Fast and Orthogonal Locality Preserving Projections for Dimensionality Reduction

The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 26; číslo 10; s. 5019 - 5030
Hlavní autoři: Wang, Rong, Nie, Feiping, Hong, Richang, Chang, Xiaojun, Yang, Xiaojun, Yu, Weizhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2017
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.
AbstractList The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.
The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.
Author Feiping Nie
Xiaojun Yang
Richang Hong
Xiaojun Chang
Rong Wang
Weizhong Yu
Author_xml – sequence: 1
  givenname: Rong
  orcidid: 0000-0001-9240-6726
  surname: Wang
  fullname: Wang, Rong
– sequence: 2
  givenname: Feiping
  surname: Nie
  fullname: Nie, Feiping
– sequence: 3
  givenname: Richang
  surname: Hong
  fullname: Hong, Richang
– sequence: 4
  givenname: Xiaojun
  orcidid: 0000-0002-7778-8807
  surname: Chang
  fullname: Chang, Xiaojun
– sequence: 5
  givenname: Xiaojun
  surname: Yang
  fullname: Yang, Xiaojun
– sequence: 6
  givenname: Weizhong
  surname: Yu
  fullname: Yu, Weizhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28708560$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhepWK3eBUFy9JI6s0k2m6PUTyi0iJ7DZjPRLUlWdxPBf29iqwcPnuaFed4ZeI7YpLUtMXaKMEeE7PLpYT3ngOmcp1yglHvsELMYQ4CYT4YMSRqmGGdTduT9BgDjBMUBm3KZgkwEHLL1rfJdoNoyWLnu1b7YVtXB0mpVm-4zWDvy5D5M-zJEuyHdGdv6oLIuuDYNtd6M_Eg-Utl_b4_ZfqVqTye7OWPPtzdPi_twubp7WFwtQx1h1oVFKoG0lloSj0VEMRVFIrmsIhIqTnhRCI66zLiONHBJslIUcUp4VVGJmEUzdrG9--bse0--yxvjNdW1asn2PseMAwcAjgN6vkP7oqEyf3OmUe4z_7EwALAFtLPeO6p-EYR8FJ0PovNRdL4TPVTEn4o2nRoFdE6Z-r_i2bZoiOj3T5qlIpIi-gJRoIsa
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2019_04_011
crossref_primary_10_1007_s11063_020_10329_1
crossref_primary_10_1109_JSTSP_2018_2873985
crossref_primary_10_1007_s12652_022_03887_w
crossref_primary_10_1109_TIP_2018_2806229
crossref_primary_10_1016_j_eswa_2019_113079
crossref_primary_10_1109_TNNLS_2018_2850823
crossref_primary_10_1016_j_neucom_2021_12_065
crossref_primary_10_1109_ACCESS_2019_2932972
crossref_primary_10_1109_TNNLS_2018_2830700
crossref_primary_10_1016_j_patrec_2018_11_016
crossref_primary_10_1109_TMM_2018_2834867
crossref_primary_10_1109_TGRS_2020_2963848
crossref_primary_10_1016_j_neucom_2019_07_020
crossref_primary_10_1109_JSEN_2025_3550608
crossref_primary_10_1049_ell2_13293
crossref_primary_10_1109_ACCESS_2018_2885131
crossref_primary_10_1109_TNNLS_2019_2904701
crossref_primary_10_1109_TGRS_2019_2913004
crossref_primary_10_1109_TII_2023_3257311
crossref_primary_10_1016_j_neucom_2019_06_073
crossref_primary_10_1016_j_neucom_2018_03_076
crossref_primary_10_1109_LGRS_2022_3153041
crossref_primary_10_1109_TPAMI_2024_3518595
crossref_primary_10_1016_j_asoc_2019_105768
crossref_primary_10_1007_s11042_017_5582_0
crossref_primary_10_1016_j_neucom_2018_03_028
crossref_primary_10_1016_j_knosys_2019_01_022
crossref_primary_10_1111_jfs_13112
crossref_primary_10_1007_s11042_017_5022_1
crossref_primary_10_1109_TAI_2022_3194869
crossref_primary_10_1145_3708498
crossref_primary_10_1109_TGRS_2021_3133957
crossref_primary_10_1016_j_ins_2021_07_088
crossref_primary_10_1109_JSTARS_2019_2947355
crossref_primary_10_1371_journal_pone_0204096
crossref_primary_10_1016_j_neucom_2018_05_078
crossref_primary_10_1002_cjce_24045
crossref_primary_10_1007_s10489_022_04125_8
crossref_primary_10_1016_j_neucom_2018_05_073
crossref_primary_10_1109_ACCESS_2024_3455369
crossref_primary_10_1049_joe_2019_1172
crossref_primary_10_1109_TNNLS_2018_2818444
crossref_primary_10_1049_joe_2019_1171
crossref_primary_10_1109_ACCESS_2018_2863943
crossref_primary_10_3390_atmos13091449
crossref_primary_10_1016_j_asoc_2025_112721
crossref_primary_10_1016_j_biosystemseng_2018_05_011
crossref_primary_10_1145_3369870
crossref_primary_10_1016_j_neunet_2022_10_024
crossref_primary_10_1016_j_patcog_2020_107357
crossref_primary_10_1016_j_jvcir_2021_103366
crossref_primary_10_1109_TPAMI_2019_2961877
crossref_primary_10_1016_j_ins_2024_121444
crossref_primary_10_1007_s11063_018_9886_5
crossref_primary_10_1007_s11063_020_10251_6
crossref_primary_10_1016_j_neunet_2020_05_023
crossref_primary_10_1016_j_compeleceng_2023_109020
crossref_primary_10_1109_TCYB_2022_3185588
crossref_primary_10_1007_s11042_019_7579_3
crossref_primary_10_1109_TNNLS_2024_3453374
crossref_primary_10_3390_rs16163081
crossref_primary_10_1109_JSTARS_2018_2830103
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1016_j_conengprac_2023_105476
crossref_primary_10_1016_j_neucom_2019_12_130
crossref_primary_10_1016_j_neucom_2021_06_035
crossref_primary_10_1007_s11227_023_05354_5
crossref_primary_10_1016_j_asoc_2021_107907
crossref_primary_10_1109_ACCESS_2020_2965285
crossref_primary_10_1155_2018_6791683
crossref_primary_10_1088_1742_6596_2467_1_012017
crossref_primary_10_1109_JSTARS_2020_3011431
crossref_primary_10_1088_1361_6501_acdaeb
crossref_primary_10_1007_s10489_022_03534_z
crossref_primary_10_1109_ACCESS_2019_2963565
crossref_primary_10_1109_TR_2021_3139539
crossref_primary_10_1016_j_ins_2024_120447
crossref_primary_10_1109_ACCESS_2020_2972132
crossref_primary_10_1109_TBDATA_2023_3319249
crossref_primary_10_3390_electronics8050503
crossref_primary_10_1007_s11042_020_09782_w
crossref_primary_10_1016_j_patcog_2020_107450
crossref_primary_10_1007_s00521_020_04924_5
crossref_primary_10_3390_rs16214097
crossref_primary_10_1109_TCYB_2019_2910751
crossref_primary_10_1016_j_neunet_2024_106748
crossref_primary_10_1007_s11042_019_7518_3
crossref_primary_10_1016_j_patrec_2018_06_024
crossref_primary_10_1109_TKDE_2019_2911946
crossref_primary_10_1186_s12882_021_02421_y
crossref_primary_10_1109_JSTSP_2018_2877474
crossref_primary_10_1109_TGRS_2019_2947200
crossref_primary_10_1016_j_neucom_2018_05_036
crossref_primary_10_3390_bdcc6040128
crossref_primary_10_1016_j_engappai_2020_103758
crossref_primary_10_1109_TNNLS_2021_3111714
crossref_primary_10_1007_s40314_023_02221_0
crossref_primary_10_1016_j_neunet_2025_107843
crossref_primary_10_1109_TNNLS_2022_3214610
crossref_primary_10_1007_s11042_019_07749_0
crossref_primary_10_1007_s11042_018_6808_5
crossref_primary_10_1109_ACCESS_2018_2854232
crossref_primary_10_1109_ACCESS_2018_2858274
crossref_primary_10_1109_TNNLS_2019_2946329
crossref_primary_10_3233_JIFS_191752
crossref_primary_10_1016_j_patrec_2019_01_013
crossref_primary_10_3390_app9102161
crossref_primary_10_1016_j_aei_2020_101172
crossref_primary_10_1109_TMM_2023_3279988
crossref_primary_10_1109_TKDE_2019_2901853
crossref_primary_10_1007_s11063_018_9842_4
crossref_primary_10_1109_ACCESS_2018_2884027
crossref_primary_10_1109_TIP_2018_2869691
crossref_primary_10_3390_s20041065
crossref_primary_10_1109_TIP_2018_2836312
crossref_primary_10_1007_s10489_023_05012_6
crossref_primary_10_1016_j_inffus_2020_08_023
Cites_doi 10.1162/089976603321780317
10.1109/TIP.2013.2253480
10.1109/TNN.2009.2015760
10.1117/1.3067869
10.1109/CVPR.1991.139758
10.1109/TMM.2016.2626959
10.1016/j.neucom.2015.06.011
10.1109/TMM.2014.2298841
10.1109/JSTARS.2014.2328601
10.1109/TIP.2006.881945
10.1109/TPAMI.2007.1131
10.1109/TMM.2015.2508146
10.1109/TIP.2013.2249077
10.1109/TPAMI.2007.250598
10.1109/TIP.2016.2593344
10.1109/34.9121
10.1145/2910585
10.1109/TNNLS.2015.2441735
10.1109/TNN.2011.2162000
10.1016/j.isprsjprs.2015.04.015
10.1109/TIP.2013.2297020
10.1109/LGRS.2013.2255097
10.1109/34.598228
10.1109/TIP.2014.2348868
10.1109/TCYB.2016.2519448
10.1016/j.patcog.2009.04.001
10.1126/science.290.5500.2319
10.1109/TNNLS.2011.2178037
10.1109/TPAMI.2005.55
10.1109/TIP.2012.2202678
10.1126/science.290.5500.2323
10.1109/TCYB.2014.2341575
10.1109/ICCV.2013.323
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2726188
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5030
ExternalDocumentID 28708560
10_1109_TIP_2017_2726188
7976386
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Post-doctoral Science Foundation
  grantid: 2014M562636
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61401471
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
ID FETCH-LOGICAL-c319t-b780ecc8c8e2463e4ebb5828f3e6a452bb621cd92c3c028e8fae32e52ffed1193
IEDL.DBID RIE
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406993600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 05:38:18 EDT 2025
Thu Apr 03 07:08:32 EDT 2025
Sat Nov 29 03:21:06 EST 2025
Tue Nov 18 21:25:32 EST 2025
Tue Aug 26 17:01:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b780ecc8c8e2463e4ebb5828f3e6a452bb621cd92c3c028e8fae32e52ffed1193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9240-6726
0000-0002-7778-8807
PMID 28708560
PQID 1920200021
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TIP_2017_2726188
ieee_primary_7976386
pubmed_primary_28708560
crossref_citationtrail_10_1109_TIP_2017_2726188
proquest_miscellaneous_1920200021
PublicationCentury 2000
PublicationDate 2017-Oct.
2017-10-00
2017-Oct
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref38
ref18
he (ref24) 2003; 16
belkin (ref17) 2001; 14
cai (ref26) 2007
he (ref25) 2005
nie (ref33) 2011; 22
yan (ref19) 2005
ref23
ref20
jolliffe (ref13) 2002
ref22
ref21
roweis (ref16) 2000; 290
jia (ref31) 2009; 20
ref28
he (ref35) 2005; 27
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1162/089976603321780317
– ident: ref1
  doi: 10.1109/TIP.2013.2253480
– volume: 20
  start-page: 729
  year: 2009
  ident: ref31
  article-title: Trace ratio problem revisited
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2015760
– ident: ref30
  doi: 10.1117/1.3067869
– ident: ref34
  doi: 10.1109/CVPR.1991.139758
– ident: ref4
  doi: 10.1109/TMM.2016.2626959
– start-page: 528
  year: 2007
  ident: ref26
  article-title: Isometric projection
  publication-title: Proc Assoc Adv Artif Intell
– ident: ref10
  doi: 10.1016/j.neucom.2015.06.011
– ident: ref22
  doi: 10.1109/TMM.2014.2298841
– ident: ref39
  doi: 10.1109/JSTARS.2014.2328601
– ident: ref28
  doi: 10.1109/TIP.2006.881945
– ident: ref27
  doi: 10.1109/TPAMI.2007.1131
– ident: ref23
  doi: 10.1109/TMM.2015.2508146
– volume: 14
  start-page: 585
  year: 2001
  ident: ref17
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in neural information processing systems
– ident: ref7
  doi: 10.1109/TIP.2013.2249077
– ident: ref20
  doi: 10.1109/TPAMI.2007.250598
– start-page: 830
  year: 2005
  ident: ref19
  article-title: Graph embedding: A general framework for dimensionality reduction
  publication-title: Proc Int Conf Comput Vis Pattern Recognit
– ident: ref3
  doi: 10.1109/TIP.2016.2593344
– ident: ref29
  doi: 10.1109/34.9121
– volume: 16
  start-page: 153
  year: 2003
  ident: ref24
  article-title: Locality preserving projections
  publication-title: Advances in neural information processing systems
– ident: ref11
  doi: 10.1145/2910585
– year: 2002
  ident: ref13
  publication-title: Principal Component Analysis
– ident: ref12
  doi: 10.1109/TNNLS.2015.2441735
– volume: 22
  start-page: 1796
  year: 2011
  ident: ref33
  article-title: Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2162000
– ident: ref38
  doi: 10.1016/j.isprsjprs.2015.04.015
– ident: ref8
  doi: 10.1109/TIP.2013.2297020
– ident: ref37
  doi: 10.1109/LGRS.2013.2255097
– ident: ref14
  doi: 10.1109/34.598228
– start-page: 1208
  year: 2005
  ident: ref25
  article-title: Neighborhood preserving embedding
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref36
  doi: 10.1109/TIP.2014.2348868
– ident: ref5
  doi: 10.1109/TCYB.2016.2519448
– ident: ref32
  doi: 10.1016/j.patcog.2009.04.001
– ident: ref15
  doi: 10.1126/science.290.5500.2319
– ident: ref6
  doi: 10.1109/TNNLS.2011.2178037
– volume: 27
  start-page: 328
  year: 2005
  ident: ref35
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.55
– ident: ref2
  doi: 10.1109/TIP.2012.2202678
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref16
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref9
  doi: 10.1109/TCYB.2014.2341575
– ident: ref21
  doi: 10.1109/ICCV.2013.323
SSID ssj0014516
Score 2.5768585
Snippet The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5019
SubjectTerms Algorithm design and analysis
Dimensionality reduction (DR)
Eigenvalues and eigenfunctions
Face recognition
hyperspectral image (HSI) classification
Laplace equations
locality preserving projections (LPP)
Manifolds
Optimization
Training data
Title Fast and Orthogonal Locality Preserving Projections for Dimensionality Reduction
URI https://ieeexplore.ieee.org/document/7976386
https://www.ncbi.nlm.nih.gov/pubmed/28708560
https://www.proquest.com/docview/1920200021
Volume 26
WOSCitedRecordID wos000406993600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLa2iQd4YGPjx8GYgsQLEt310rRJHhHbCaRpnNCQ7q1KUmdDQj101-Pvx057hQdA4q1Snbbq58SfY8cGeI3KRGIJDTk5TmUqukDrYLRZVFK5yjbe-lTE9UpfX5vl0i724O14FgYRU_IZnvNliuU3q7DlrbKpJttZmGof9rWu-rNaY8SAG86myGapM020fxeSzO305uOCc7j0udTkLxhu0cfhPVOmupS_rFFqr_J3ppkszvzw_771CB4OzFK861XhEexhewyHA8sUwxzeHMOD30oQnsBi7jadcG0jPq27u9UtE3NxxQaO6LngBA1eTNpbukxbNqylgoiuuOC2AH1JD5b8zCVg-e5j-DK_vHn_IRu6LGSBpl-XeW1ywtEEg1JVBSr0nmNpscDKqVJ6X8lZaKwMRSAygiY6LCSWMkZsZsT_nsBBu2rxGQjpCuujYbfXK20rFjYF5qWZ6agKP4Hp7m_XYShBzp0wvtXJFcltTVDVDFU9QDWBN-OI7335jX_InjAMo9yAwARe7QCtaepwPMS1uNpuaiK3OZ9UkrMJPO2RHgfvFOT5nx_6Au7zq_usvlM46NZbfAn3wo_u62Z9Rvq5NGdJP38CVA_fyw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQR7YF-MlY9hJF6QyJo6Tmw_TkC1ia5UqEh7i2znPCahFLXp_v75nDTjAZB4i5RzZOV39v3Od74DeIdC-cASquDkGJEIb1zYB71OvODCFLqy2sYirhM5naqrKz3bgg_9XRhEjMlneEqPMZZfLdyajsqGMtjOTBUP4CF1zupua_UxA2o5G2ObuUxkIP6boGSqh_OLGWVxyVMug8egqEkfBfhUHitT3tuj2GDl71wz2pzx7v_Ndg-edtySnbXKsA9bWB_AbsczWbeKVwew81sRwkOYjc2qYaau2Ndl82NxTdScTcjEBYLOKEWDtpP6OjzGQxvSUxaoLvtEjQHaoh4k-Y2KwNLbZ_B9_Hn-8Tzp-iwkLizAJrFSpQFJ5RRyUWQo0FqKpvkMCyNybm3BR67S3GUu0BFU3mDGMefeYzUKDPAItutFjcfAuMm09YocXyukLkhYZZjmaiS9yOwAhpu_XbquCDn1wvhZRmck1WWAqiSoyg6qAbzvR_xqC3D8Q_aQYOjlOgQG8HYDaBkWD0VETI2L9aoM9Dalu0p8NIDnLdL94I2CvPjzR9_A4_P55aScXEy_vIQnNI02x-8VbDfLNb6GR-62uVktT6KW3gHeNeIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Orthogonal+Locality+Preserving+Projections+for+Dimensionality+Reduction&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Rong&rft.au=Nie%2C+Feiping&rft.au=Hong%2C+Richang&rft.au=Chang%2C+Xiaojun&rft.date=2017-10-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=26&rft.issue=10&rft.spage=5019&rft.epage=5030&rft_id=info:doi/10.1109%2FTIP.2017.2726188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2726188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon