cites_doi 10.1109/TIP.2008.919949
10.1016/j.procs.2018.01.104
10.1016/j.neuroimage.2006.01.015
10.1038/s41598-019-53461-2
10.22581/muet1982.1902.10
10.1007/s10489-020-02046-y
10.1016/j.neucom.2017.09.084
10.1002/er.6987
10.3389/fonc.2020.00986
10.1016/j.jvcir.2017.09.008
10.1186/s40537-019-0276-2
10.1504/IJMNDI.2018.090153
10.1109/ACCESS.2019.2921434
10.1109/ACCESS.2020.3035345
10.1118/1.2791035
10.1186/s12938-018-0619-9
10.1007/s10489-020-01829-7
10.1109/JBHI.2020.3039741
10.1155/2021/5196000
10.1007/978-3-319-91008-6_63
10.1016/j.imu.2021.100681
10.1007/978-3-030-62469-9_4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-15688-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 3584
ExternalDocumentID 10_1007_s11042_023_15688_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-b7a64cad21d46f646caca20b6c5a95f7cdca085bd40eef248b4fc5becc31ca253
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992151600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 02:08:49 EST 2025
Sat Nov 29 06:20:29 EST 2025
Tue Nov 18 22:28:49 EST 2025
Fri Feb 21 02:40:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Automatic segmentation
Ensemble Deep Convolutional Neural Network
Lung computed tomography
Lung cancer
Modified mayfly optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b7a64cad21d46f646caca20b6c5a95f7cdca085bd40eef248b4fc5becc31ca253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2911136927
PQPubID 54626
PageCount 18
ParticipantIDs proquest_journals_2911136927
crossref_citationtrail_10_1007_s11042_023_15688_0
crossref_primary_10_1007_s11042_023_15688_0
springer_journals_10_1007_s11042_023_15688_0
PublicationCentury 2000
PublicationDate 20240100
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR30) 2006; 31
CR16
CR15
CR14
CR12
CR11
Anita, Chaitanyakumar (CR4) 2018; 8
Skourt, El Hassani, Majda (CR26) 2018; 127
Mary, Dharma (CR19) 2017; 49
Xu, Qi, Yue, Teng, Xu, Yao, Qian (CR28) 2019; 18
Abbas, Abdelsamea, Gaber (CR1) 2021; 51
Zhang, Allebach (CR31) 2008; 17
Baek, He, Allen, Buatti, Smith, Tong, Sun, Wu, Diehn, Loo, Plichta (CR6) 2019; 9
Aristophanous, Penney, Martel, Pelizzari (CR5) 2007; 34
Manoharan (CR18) 2020; 2
Chen, Wei, Peng, Sun, Qiao, Liu (CR9) 2019; 7
Onyema, Elhaj, Bashir, Abdullahi, Hauwa, Hayatu, Edeh, Abdullahi (CR23) 2020; 7
Shaheen, Hasanien, El Moursi, El-Fergany (CR25) 2021; 45
Bari, Ahmed, Sabir, Naveed (CR7) 2019; 38
CR8
Akter, Moni, Islam, Quinn, Kamal (CR2) 2021; 51
Mukilan, Rameshbabu, Velumani (CR21) 2021; 42
Sun, Bauer, Beichel (CR27) 2011; 31
CR24
Men, Geng, Biswas, Liao, Xiao (CR20) 2020; 10
CR22
Liu, Li, Yang, Geng (CR17) 2021; 11
Yadav, Jadhav (CR29) 2019; 6
Jia, Xia, Song, Cai, Fulham, Feng (CR13) 2018; 275
Chen, Duan, Wu, Yang (CR10) 2021; 14
Albahli, Nida, Irtaza, Yousaf, Mahmood (CR3) 2020; 8
M Bari (15688_CR7) 2019; 38
15688_CR24
R Anita (15688_CR4) 2018; 8
15688_CR22
MA Shaheen (15688_CR25) 2021; 45
M Xu (15688_CR28) 2019; 18
SS Yadav (15688_CR29) 2019; 6
H Jia (15688_CR13) 2018; 275
O Akter (15688_CR2) 2021; 51
B Zhang (15688_CR31) 2008; 17
PA Yushkevich (15688_CR30) 2006; 31
W Chen (15688_CR9) 2019; 7
X Chen (15688_CR10) 2021; 14
15688_CR16
15688_CR15
X Liu (15688_CR17) 2021; 11
15688_CR14
K Mukilan (15688_CR21) 2021; 42
15688_CR12
15688_CR11
S Albahli (15688_CR3) 2020; 8
15688_CR8
M Aristophanous (15688_CR5) 2007; 34
A Abbas (15688_CR1) 2021; 51
EM Onyema (15688_CR23) 2020; 7
S Baek (15688_CR6) 2019; 9
S Manoharan (15688_CR18) 2020; 2
K Men (15688_CR20) 2020; 10
BA Skourt (15688_CR26) 2018; 127
NAB Mary (15688_CR19) 2017; 49
S Sun (15688_CR27) 2011; 31
References_xml – ident: CR22
– volume: 17
  start-page: 664
  issue: 5
  year: 2008
  end-page: 678
  ident: CR31
  article-title: Adaptive bilateral filter for sharpness enhancement and noise removal
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.919949
– volume: 11
  start-page: 2599
  year: 2021
  ident: CR17
  article-title: Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy
  publication-title: Front Oncol
– volume: 31
  start-page: 449
  issue: 2
  year: 2011
  end-page: 460
  ident: CR27
  article-title: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach
  publication-title: IEEE Trans Med Imaging
– ident: CR14
– ident: CR16
– ident: CR12
– volume: 42
  start-page: 786
  year: 2021
  end-page: 794
  ident: CR21
  article-title: A modified particle swarm optimization for risk assessment and claim management in engineering procurement construction projects
  publication-title: Mater Today: Proc
– volume: 127
  start-page: 109
  year: 2018
  end-page: 113
  ident: CR26
  article-title: Lung CT image segmentation using deep neural networks
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.01.104
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  end-page: 1128
  ident: CR30
  article-title: User-guided 3D active contour segmentation of anatomical structures Significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  ident: CR6
  article-title: Deep segmentation networks predict survival of non-small cell lung cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53461-2
– volume: 38
  start-page: 351
  issue: 2
  year: 2019
  end-page: 360
  ident: CR7
  article-title: Lung cancer detection using digital image processing techniques: A review
  publication-title: Mehran Univ Res J Eng Technol
  doi: 10.22581/muet1982.1902.10
– volume: 51
  start-page: 3391
  issue: 6
  year: 2021
  end-page: 3404
  ident: CR2
  article-title: Lung cancer detection using enhanced segmentation accuracy
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-02046-y
– volume: 275
  start-page: 1358
  year: 2018
  end-page: 1369
  ident: CR13
  article-title: Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.084
– ident: CR8
– volume: 45
  start-page: 18754
  issue: 13
  year: 2021
  end-page: 18769
  ident: CR25
  article-title: Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm
  publication-title: Int J Energy Res
  doi: 10.1002/er.6987
– volume: 10
  start-page: 986
  year: 2020
  ident: CR20
  article-title: Automated quality assurance of OAR contouring for lung cancer based on segmentation with deep active learning
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00986
– volume: 14
  start-page: 396
  issue: 1
  year: 2021
  end-page: 403
  ident: CR10
  article-title: Segmentation of lung computed tomography images based on SegNet in the diagnosis of lung cancer
  publication-title: J Rad Res Appl Sci
– volume: 49
  start-page: 225
  year: 2017
  end-page: 242
  ident: CR19
  article-title: Coral reef image classification employing improved ldp for feature extraction
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.09.008
– ident: CR15
– volume: 2
  start-page: 201
  issue: 04
  year: 2020
  end-page: 206
  ident: CR18
  article-title: Improved version of Graph-cut algorithm for CT images of lung cancer with clinical property condition
  publication-title: J Artif Intell
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 18
  ident: CR29
  article-title: Deep convolutional neural network based medical image classification for disease diagnosis
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0276-2
– volume: 8
  start-page: 7
  issue: 1
  year: 2018
  end-page: 16
  ident: CR4
  article-title: An efficient artificial bee colony algorithm for optimising the design of rectangular microstrip patch antenna
  publication-title: Int J Mobile Network Des Innov
  doi: 10.1504/IJMNDI.2018.090153
– ident: CR11
– volume: 7
  start-page: 75591
  year: 2019
  end-page: 75603
  ident: CR9
  article-title: HSN: hybrid segmentation network for small cell lung cancer segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921434
– volume: 8
  start-page: 198403
  year: 2020
  end-page: 198414
  ident: CR3
  article-title: Melanoma lesion detection and segmentation using YOLOv4-DarkNet and active contour
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035345
– volume: 7
  start-page: 91
  issue: 1
  year: 2020
  end-page: 102
  ident: CR23
  article-title: Evaluation of the performance of K-nearest neighbor algorithm in determining student learning styles
  publication-title: Int J Innov Sci Eng Techn
– volume: 34
  start-page: 4223
  issue: 11
  year: 2007
  end-page: 4235
  ident: CR5
  article-title: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography
  publication-title: Med Phys
  doi: 10.1118/1.2791035
– volume: 18
  start-page: 1
  issue: 1
  year: 2019
  end-page: 21
  ident: CR28
  article-title: Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-018-0619-9
– ident: CR24
– volume: 51
  start-page: 854
  issue: 2
  year: 2021
  end-page: 864
  ident: CR1
  article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01829-7
– ident: 15688_CR16
  doi: 10.1109/JBHI.2020.3039741
– volume: 127
  start-page: 109
  year: 2018
  ident: 15688_CR26
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.01.104
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 15688_CR30
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: 15688_CR8
– volume: 10
  start-page: 986
  year: 2020
  ident: 15688_CR20
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00986
– ident: 15688_CR24
  doi: 10.1155/2021/5196000
– ident: 15688_CR15
– volume: 7
  start-page: 91
  issue: 1
  year: 2020
  ident: 15688_CR23
  publication-title: Int J Innov Sci Eng Techn
– volume: 17
  start-page: 664
  issue: 5
  year: 2008
  ident: 15688_CR31
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.919949
– volume: 49
  start-page: 225
  year: 2017
  ident: 15688_CR19
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.09.008
– volume: 8
  start-page: 7
  issue: 1
  year: 2018
  ident: 15688_CR4
  publication-title: Int J Mobile Network Des Innov
  doi: 10.1504/IJMNDI.2018.090153
– volume: 45
  start-page: 18754
  issue: 13
  year: 2021
  ident: 15688_CR25
  publication-title: Int J Energy Res
  doi: 10.1002/er.6987
– ident: 15688_CR11
  doi: 10.1007/978-3-319-91008-6_63
– ident: 15688_CR12
  doi: 10.1007/978-3-319-91008-6_63
– volume: 34
  start-page: 4223
  issue: 11
  year: 2007
  ident: 15688_CR5
  publication-title: Med Phys
  doi: 10.1118/1.2791035
– volume: 11
  start-page: 2599
  year: 2021
  ident: 15688_CR17
  publication-title: Front Oncol
– volume: 42
  start-page: 786
  year: 2021
  ident: 15688_CR21
  publication-title: Mater Today: Proc
– volume: 7
  start-page: 75591
  year: 2019
  ident: 15688_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921434
– volume: 14
  start-page: 396
  issue: 1
  year: 2021
  ident: 15688_CR10
  publication-title: J Rad Res Appl Sci
– ident: 15688_CR22
  doi: 10.1016/j.imu.2021.100681
– volume: 18
  start-page: 1
  issue: 1
  year: 2019
  ident: 15688_CR28
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-018-0619-9
– volume: 8
  start-page: 198403
  year: 2020
  ident: 15688_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035345
– volume: 2
  start-page: 201
  issue: 04
  year: 2020
  ident: 15688_CR18
  publication-title: J Artif Intell
– volume: 51
  start-page: 3391
  issue: 6
  year: 2021
  ident: 15688_CR2
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-02046-y
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 15688_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53461-2
– volume: 51
  start-page: 854
  issue: 2
  year: 2021
  ident: 15688_CR1
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01829-7
– volume: 31
  start-page: 449
  issue: 2
  year: 2011
  ident: 15688_CR27
  publication-title: IEEE Trans Med Imaging
– volume: 38
  start-page: 351
  issue: 2
  year: 2019
  ident: 15688_CR7
  publication-title: Mehran Univ Res J Eng Technol
  doi: 10.22581/muet1982.1902.10
– volume: 275
  start-page: 1358
  year: 2018
  ident: 15688_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.084
– ident: 15688_CR14
  doi: 10.1007/978-3-030-62469-9_4
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 15688_CR29
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0276-2
SSID ssj0016524
Score 2.3858814
Snippet The development of a computer-aided detection system is a critical component of clinical decision-making As the death rate grows, cancer has become a major...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3567
SubjectTerms Algorithms
Artificial neural networks
Computed tomography
Computer Communication Networks
Computer Science
Critical components
Data Structures and Information Theory
Image contrast
Image enhancement
Image quality
Image segmentation
Lung cancer
Lung diseases
Medical imaging
Model accuracy
Multimedia Information Systems
Optimization
Particle swarm optimization
Radiation therapy
Special Purpose and Application-Based Systems
Tumors
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6K85IENLBIncZIJoQrEAIgBEFvk-FEqNWlpCqj_nnPqUECChdmOZemeOd93H8BRpDkGFWP7cFhAQyUjmmMcpSjsJI5zxeJ6gOnjdXx7mzw9pXeu4Fa5tsrGJ9aOWg2krZGfMmuVAU9ZfDZ8oZY1yr6uOgqNeViwmY1t6bvxOp-vCDxypLaJRzEy-g40M4XO-RaYghGL4h8Maov3PTDNss0fD6R13Llc_e-N12DFZZzkfKoi6zCnyw1YbdgciDPuDVj-MppwEybX6AWItDoxIpXuFg6jVBILSCGde1LhIukV6I8qYrvnu6QYqJ7BlJYUYmL6EzJAd1Q4nCcRpSJDp6ekehej4sd6v4uXHz8XW_BweXHfuaKOpoFKtN8xzWPBQykU81XIDQ-5FFIwL-cyEmlkYqmkwMQuV6GntWFhkodGRlZ3Ah83RsE2tMpBqXeAWAZJ7jFtjEjDQJrEImE1ZiyJSE3kyzb4jYwy6WaYWyqNfjabvmzlmqFcs1qumdeG489vhtMJHn_u3m-EmTlrrrKZJNtw0qjDbPn303b_Pm0PlhjmSNOKzj60xqNXfQCL8m3cq0aHtS5_AO_J-s8
  priority: 102
  providerName: ProQuest
Title Lung cancer segmentation from CT scan images using modified mayfly optimization and particle swarm optimization algorithm
URI https://link.springer.com/article/10.1007/s11042-023-15688-0
https://www.proquest.com/docview/2911136927
Volume 83
WOSCitedRecordID wos000992151600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH-CjQMc2AdMK9sqH7iBpcSJ7eQI1aZJ20q1jTG4RI5jd5WadEoKqP_9nlNnZRMgwcVSZMeK_D5-z7F_7wG85UYgqFh3D4dFNC40pzniKEVhJ1LmBZNtAtOrUzkcJtfX6ciTwprutnt3JNl66hXZLXRUEsQYinsOlC9u1NcR7hJXsOH84ur-7EBwX8o2CSjiYeipMr-f4yEcrWLMR8eiLdocbfzfd27CSx9dkg9LddiCJ6baho2ucgPxhrwNL35JQ_gKFqdo8UQ7-dekMePS85Eq4sgnZHBJGuwkkxJ9T0PcTfkxKWfFxGL4Skq1sNMFmaHrKT2nk6iqILdeJ0nzU9Xlo_7peFZP5jfla_h8dHg5OKa-JAPVaKtzmkslYq0KFhaxsCIWWmnFglxorlJupS60wiAuL-LAGMviJI-t5k5PohAH8mgH1qpZZXaBuGqRImDGWpXGkbaJY70ajE4SlVoe6h6EnWQy7fOVu7IZ02yVadmtdIYrnbUrnQU9eHf_zu0yW8dfR-93As-85TYZc94_EimTPXjfCXjV_efZ3vzb8D14zjA-Wv7N2Ye1ef3dHMAz_WM-aeo-PJVfvvZh_ePhcHSOTyeSYnsWDFzLPmE74t_6rd7fARIE9y0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41DSTgwGCAKAzwAU5gkTiOnRwQQoNpU0vFoaDdguOPUqlJS1OY-qf4jbxOnBUmsdsOnO1Yiv28H_543gfgeWoFBhXn3-GwhHKjU1piHKW42JmUpWGyLWD6ZSTH4-z0NP-0A796Lox_Vtn7xNZRm4X2Z-SvmbfKRORMvl1-p141yt-u9hIaHSyGdnOGW7bmzcl7XN8XjB19mBwe06AqQDXCbU1LqQTXyrDYcOEEF1ppxaJS6FTlqZPaaIV5SGl4ZK1jPCu506n_1STGjl4lAl3-NZ5k0tvVUNLzWwuRBhHdLKIYieNA0umoerEnwmCEpLhjQnRGfwfCbXZ74UK2jXNHe__bDN2B2yGjJu86E7gLO7beh71erYIE57UPt_4ovXgPNiP0ckR7zK9IY6dV4GDVxBNuyOGENNhIZhX624Z4dsCUVAszc5iyk0pt3HxDFuhuq8BjJao2ZBnskDRnalVdaJ9PcbLW36r78PlKpuMB7NaL2j4E4hUyRcSscyrniXaZZ_pazMgylbs01gOIe0wUOtRo91Ih82JbXdrjqEAcFS2OimgAL8-_WXYVSi7tfdCDpwjeqim2yBnAqx5-2-Z_j_bo8tGewY3jycdRMToZDx_DTYb5YHd6dQC769UP-wSu65_rWbN62toRga9XDcvfD0hcIQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBkJw2GAw0THgHeAEFombOMkBIbRRMa2qehho4hIcf5RKTVqawtR_jb-O58RZYRK77cDZjqXYv_dlv997AC9iI8ioWJeHw_ss0ipmBdlRRoedJkmhedIUMP08TEaj9Pw8G2_Br44L49IqO53YKGo9V-6O_A13UtkXGYXq1qdFjI8H7xbfmesg5V5au3YaLUROzfqCwrf67ckxnfVLzgcfzo4-Mt9hgCmC3ooViRSRkpqHOhJWREJJJXlQCBXLLLaJ0kqST1LoKDDG8igtIqti99v9kCa6jhGk_m8lFGO6dMJx_OXyBUPEvqFuGjCyyqEn7LS0vdCRYshaMoqeCKnB30Zx4-leeZxtbN5g93_erfuw4z1tfN-KxgPYMtUe7HZdLNArtT2490dJxoewHpL2Q-VkYYm1mZSem1WhI-Lg0RnWNIjTkvRwjY41MMFyrqeWXHks5drO1jgnNVx6fivKSuPCyyfWF3JZXhmfTWizVt_KR_DpRrZjH7areWUeA7rOmSLgxlqZRX1lU8cANuSppTKzcah6EHb4yJWv3e5aiMzyTdVph6mcMJU3mMqDHry6_GbRVi65dvZhB6Tca7E636CoB687KG6G_73awfWrPYc7hMZ8eDI6fQJ3ObmJ7aXWIWyvlj_MU7itfq6m9fJZI1IIX28alb8BkLNlRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+cancer+segmentation+from+CT+scan+images+using+modified+mayfly+optimization+and+particle+swarm+optimization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Poonkodi%2C+S.&rft.au=Kanchana%2C+M.&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=2&rft.spage=3567&rft.epage=3584&rft_id=info:doi/10.1007%2Fs11042-023-15688-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15688_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon