Fast and Orthogonal Locality Preserving Projections for Dimensionality Reduction
The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 26; číslo 10; s. 5019 - 5030 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.10.2017
|
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm. The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm. |
| Author | Feiping Nie Xiaojun Yang Richang Hong Xiaojun Chang Rong Wang Weizhong Yu |
| Author_xml | – sequence: 1 givenname: Rong orcidid: 0000-0001-9240-6726 surname: Wang fullname: Wang, Rong – sequence: 2 givenname: Feiping surname: Nie fullname: Nie, Feiping – sequence: 3 givenname: Richang surname: Hong fullname: Hong, Richang – sequence: 4 givenname: Xiaojun orcidid: 0000-0002-7778-8807 surname: Chang fullname: Chang, Xiaojun – sequence: 5 givenname: Xiaojun surname: Yang fullname: Yang, Xiaojun – sequence: 6 givenname: Weizhong surname: Yu fullname: Yu, Weizhong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28708560$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1Lw0AQhhepWK3eBUFy9JI6s0k2m6PUTyi0iJ7DZjPRLUlWdxPBf29iqwcPnuaFed4ZeI7YpLUtMXaKMEeE7PLpYT3ngOmcp1yglHvsELMYQ4CYT4YMSRqmGGdTduT9BgDjBMUBm3KZgkwEHLL1rfJdoNoyWLnu1b7YVtXB0mpVm-4zWDvy5D5M-zJEuyHdGdv6oLIuuDYNtd6M_Eg-Utl_b4_ZfqVqTye7OWPPtzdPi_twubp7WFwtQx1h1oVFKoG0lloSj0VEMRVFIrmsIhIqTnhRCI66zLiONHBJslIUcUp4VVGJmEUzdrG9--bse0--yxvjNdW1asn2PseMAwcAjgN6vkP7oqEyf3OmUe4z_7EwALAFtLPeO6p-EYR8FJ0PovNRdL4TPVTEn4o2nRoFdE6Z-r_i2bZoiOj3T5qlIpIi-gJRoIsa |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2019_04_011 crossref_primary_10_1007_s11063_020_10329_1 crossref_primary_10_1109_JSTSP_2018_2873985 crossref_primary_10_1007_s12652_022_03887_w crossref_primary_10_1109_TIP_2018_2806229 crossref_primary_10_1016_j_eswa_2019_113079 crossref_primary_10_1109_TNNLS_2018_2850823 crossref_primary_10_1016_j_neucom_2021_12_065 crossref_primary_10_1109_ACCESS_2019_2932972 crossref_primary_10_1109_TNNLS_2018_2830700 crossref_primary_10_1016_j_patrec_2018_11_016 crossref_primary_10_1109_TMM_2018_2834867 crossref_primary_10_1109_TGRS_2020_2963848 crossref_primary_10_1016_j_neucom_2019_07_020 crossref_primary_10_1109_JSEN_2025_3550608 crossref_primary_10_1049_ell2_13293 crossref_primary_10_1109_ACCESS_2018_2885131 crossref_primary_10_1109_TNNLS_2019_2904701 crossref_primary_10_1109_TGRS_2019_2913004 crossref_primary_10_1109_TII_2023_3257311 crossref_primary_10_1016_j_neucom_2019_06_073 crossref_primary_10_1016_j_neucom_2018_03_076 crossref_primary_10_1109_LGRS_2022_3153041 crossref_primary_10_1109_TPAMI_2024_3518595 crossref_primary_10_1016_j_asoc_2019_105768 crossref_primary_10_1007_s11042_017_5582_0 crossref_primary_10_1016_j_neucom_2018_03_028 crossref_primary_10_1016_j_knosys_2019_01_022 crossref_primary_10_1111_jfs_13112 crossref_primary_10_1007_s11042_017_5022_1 crossref_primary_10_1109_TAI_2022_3194869 crossref_primary_10_1145_3708498 crossref_primary_10_1109_TGRS_2021_3133957 crossref_primary_10_1016_j_ins_2021_07_088 crossref_primary_10_1109_JSTARS_2019_2947355 crossref_primary_10_1371_journal_pone_0204096 crossref_primary_10_1016_j_neucom_2018_05_078 crossref_primary_10_1002_cjce_24045 crossref_primary_10_1007_s10489_022_04125_8 crossref_primary_10_1016_j_neucom_2018_05_073 crossref_primary_10_1109_ACCESS_2024_3455369 crossref_primary_10_1049_joe_2019_1172 crossref_primary_10_1109_TNNLS_2018_2818444 crossref_primary_10_1049_joe_2019_1171 crossref_primary_10_1109_ACCESS_2018_2863943 crossref_primary_10_3390_atmos13091449 crossref_primary_10_1016_j_asoc_2025_112721 crossref_primary_10_1016_j_biosystemseng_2018_05_011 crossref_primary_10_1145_3369870 crossref_primary_10_1016_j_neunet_2022_10_024 crossref_primary_10_1016_j_patcog_2020_107357 crossref_primary_10_1016_j_jvcir_2021_103366 crossref_primary_10_1109_TPAMI_2019_2961877 crossref_primary_10_1016_j_ins_2024_121444 crossref_primary_10_1007_s11063_018_9886_5 crossref_primary_10_1007_s11063_020_10251_6 crossref_primary_10_1016_j_neunet_2020_05_023 crossref_primary_10_1016_j_compeleceng_2023_109020 crossref_primary_10_1109_TCYB_2022_3185588 crossref_primary_10_1007_s11042_019_7579_3 crossref_primary_10_1109_TNNLS_2024_3453374 crossref_primary_10_3390_rs16163081 crossref_primary_10_1109_JSTARS_2018_2830103 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1016_j_conengprac_2023_105476 crossref_primary_10_1016_j_neucom_2019_12_130 crossref_primary_10_1016_j_neucom_2021_06_035 crossref_primary_10_1007_s11227_023_05354_5 crossref_primary_10_1016_j_asoc_2021_107907 crossref_primary_10_1109_ACCESS_2020_2965285 crossref_primary_10_1155_2018_6791683 crossref_primary_10_1088_1742_6596_2467_1_012017 crossref_primary_10_1109_JSTARS_2020_3011431 crossref_primary_10_1088_1361_6501_acdaeb crossref_primary_10_1007_s10489_022_03534_z crossref_primary_10_1109_ACCESS_2019_2963565 crossref_primary_10_1109_TR_2021_3139539 crossref_primary_10_1016_j_ins_2024_120447 crossref_primary_10_1109_ACCESS_2020_2972132 crossref_primary_10_1109_TBDATA_2023_3319249 crossref_primary_10_3390_electronics8050503 crossref_primary_10_1007_s11042_020_09782_w crossref_primary_10_1016_j_patcog_2020_107450 crossref_primary_10_1007_s00521_020_04924_5 crossref_primary_10_3390_rs16214097 crossref_primary_10_1109_TCYB_2019_2910751 crossref_primary_10_1016_j_neunet_2024_106748 crossref_primary_10_1007_s11042_019_7518_3 crossref_primary_10_1016_j_patrec_2018_06_024 crossref_primary_10_1109_TKDE_2019_2911946 crossref_primary_10_1186_s12882_021_02421_y crossref_primary_10_1109_JSTSP_2018_2877474 crossref_primary_10_1109_TGRS_2019_2947200 crossref_primary_10_1016_j_neucom_2018_05_036 crossref_primary_10_3390_bdcc6040128 crossref_primary_10_1016_j_engappai_2020_103758 crossref_primary_10_1109_TNNLS_2021_3111714 crossref_primary_10_1007_s40314_023_02221_0 crossref_primary_10_1016_j_neunet_2025_107843 crossref_primary_10_1109_TNNLS_2022_3214610 crossref_primary_10_1007_s11042_019_07749_0 crossref_primary_10_1007_s11042_018_6808_5 crossref_primary_10_1109_ACCESS_2018_2854232 crossref_primary_10_1109_ACCESS_2018_2858274 crossref_primary_10_1109_TNNLS_2019_2946329 crossref_primary_10_3233_JIFS_191752 crossref_primary_10_1016_j_patrec_2019_01_013 crossref_primary_10_3390_app9102161 crossref_primary_10_1016_j_aei_2020_101172 crossref_primary_10_1109_TMM_2023_3279988 crossref_primary_10_1109_TKDE_2019_2901853 crossref_primary_10_1007_s11063_018_9842_4 crossref_primary_10_1109_ACCESS_2018_2884027 crossref_primary_10_1109_TIP_2018_2869691 crossref_primary_10_3390_s20041065 crossref_primary_10_1109_TIP_2018_2836312 crossref_primary_10_1007_s10489_023_05012_6 crossref_primary_10_1016_j_inffus_2020_08_023 |
| Cites_doi | 10.1162/089976603321780317 10.1109/TIP.2013.2253480 10.1109/TNN.2009.2015760 10.1117/1.3067869 10.1109/CVPR.1991.139758 10.1109/TMM.2016.2626959 10.1016/j.neucom.2015.06.011 10.1109/TMM.2014.2298841 10.1109/JSTARS.2014.2328601 10.1109/TIP.2006.881945 10.1109/TPAMI.2007.1131 10.1109/TMM.2015.2508146 10.1109/TIP.2013.2249077 10.1109/TPAMI.2007.250598 10.1109/TIP.2016.2593344 10.1109/34.9121 10.1145/2910585 10.1109/TNNLS.2015.2441735 10.1109/TNN.2011.2162000 10.1016/j.isprsjprs.2015.04.015 10.1109/TIP.2013.2297020 10.1109/LGRS.2013.2255097 10.1109/34.598228 10.1109/TIP.2014.2348868 10.1109/TCYB.2016.2519448 10.1016/j.patcog.2009.04.001 10.1126/science.290.5500.2319 10.1109/TNNLS.2011.2178037 10.1109/TPAMI.2005.55 10.1109/TIP.2012.2202678 10.1126/science.290.5500.2323 10.1109/TCYB.2014.2341575 10.1109/ICCV.2013.323 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TIP.2017.2726188 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 5030 |
| ExternalDocumentID | 28708560 10_1109_TIP_2017_2726188 7976386 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: China Post-doctoral Science Foundation grantid: 2014M562636 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61401471 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c319t-b780ecc8c8e2463e4ebb5828f3e6a452bb621cd92c3c028e8fae32e52ffed1193 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406993600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Oct 02 05:38:18 EDT 2025 Thu Apr 03 07:08:32 EDT 2025 Sat Nov 29 03:21:06 EST 2025 Tue Nov 18 21:25:32 EST 2025 Tue Aug 26 17:01:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b780ecc8c8e2463e4ebb5828f3e6a452bb621cd92c3c028e8fae32e52ffed1193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9240-6726 0000-0002-7778-8807 |
| PMID | 28708560 |
| PQID | 1920200021 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TIP_2017_2726188 ieee_primary_7976386 pubmed_primary_28708560 crossref_citationtrail_10_1109_TIP_2017_2726188 proquest_miscellaneous_1920200021 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Oct. 2017-10-00 2017-Oct 20171001 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref38 ref18 he (ref24) 2003; 16 belkin (ref17) 2001; 14 cai (ref26) 2007 he (ref25) 2005 nie (ref33) 2011; 22 yan (ref19) 2005 ref23 ref20 jolliffe (ref13) 2002 ref22 ref21 roweis (ref16) 2000; 290 jia (ref31) 2009; 20 ref28 he (ref35) 2005; 27 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1162/089976603321780317 – ident: ref1 doi: 10.1109/TIP.2013.2253480 – volume: 20 start-page: 729 year: 2009 ident: ref31 article-title: Trace ratio problem revisited publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2015760 – ident: ref30 doi: 10.1117/1.3067869 – ident: ref34 doi: 10.1109/CVPR.1991.139758 – ident: ref4 doi: 10.1109/TMM.2016.2626959 – start-page: 528 year: 2007 ident: ref26 article-title: Isometric projection publication-title: Proc Assoc Adv Artif Intell – ident: ref10 doi: 10.1016/j.neucom.2015.06.011 – ident: ref22 doi: 10.1109/TMM.2014.2298841 – ident: ref39 doi: 10.1109/JSTARS.2014.2328601 – ident: ref28 doi: 10.1109/TIP.2006.881945 – ident: ref27 doi: 10.1109/TPAMI.2007.1131 – ident: ref23 doi: 10.1109/TMM.2015.2508146 – volume: 14 start-page: 585 year: 2001 ident: ref17 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in neural information processing systems – ident: ref7 doi: 10.1109/TIP.2013.2249077 – ident: ref20 doi: 10.1109/TPAMI.2007.250598 – start-page: 830 year: 2005 ident: ref19 article-title: Graph embedding: A general framework for dimensionality reduction publication-title: Proc Int Conf Comput Vis Pattern Recognit – ident: ref3 doi: 10.1109/TIP.2016.2593344 – ident: ref29 doi: 10.1109/34.9121 – volume: 16 start-page: 153 year: 2003 ident: ref24 article-title: Locality preserving projections publication-title: Advances in neural information processing systems – ident: ref11 doi: 10.1145/2910585 – year: 2002 ident: ref13 publication-title: Principal Component Analysis – ident: ref12 doi: 10.1109/TNNLS.2015.2441735 – volume: 22 start-page: 1796 year: 2011 ident: ref33 article-title: Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2162000 – ident: ref38 doi: 10.1016/j.isprsjprs.2015.04.015 – ident: ref8 doi: 10.1109/TIP.2013.2297020 – ident: ref37 doi: 10.1109/LGRS.2013.2255097 – ident: ref14 doi: 10.1109/34.598228 – start-page: 1208 year: 2005 ident: ref25 article-title: Neighborhood preserving embedding publication-title: Proc IEEE Int Conf Comput Vis – ident: ref36 doi: 10.1109/TIP.2014.2348868 – ident: ref5 doi: 10.1109/TCYB.2016.2519448 – ident: ref32 doi: 10.1016/j.patcog.2009.04.001 – ident: ref15 doi: 10.1126/science.290.5500.2319 – ident: ref6 doi: 10.1109/TNNLS.2011.2178037 – volume: 27 start-page: 328 year: 2005 ident: ref35 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.55 – ident: ref2 doi: 10.1109/TIP.2012.2202678 – volume: 290 start-page: 2323 year: 2000 ident: ref16 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: ref9 doi: 10.1109/TCYB.2014.2341575 – ident: ref21 doi: 10.1109/ICCV.2013.323 |
| SSID | ssj0014516 |
| Score | 2.5768585 |
| Snippet | The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5019 |
| SubjectTerms | Algorithm design and analysis Dimensionality reduction (DR) Eigenvalues and eigenfunctions Face recognition hyperspectral image (HSI) classification Laplace equations locality preserving projections (LPP) Manifolds Optimization Training data |
| Title | Fast and Orthogonal Locality Preserving Projections for Dimensionality Reduction |
| URI | https://ieeexplore.ieee.org/document/7976386 https://www.ncbi.nlm.nih.gov/pubmed/28708560 https://www.proquest.com/docview/1920200021 |
| Volume | 26 |
| WOSCitedRecordID | wos000406993600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLa2iQd4YGPjx8GYgsQLEt310rRJHhHbCaRpnNCQ7q1KUmdDQj101-Pvx057hQdA4q1Snbbq58SfY8cGeI3KRGIJDTk5TmUqukDrYLRZVFK5yjbe-lTE9UpfX5vl0i724O14FgYRU_IZnvNliuU3q7DlrbKpJttZmGof9rWu-rNaY8SAG86myGapM020fxeSzO305uOCc7j0udTkLxhu0cfhPVOmupS_rFFqr_J3ppkszvzw_771CB4OzFK861XhEexhewyHA8sUwxzeHMOD30oQnsBi7jadcG0jPq27u9UtE3NxxQaO6LngBA1eTNpbukxbNqylgoiuuOC2AH1JD5b8zCVg-e5j-DK_vHn_IRu6LGSBpl-XeW1ywtEEg1JVBSr0nmNpscDKqVJ6X8lZaKwMRSAygiY6LCSWMkZsZsT_nsBBu2rxGQjpCuujYbfXK20rFjYF5qWZ6agKP4Hp7m_XYShBzp0wvtXJFcltTVDVDFU9QDWBN-OI7335jX_InjAMo9yAwARe7QCtaepwPMS1uNpuaiK3OZ9UkrMJPO2RHgfvFOT5nx_6Au7zq_usvlM46NZbfAn3wo_u62Z9Rvq5NGdJP38CVA_fyw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQR7YF-MlY9hJF6QyJo6Tmw_TkC1ia5UqEh7i2znPCahFLXp_v75nDTjAZB4i5RzZOV39v3Od74DeIdC-cASquDkGJEIb1zYB71OvODCFLqy2sYirhM5naqrKz3bgg_9XRhEjMlneEqPMZZfLdyajsqGMtjOTBUP4CF1zupua_UxA2o5G2ObuUxkIP6boGSqh_OLGWVxyVMug8egqEkfBfhUHitT3tuj2GDl71wz2pzx7v_Ndg-edtySnbXKsA9bWB_AbsczWbeKVwew81sRwkOYjc2qYaau2Ndl82NxTdScTcjEBYLOKEWDtpP6OjzGQxvSUxaoLvtEjQHaoh4k-Y2KwNLbZ_B9_Hn-8Tzp-iwkLizAJrFSpQFJ5RRyUWQo0FqKpvkMCyNybm3BR67S3GUu0BFU3mDGMefeYzUKDPAItutFjcfAuMm09YocXyukLkhYZZjmaiS9yOwAhpu_XbquCDn1wvhZRmck1WWAqiSoyg6qAbzvR_xqC3D8Q_aQYOjlOgQG8HYDaBkWD0VETI2L9aoM9Dalu0p8NIDnLdL94I2CvPjzR9_A4_P55aScXEy_vIQnNI02x-8VbDfLNb6GR-62uVktT6KW3gHeNeIs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Orthogonal+Locality+Preserving+Projections+for+Dimensionality+Reduction&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Rong&rft.au=Nie%2C+Feiping&rft.au=Hong%2C+Richang&rft.au=Chang%2C+Xiaojun&rft.date=2017-10-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=26&rft.issue=10&rft.spage=5019&rft.epage=5030&rft_id=info:doi/10.1109%2FTIP.2017.2726188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2726188 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |