Upward Planar Morphs

We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 82; číslo 10; s. 2985 - 3017
Hlavní autori: Da Lozzo, Giordano, Di Battista, Giuseppe, Frati, Fabrizio, Patrignani, Maurizio, Roselli, Vincenzo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2020
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps if G is a reduced planar st -graph, O ( n ) morphing steps if G is a planar st -graph, O ( n ) morphing steps if G is a reduced upward planar graph, and O ( n 2 ) morphing steps if G is a general upward planar graph. Further, we show that Ω ( n ) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an n -vertex path.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-020-00714-6