Interconnected Hierarchical Structures for Fast Direct Elliptic Solution

We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 91; no. 1; p. 15
Main Authors: Liu, Xiao, Xia, Jianlin, V. de Hoop, Maarten, Ou, Xiaofeng
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2022
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the hierarchical partitioning of a large problem into subproblems that are local Schur complements on smaller subdomains, and the interconnected hierarchical structured approximations of the subproblems. The interconnected structures make it feasible to extensively reuse off-diagonal basis matrices produced in the rank-structured approximation of smaller local Schur complements. Such basis matrices are produced only once and then reused across multiple hierarchical levels of the sparse factorization. Unlike many existing rank-structured direct solvers where explicit low-rank compression is often the major computation, our new solver can then avoid most of the compression operations. This helps to both conveniently preserve the rank structures and reduce the cost. Under moderate conditions, the total factorization cost is O ( rn ), where r is an appropriate off-diagonal numerical rank bound. The interconnected structures are further extended to accelerate a factorization update problem where many local coefficient updates are involved. Numerical tests on some PDE problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors in our tests indicate dramatic reduction in the number of low-rank compression operations.
AbstractList We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the hierarchical partitioning of a large problem into subproblems that are local Schur complements on smaller subdomains, and the interconnected hierarchical structured approximations of the subproblems. The interconnected structures make it feasible to extensively reuse off-diagonal basis matrices produced in the rank-structured approximation of smaller local Schur complements. Such basis matrices are produced only once and then reused across multiple hierarchical levels of the sparse factorization. Unlike many existing rank-structured direct solvers where explicit low-rank compression is often the major computation, our new solver can then avoid most of the compression operations. This helps to both conveniently preserve the rank structures and reduce the cost. Under moderate conditions, the total factorization cost is O ( rn ), where r is an appropriate off-diagonal numerical rank bound. The interconnected structures are further extended to accelerate a factorization update problem where many local coefficient updates are involved. Numerical tests on some PDE problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors in our tests indicate dramatic reduction in the number of low-rank compression operations.
We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the hierarchical partitioning of a large problem into subproblems that are local Schur complements on smaller subdomains, and the interconnected hierarchical structured approximations of the subproblems. The interconnected structures make it feasible to extensively reuse off-diagonal basis matrices produced in the rank-structured approximation of smaller local Schur complements. Such basis matrices are produced only once and then reused across multiple hierarchical levels of the sparse factorization. Unlike many existing rank-structured direct solvers where explicit low-rank compression is often the major computation, our new solver can then avoid most of the compression operations. This helps to both conveniently preserve the rank structures and reduce the cost. Under moderate conditions, the total factorization cost is O(rn), where r is an appropriate off-diagonal numerical rank bound. The interconnected structures are further extended to accelerate a factorization update problem where many local coefficient updates are involved. Numerical tests on some PDE problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors in our tests indicate dramatic reduction in the number of low-rank compression operations.
ArticleNumber 15
Author Liu, Xiao
Ou, Xiaofeng
Xia, Jianlin
V. de Hoop, Maarten
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Department of Computational and Applied Mathematics, Rice University
– sequence: 2
  givenname: Jianlin
  surname: Xia
  fullname: Xia, Jianlin
  email: xiaj@math.purdue.edu
  organization: Department of Mathematics, Purdue University
– sequence: 3
  givenname: Maarten
  surname: V. de Hoop
  fullname: V. de Hoop, Maarten
  organization: Department of Computational and Applied Mathematics, Rice University
– sequence: 4
  givenname: Xiaofeng
  surname: Ou
  fullname: Ou, Xiaofeng
  organization: Department of Mathematics, Purdue University
BookMark eNp9kM1OAyEURompiW31BVxN4hrlZwaYpamtNWnioromDDBKM0IFZuHbS62JiYuu7uace7_7zcDEB28BuMboFiPE7xJGLW4gIgQizBmG_AxMccMp5KzFEzBFQjSQ17y-ALOUdgihVrRkCtZPPtuog_dWZ2uqtbNRRf3utBqqbY6jzmO0qepDrFYq5erBxUJWy2Fw--x0tQ3DmF3wl-C8V0OyV79zDl5Xy5fFGm6eH58W9xuoKW4z7JqWGY6N0BgZgTnvuKoZbRjRxComLMWNJb3pDGFcWEG5ol35zVDDhaoFnYOb4959DJ-jTVnuwhh9OSlJi0XRBWsKJY6UjiGlaHupXVaHnDkqN0iM5KE3eexNlt7kT2-SF5X8U_fRfaj4dVqiRykV2L_Z-JfqhPUNGXaBsg
CitedBy_id crossref_primary_10_1109_TAP_2024_3427003
crossref_primary_10_1109_LMWT_2025_3564918
crossref_primary_10_1093_imanum_drae076
Cites_doi 10.1137/130918988
10.1002/nla.691
10.1016/j.jcp.2011.10.013
10.21136/MB.2002.134156
10.1137/120895755
10.1137/1034004
10.1007/s00211-002-0445-6
10.1137/110827788
10.1137/110831982
10.1017/S0962492900002427
10.1137/15M1023774
10.1137/090775932
10.1137/120903476
10.1016/j.jcp.2013.02.019
10.1016/j.jcp.2013.10.030
10.1007/s00791-005-0008-3
10.1137/18M1224623
10.1137/100786617
10.1137/1003021
10.1137/15M1010117
10.1137/130914966
10.1137/S0895479803436652
10.1002/cpa.20358
10.1137/0710032
10.1007/s00607-002-1450-4
10.1111/j.1365-2478.2011.00982.x
10.1137/18M1194961
10.1137/1.9780898719574
10.1016/j.jcp.2011.02.033
10.1007/s10543-014-0499-8
10.1137/16M1079221
10.1145/356044.356047
10.1093/imamat/hxx026
10.1137/120867032
10.1016/j.jcp.2010.07.027
10.1137/12087116X
10.1186/s40687-017-0100-6
10.1002/cpa.21582
10.1137/09074543X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-022-01761-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_022_01761_7
GrantInformation_xml – fundername: Corporate members of the Geo-Mathematical Imaging Group at Rice University
– fundername: Simons Foundation
  grantid: MATH+X program
  funderid: http://dx.doi.org/10.13039/100000893
– fundername: Total
  funderid: http://dx.doi.org/10.13039/501100007185
– fundername: National Science Foundation
  grantid: DMS-1819166; DMS-1559587
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-b596d71d8c10d8177b7a463562c2ea68e315e2fdbd2678e837a3b091d3d78a483
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761327700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 04:07:24 EST 2025
Sat Nov 29 01:56:29 EST 2025
Tue Nov 18 22:44:23 EST 2025
Fri Feb 21 02:47:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interconnected hierarchical structure
Elliptic equation
Basis reuse
Fast sparse direct solver
Neighbor tree
Schur complement update
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b596d71d8c10d8177b7a463562c2ea68e315e2fdbd2678e837a3b091d3d78a483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918315865
PQPubID 2043771
ParticipantIDs proquest_journals_2918315865
crossref_citationtrail_10_1007_s10915_022_01761_7
crossref_primary_10_1007_s10915_022_01761_7
springer_journals_10_1007_s10915_022_01761_7
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PedneaultMCatalinTBoubendirYSchur complement domain decomposition methods for the solution of multiple scattering problemsIMA J. Appl. Math.20178211041134379893910.1093/imamat/hxx026
ChanTFMathewTPDomain decomposition algorithmsActa Numer.1994361143128809610.1017/S0962492900002427
SchmitzPGYingLA fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matricesJ. Comput. Phys.2014258227245314527710.1016/j.jcp.2013.10.030
WangSde HoopMVXiaJAcoustic inverse scattering via Helmholtz operator factorization and optimizationJ. Comput. Phys.201022984458462271918110.1016/j.jcp.2010.07.027
GhyselsPLiXSRouetFHWilliamsSNapovAAn efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized samplingSIAM J. Sci. Comput.201638S358S384356556710.1137/15M1010117
GrasedyckLKriemannRLe BorneSWidlundOB KeyesDEDomain-decomposition based mathcalH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mathcal{H}$$\end{document}-LU preconditionersDomain Decomposition Methods in Science and Engineering XVI2006BerlinSpringer LNCSE661668
LinLLuJYingLFast construction of hierarchical matrix representation from matrix–vector multiplicationJ. Comput. Phys.201123040714087278383310.1016/j.jcp.2011.02.033
LiuJWThe multifrontal method for sparse matrix solution: theory and practiceSIAM Rev.19923482109115629010.1137/1034004
XiaJEfficient structured multifrontal factorization for general large sparse matricesSIAM J. Sci. Comput.201335A832A860303548810.1137/120867032
ChandrasekaranSGuMPalsTA fast ULV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ULV$$\end{document} decomposition solver for hierarchically semiseparable representationsSIAM J. Matrix Anal. Appl.200628603622226297110.1137/S0895479803436652
XiaJOn the complexity of some hierarchical structured matrix algorithmsSIAM J. Matrix Anal. Appl.201233388410297021210.1137/110827788
XinZXiaJde HoopMVCauleySBalakrishnanVA distributed-memory randomized structured multifrontal method for sparse direct solutionsSIAM J. Sci. Comput.201739C292C318368681010.1137/16M1079221
XiaJXiYGuMA superfast structured solver for Toeplitz linear systems via randomized samplingSIAM J. Matrix Anal. Appl.201233837858302345410.1137/110831982
GillmanABarnettAHMartinssonPGA spectrally accurate direct solution technique for frequency-domain scattering problems with variable mediaBIT Numer. Math.201555141170331360510.1007/s10543-014-0499-8
XiaJRandomized sparse direct solversSIAM J. Matrix Anal. Appl.201334197227303547810.1137/12087116X
GormanCChávezGGhyselsPMaryTRouetF-HLiXSRobust and accurate stopping criteria for adaptive randomized sampling in matrix-free hierarchically semiseparable constructionSIAM J. Sci. Comput.201941S61S85402477310.1137/18M1194961
WangSde HoopMVXiaJOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solverGeophys. Prospect.20115985787310.1111/j.1365-2478.2011.00982.x
EngquistBYingLSweeping preconditioner for the Helmholtz equation: hierarchical matrix representationCommun. Pure Appl. Math.201164697735278949210.1002/cpa.20358
XiYXiaJCauleySBalakrishnanVSuperfast and stable structured solvers for Toeplitz least squares via randomized samplingSIAM J. Matrix Anal. Appl.2014354472315273710.1137/120895755
HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068
Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU users’ guide. http://crd.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf
HackbuschWGrasedyckLBörmSAn introduction to hierarchical matricesMath. Bohem.2002127229241198152810.21136/MB.2002.134156
ChandrasekaranSDewildePGuMSomasunderamNOn the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEsSIAM J. Matrix Anal. Appl.20103122612290274061910.1137/090775932
ParterSThe use of linear graphs in Gauss eliminationSIAM Rev.1961311913014334910.1137/1003021
XiYXiaJChanRA fast randomized eigensolver with structured LDL factorization updateSIAM J. Matrix Anal. Appl.201435974996323198410.1137/130914966
XiaJChandrasekaranSGuMLiXSSuperfast multifrontal method for large structured linear systems of equationsSIAM J. Matrix Anal. Appl.20093113821411258778310.1137/09074543X
LiuXXiaJde HoopMVFast factorization update for general elliptic equations under multiple coefficient updatesSIAM J. Sci. Comput.202042A1174A1199408513510.1137/18M1224623
DuffISReidJKThe multifrontal solution of indefinite sparse symmetric linear equationsACM Trans. Math. Softw.1983930232579196810.1145/356044.356047
GeorgeANested dissection of a regular finite element meshSIAM J. Numer. Anal.19731034536338875610.1137/0710032
HackbuschWBörmSData-sparse approximation by adaptive H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}^{2}$$\end{document}-matricesComputing200269135195414210.1007/s00607-002-1450-4
GillmanAMartinssonPGA direct solver with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation methodSIAM J. Sci. Comput.201436A2023A2046325369210.1137/130918988
LiYYingLDistributed-memory hierarchical interpolative factorizationRes. Math. Sci.20174123365903010.1186/s40687-017-0100-6
XiaJChandrasekaranSGuMLiXSFast algorithms for hierarchically semiseparable matricesNumer. Linear Algebra Appl.201017953976275960310.1002/nla.691
HoKLYingLHierarchical interpolative factorization for elliptic operators: differential equationsCommun. Pure Appl. Math.20166914151451351823610.1002/cpa.21582
BebendorfMHackbuschWExistence of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximants to the inverse FE-matrix of elliptic operator with L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-coefficientsNumer. Math.200395128199393610.1007/s00211-002-0445-6
SchmitzPGYingLA fast direct solver for elliptic problems on general meshes in 2DJ. Comput. Phys.201223113141338287645610.1016/j.jcp.2011.10.013
MartinssonPGA fast randomized algorithm for computing hierarchically semiseparable representation of a matrixSIAM. J. Matrix Anal. Appl.20113212511274285461210.1137/100786617
Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37, A1451–A1474 (2015)
HackbuschWKhoromskijBNKriemannRDirect Schur complement method by domain decomposition based on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximationComput. Vis. Sci.20058179188219167710.1007/s00791-005-0008-3
LiuXXiaJde HoopMVParallel randomized and matrix-free direct solvers for large structured dense linear systemsSIAM J. Sci. Comput.201638S508S538356557510.1137/15M1023774
TrefethenLNDavidBNumerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.9780898719574
MartinssonPGA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation methodJ. Comput. Phys.2013242460479306204310.1016/j.jcp.2013.02.019
B Engquist (1761_CR8) 2011; 64
M Pedneault (1761_CR28) 2017; 82
J Xia (1761_CR41) 2012; 33
C Gorman (1761_CR13) 2019; 41
L Grasedyck (1761_CR14) 2006
W Hackbusch (1761_CR15) 2002; 69
JW Liu (1761_CR22) 1992; 34
J Xia (1761_CR40) 2010; 17
S Wang (1761_CR33) 2011; 59
W Hackbusch (1761_CR16) 2002; 127
JS Hesthaven (1761_CR18) 2007
X Liu (1761_CR24) 2020; 42
A George (1761_CR9) 1973; 10
S Chandrasekaran (1761_CR5) 2006; 28
PG Martinsson (1761_CR26) 2013; 242
1761_CR1
S Parter (1761_CR27) 1961; 3
PG Schmitz (1761_CR30) 2014; 258
J Xia (1761_CR37) 2013; 34
X Liu (1761_CR23) 2016; 38
TF Chan (1761_CR3) 1994; 3
S Chandrasekaran (1761_CR4) 2010; 31
Y Xi (1761_CR34) 2014; 35
W Hackbusch (1761_CR17) 2005; 8
A Gillman (1761_CR11) 2015; 55
1761_CR6
PG Martinsson (1761_CR25) 2011; 32
LN Trefethen (1761_CR31) 1997
Z Xin (1761_CR42) 2017; 39
A Gillman (1761_CR12) 2014; 36
KL Ho (1761_CR19) 2016; 69
J Xia (1761_CR36) 2012; 33
J Xia (1761_CR38) 2013; 35
M Bebendorf (1761_CR2) 2003; 95
J Xia (1761_CR39) 2009; 31
S Wang (1761_CR32) 2010; 229
Y Xi (1761_CR35) 2014; 35
L Lin (1761_CR21) 2011; 230
Y Li (1761_CR20) 2017; 4
IS Duff (1761_CR7) 1983; 9
P Ghysels (1761_CR10) 2016; 38
PG Schmitz (1761_CR29) 2012; 231
References_xml – reference: MartinssonPGA fast randomized algorithm for computing hierarchically semiseparable representation of a matrixSIAM. J. Matrix Anal. Appl.20113212511274285461210.1137/100786617
– reference: LiuJWThe multifrontal method for sparse matrix solution: theory and practiceSIAM Rev.19923482109115629010.1137/1034004
– reference: XinZXiaJde HoopMVCauleySBalakrishnanVA distributed-memory randomized structured multifrontal method for sparse direct solutionsSIAM J. Sci. Comput.201739C292C318368681010.1137/16M1079221
– reference: XiaJXiYGuMA superfast structured solver for Toeplitz linear systems via randomized samplingSIAM J. Matrix Anal. Appl.201233837858302345410.1137/110831982
– reference: Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU users’ guide. http://crd.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf
– reference: XiaJChandrasekaranSGuMLiXSFast algorithms for hierarchically semiseparable matricesNumer. Linear Algebra Appl.201017953976275960310.1002/nla.691
– reference: GillmanAMartinssonPGA direct solver with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation methodSIAM J. Sci. Comput.201436A2023A2046325369210.1137/130918988
