Upward Planar Morphs
We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps i...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 82; číslo 10; s. 2985 - 3017 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove that, given two topologically-equivalent upward planar straight-line drawings of an
n
-vertex directed graph
G
, there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of
O
(1) morphing steps if
G
is a reduced planar
st
-graph,
O
(
n
) morphing steps if
G
is a planar
st
-graph,
O
(
n
) morphing steps if
G
is a reduced upward planar graph, and
O
(
n
2
)
morphing steps if
G
is a general upward planar graph. Further, we show that
Ω
(
n
)
morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an
n
-vertex path. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-020-00714-6 |