– reference: PedneaultMCatalinTBoubendirYSchur complement domain decomposition methods for the solution of multiple scattering problemsIMA J. Appl. Math.20178211041134379893910.1093/imamat/hxx026
– reference: LiYYingLDistributed-memory hierarchical interpolative factorizationRes. Math. Sci.20174123365903010.1186/s40687-017-0100-6
– reference: GillmanABarnettAHMartinssonPGA spectrally accurate direct solution technique for frequency-domain scattering problems with variable mediaBIT Numer. Math.201555141170331360510.1007/s10543-014-0499-8
– reference: MartinssonPGA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation methodJ. Comput. Phys.2013242460479306204310.1016/j.jcp.2013.02.019
– reference: LiuXXiaJde HoopMVFast factorization update for general elliptic equations under multiple coefficient updatesSIAM J. Sci. Comput.202042A1174A1199408513510.1137/18M1224623
– reference: HoKLYingLHierarchical interpolative factorization for elliptic operators: differential equationsCommun. Pure Appl. Math.20166914151451351823610.1002/cpa.21582
– reference: HackbuschWKhoromskijBNKriemannRDirect Schur complement method by domain decomposition based on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximationComput. Vis. Sci.20058179188219167710.1007/s00791-005-0008-3
– reference: WangSde HoopMVXiaJAcoustic inverse scattering via Helmholtz operator factorization and optimizationJ. Comput. Phys.201022984458462271918110.1016/j.jcp.2010.07.027
– reference: GhyselsPLiXSRouetFHWilliamsSNapovAAn efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized samplingSIAM J. Sci. Comput.201638S358S384356556710.1137/15M1010117
– reference: XiaJEfficient structured multifrontal factorization for general large sparse matricesSIAM J. Sci. Comput.201335A832A860303548810.1137/120867032
– reference: TrefethenLNDavidBNumerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.9780898719574
– reference: ChandrasekaranSDewildePGuMSomasunderamNOn the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEsSIAM J. Matrix Anal. Appl.20103122612290274061910.1137/090775932
– reference: XiYXiaJChanRA fast randomized eigensolver with structured LDL factorization updateSIAM J. Matrix Anal. Appl.201435974996323198410.1137/130914966
– reference: HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068
– reference: LinLLuJYingLFast construction of hierarchical matrix representation from matrix–vector multiplicationJ. Comput. Phys.201123040714087278383310.1016/j.jcp.2011.02.033
– reference: EngquistBYingLSweeping preconditioner for the Helmholtz equation: hierarchical matrix representationCommun. Pure Appl. Math.201164697735278949210.1002/cpa.20358
– reference: XiYXiaJCauleySBalakrishnanVSuperfast and stable structured solvers for Toeplitz least squares via randomized samplingSIAM J. Matrix Anal. Appl.2014354472315273710.1137/120895755
– reference: LiuXXiaJde HoopMVParallel randomized and matrix-free direct solvers for large structured dense linear systemsSIAM J. Sci. Comput.201638S508S538356557510.1137/15M1023774
– reference: BebendorfMHackbuschWExistence of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximants to the inverse FE-matrix of elliptic operator with L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-coefficientsNumer. Math.200395128199393610.1007/s00211-002-0445-6
– reference: WangSde HoopMVXiaJOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solverGeophys. Prospect.20115985787310.1111/j.1365-2478.2011.00982.x
– reference: Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37, A1451–A1474 (2015)
– reference: ParterSThe use of linear graphs in Gauss eliminationSIAM Rev.1961311913014334910.1137/1003021
– reference: XiaJChandrasekaranSGuMLiXSSuperfast multifrontal method for large structured linear systems of equationsSIAM J. Matrix Anal. Appl.20093113821411258778310.1137/09074543X
– reference: XiaJRandomized sparse direct solversSIAM J. Matrix Anal. Appl.201334197227303547810.1137/12087116X
– reference: ChanTFMathewTPDomain decomposition algorithmsActa Numer.1994361143128809610.1017/S0962492900002427
– reference: GeorgeANested dissection of a regular finite element meshSIAM J. Numer. Anal.19731034536338875610.1137/0710032
– reference: HackbuschWGrasedyckLBörmSAn introduction to hierarchical matricesMath. Bohem.2002127229241198152810.21136/MB.2002.134156
– reference: ChandrasekaranSGuMPalsTA fast ULV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ULV$$\end{document} decomposition solver for hierarchically semiseparable representationsSIAM J. Matrix Anal. Appl.200628603622226297110.1137/S0895479803436652
– reference: HackbuschWBörmSData-sparse approximation by adaptive H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}^{2}$$\end{document}-matricesComputing200269135195414210.1007/s00607-002-1450-4
– reference: SchmitzPGYingLA fast direct solver for elliptic problems on general meshes in 2DJ. Comput. Phys.201223113141338287645610.1016/j.jcp.2011.10.013
– reference: DuffISReidJKThe multifrontal solution of indefinite sparse symmetric linear equationsACM Trans. Math. Softw.1983930232579196810.1145/356044.356047
– reference: GrasedyckLKriemannRLe BorneSWidlundOB KeyesDEDomain-decomposition based mathcalH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mathcal{H}$$\end{document}-LU preconditionersDomain Decomposition Methods in Science and Engineering XVI2006BerlinSpringer LNCSE661668
– reference: SchmitzPGYingLA fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matricesJ. Comput. Phys.2014258227245314527710.1016/j.jcp.2013.10.030
– reference: XiaJOn the complexity of some hierarchical structured matrix algorithmsSIAM J. Matrix Anal. Appl.201233388410297021210.1137/110827788
– reference: GormanCChávezGGhyselsPMaryTRouetF-HLiXSRobust and accurate stopping criteria for adaptive randomized sampling in matrix-free hierarchically semiseparable constructionSIAM J. Sci. Comput.201941S61S85402477310.1137/18M1194961
– volume: 36
  start-page: A2023
  year: 2014
  ident: 1761_CR12
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130918988
– volume: 17
  start-page: 953
  year: 2010
  ident: 1761_CR40
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.691
– volume: 231
  start-page: 1314
  year: 2012
  ident: 1761_CR29
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.013
– ident: 1761_CR6
– volume: 127
  start-page: 229
  year: 2002
  ident: 1761_CR16
  publication-title: Math. Bohem.
  doi: 10.21136/MB.2002.134156
– volume: 35
  start-page: 44
  year: 2014
  ident: 1761_CR34
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120895755
– start-page: 661
  volume-title: Domain Decomposition Methods in Science and Engineering XVI
  year: 2006
  ident: 1761_CR14
– volume: 34
  start-page: 82
  year: 1992
  ident: 1761_CR22
  publication-title: SIAM Rev.
  doi: 10.1137/1034004
– volume: 95
  start-page: 1
  year: 2003
  ident: 1761_CR2
  publication-title: Numer. Math.
  doi: 10.1007/s00211-002-0445-6
– volume: 33
  start-page: 388
  year: 2012
  ident: 1761_CR36
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110827788
– volume: 33
  start-page: 837
  year: 2012
  ident: 1761_CR41
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110831982
– volume: 3
  start-page: 61
  year: 1994
  ident: 1761_CR3
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002427
– volume: 38
  start-page: S508
  year: 2016
  ident: 1761_CR23
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1023774
– volume: 31
  start-page: 2261
  year: 2010
  ident: 1761_CR4
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090775932
– ident: 1761_CR1
  doi: 10.1137/120903476
– volume: 242
  start-page: 460
  year: 2013
  ident: 1761_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.019
– volume: 258
  start-page: 227
  year: 2014
  ident: 1761_CR30
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.030
– volume: 8
  start-page: 179
  year: 2005
  ident: 1761_CR17
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-005-0008-3
– volume: 42
  start-page: A1174
  year: 2020
  ident: 1761_CR24
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1224623
– volume: 32
  start-page: 1251
  year: 2011
  ident: 1761_CR25
  publication-title: SIAM. J. Matrix Anal. Appl.
  doi: 10.1137/100786617
– volume: 3
  start-page: 119
  year: 1961
  ident: 1761_CR27
  publication-title: SIAM Rev.
  doi: 10.1137/1003021
– volume: 38
  start-page: S358
  year: 2016
  ident: 1761_CR10
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1010117
– volume: 35
  start-page: 974
  year: 2014
  ident: 1761_CR35
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/130914966
– volume: 28
  start-page: 603
  year: 2006
  ident: 1761_CR5
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479803436652
– volume-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
  year: 2007
  ident: 1761_CR18
– volume: 64
  start-page: 697
  year: 2011
  ident: 1761_CR8
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20358
– volume: 10
  start-page: 345
  year: 1973
  ident: 1761_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0710032
– volume: 69
  start-page: 1
  year: 2002
  ident: 1761_CR15
  publication-title: Computing
  doi: 10.1007/s00607-002-1450-4
– volume: 59
  start-page: 857
  year: 2011
  ident: 1761_CR33
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2011.00982.x
– volume: 41
  start-page: S61
  year: 2019
  ident: 1761_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1194961
– volume-title: Numerical Linear Algebra
  year: 1997
  ident: 1761_CR31
  doi: 10.1137/1.9780898719574
– volume: 230
  start-page: 4071
  year: 2011
  ident: 1761_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.02.033
– volume: 55
  start-page: 141
  year: 2015
  ident: 1761_CR11
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-014-0499-8
– volume: 39
  start-page: C292
  year: 2017
  ident: 1761_CR42
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1079221
– volume: 9
  start-page: 302
  year: 1983
  ident: 1761_CR7
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/356044.356047
– volume: 82
  start-page: 1104
  year: 2017
  ident: 1761_CR28
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxx026
– volume: 35
  start-page: A832
  year: 2013
  ident: 1761_CR38
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120867032
– volume: 229
  start-page: 8445
  year: 2010
  ident: 1761_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.07.027
– volume: 34
  start-page: 197
  year: 2013
  ident: 1761_CR37
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/12087116X
– volume: 4
  start-page: 1
  year: 2017
  ident: 1761_CR20
  publication-title: Res. Math. Sci.
  doi: 10.1186/s40687-017-0100-6
– volume: 69
  start-page: 1415
  year: 2016
  ident: 1761_CR19
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21582
– volume: 31
  start-page: 1382
  year: 2009
  ident: 1761_CR39
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/09074543X
SSID ssj0009892
Score 2.3242233
Snippet We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Design
Factorization
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Solvers
Theoretical
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60evCi1gdWq-TgQdHgJvtI9iQiloJQBBV6W7JJFgqlPrb6-52kWRcFe_G8uyGbb2YymczMB3Ca2bzUaPioVVFKExEZWkolqM40OrAyKnNpPNmEGI3keJw_hIBbHdIqG5voDbV50S5GfsVzFD6Wyiy9fn2jjjXK3a4GCo1VWGOcMyfn94K2TXelJ0VGRUopus1JKJoJpXM5c7XJLjEBj_JU_NyYWm_z1wWp33cGW_-d8TZsBo-T3CxEpAsrdrYD3aDTNTkLjafPd2How4Papb5odETJcOKqkz1ZypQ8-kazH3g6J-jnkoGq52RhL4nL-0DLo0kTY9uD58Hd0-2QBqYFqlEF57RM88wIZqRmkZFMiFKoxHWu45pblUmL_2F5ZUrDcXOzeKhVcYkLaGIjpEpkvA-d2cvMHgCpYslVXKGjFukkM6pkgrGKRSpSaR5XugesWeZChzbkjg1jWrQNlB00BUJTeGgK0YOL729eF004lr7db_AogkLWRQtGDy4bRNvHf492uHy0I9jgXohcLk8fOoiFPYZ1_Tmf1O8nXhy_ALBa4uw
  priority: 102
  providerName: ProQuest
Title Interconnected Hierarchical Structures for Fast Direct Elliptic Solution
URI https://link.springer.com/article/10.1007/s10915-022-01761-7
https://www.proquest.com/docview/2918315865
Volume 91
WOSCitedRecordID wos000761327700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7UetCDWh9YHyUHD4oGNvtK9qhiKYil1AfiZckmWShIFbf6-52k2VZFBb3sZXfD7kxm5ksy8w3AQWqyQqHjo0YGCY15oGkhJKcqVQhgRVBkQrtmE7zXE_f3Wd8XhVV1tnt9JOk89Ydit4zZamKbSoCLb8rnoYHhTlhzHFzfzah2hWuFjOaTUATLsS-V-X6Mz-FohjG_HIu6aNNZ_d93rsGKR5fkdDIdmjBnRuuwfDWlZq3WoemtuSKHnnL6aAO6bmNQ2aQXhRCUdIe2Ltm1SXkk145i9hXX5QQRLunIakwmnpLYjA_0OYrUu2ubcNu5uDnvUt9jgSo0vjEtkizVnGmhWKAF47zgMracdaEKjUyFiVhiwlIXOsSwZnA5K6MCf1BHmgsZi2gLFkZPI7MNpIxEKKMSIVqg4lTLgnHGShbIQCZZVKoWsFrUufIE5LYPxmM-o062ostRdLkTXc5bcDx953lCv_Hr03u1BnNvilUeZui1WCLSpAUntcZmt38ebedvj-_CUuiUbrN69mABdWP2YVG9jYfVSxsaZxe9_qAN85ec4rWfPLTdtH0HuG7hFA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5toVJ7oWyh6vIoPrQSqFiNnYedQ4WqwmrR0hUSi7S31LEdCQktjyyg_qn-RsZO0gik7m0PnJM4SubzzNie-T6Az4lNc42Oj1oVxDQSgaG5VILqRGMCK4M8lcaLTYjRSE4m6WkH_ja9MK6ssvGJ3lGbK-32yL_xFMHHYpnEB9c31KlGudPVRkKjgsXQ_nnAJVv5_fgQ7fuF8_7R-OeA1qoCVCPcZjSP08QIZqRmgZFMiFyoyLG0cc2tSqTFt1hemNxwdOQWF3AqzDGqmtAIqSIZ4rivYDkKpXBc_UNBW5Jf6UWYceLGFNP0qG7SqVv1UuZ6oV0hhEgYFU8DYZvdPjuQ9XGu_-6l_aFVWKkzavKjmgJd6Njpe-jWPqskuzWx9t4aDPz2p3alPRoTbTK4cN3XXgzmkpx5It27W3wE83jSV-WMVPGAuLoW9KyaNHuI63C-kC_6AEvTq6n9CKQIJVdhgYlooKPEqJwJxgoWqEDFaVjoHrDGrJmuadad2sdl1hJEOyhkCIXMQyETPfj675nrimRk7t1bjf2z2uGUWWv8Huw3CGov_3-0jfmj7cCbwfjXSXZyPBpuwlvuAezqlrZgCe1it-G1vp9dlLef_FQg8HvRyHoE0v0-tQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8QvRB3VScTs2DD4qGNf1K-ijqmKhDmIpvJU1SGIw57PTv95K1TkUF8blpaO9yl98ld78DOIhNkil0fNRIL6Ih9zTNhORUxQoBrPCyRGjXbIJ3u-LxMbn9UMXvst2rK8lJTYNlaRqOWyOdtz4UviXMVhbbtAIMxCmfhfnQNg2y8XrvYUq7K1xbZDSliCJwDsuyme_n-Lw1TfHmlytSt_O0V___zWuwUqJOcjpZJjWYMcM6LN-8U7YWdaiVVl6Qw5KK-mgdOu7AUNlkGIXQlHT6tl7ZtU8ZkJ6jnn3BeJ0g8iVtWYzJxIMSmwmCvkiR6tRtA-7bF3dnHVr2XqAKjXJMsyiJNWdaKOZpwTjPuAwtl52vfCNjYQIWGT_XmfZxuzMY5sogwx_UgeZChiLYhLnh09BsAckD4csgR-jmqTDWMmOcsZx50pNREuSqAawSe6pKYnLbH2OQTimVrehSFF3qRJfyBhy_vzOa0HL8OrpZaTMtTbRI_QS9GYtEHDXgpNLe9PHPs23_bfg-LN6et9Pry-7VDiz5Tv828acJc6gmswsL6nXcL5733Mp9A2a_6XI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interconnected+Hierarchical+Structures+for+Fast+Direct+Elliptic+Solution&rft.jtitle=Journal+of+scientific+computing&rft.au=Liu%2C+Xiao&rft.au=Xia%2C+Jianlin&rft.au=V.+de+Hoop%2C+Maarten&rft.au=Ou%2C+Xiaofeng&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=91&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-022-01761-7&rft.externalDocID=10_1007_s10915_022_01761_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon