Interconnected Hierarchical Structures for Fast Direct Elliptic Solution
We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the...
Saved in:
| Published in: | Journal of scientific computing Vol. 91; no. 1; p. 15 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.04.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the hierarchical partitioning of a large problem into subproblems that are local Schur complements on smaller subdomains, and the interconnected hierarchical structured approximations of the subproblems. The interconnected structures make it feasible to extensively reuse off-diagonal basis matrices produced in the rank-structured approximation of smaller local Schur complements. Such basis matrices are produced only once and then reused across multiple hierarchical levels of the sparse factorization. Unlike many existing rank-structured direct solvers where explicit low-rank compression is often the major computation, our new solver can then avoid most of the compression operations. This helps to both conveniently preserve the rank structures and reduce the cost. Under moderate conditions, the total factorization cost is
O
(
rn
), where
r
is an appropriate off-diagonal numerical rank bound. The interconnected structures are further extended to accelerate a factorization update problem where many local coefficient updates are involved. Numerical tests on some PDE problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors in our tests indicate dramatic reduction in the number of low-rank compression operations. |
|---|---|
| AbstractList | We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the hierarchical partitioning of a large problem into subproblems that are local Schur complements on smaller subdomains, and the interconnected hierarchical structured approximations of the subproblems. The interconnected structures make it feasible to extensively reuse off-diagonal basis matrices produced in the rank-structured approximation of smaller local Schur complements. Such basis matrices are produced only once and then reused across multiple hierarchical levels of the sparse factorization. Unlike many existing rank-structured direct solvers where explicit low-rank compression is often the major computation, our new solver can then avoid most of the compression operations. This helps to both conveniently preserve the rank structures and reduce the cost. Under moderate conditions, the total factorization cost is
O
(
rn
), where
r
is an appropriate off-diagonal numerical rank bound. The interconnected structures are further extended to accelerate a factorization update problem where many local coefficient updates are involved. Numerical tests on some PDE problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors in our tests indicate dramatic reduction in the number of low-rank compression operations. We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of low-rank compression operations used in usual structured direct solvers. Interconnected structures within two hierarchical layers are exploited: the hierarchical partitioning of a large problem into subproblems that are local Schur complements on smaller subdomains, and the interconnected hierarchical structured approximations of the subproblems. The interconnected structures make it feasible to extensively reuse off-diagonal basis matrices produced in the rank-structured approximation of smaller local Schur complements. Such basis matrices are produced only once and then reused across multiple hierarchical levels of the sparse factorization. Unlike many existing rank-structured direct solvers where explicit low-rank compression is often the major computation, our new solver can then avoid most of the compression operations. This helps to both conveniently preserve the rank structures and reduce the cost. Under moderate conditions, the total factorization cost is O(rn), where r is an appropriate off-diagonal numerical rank bound. The interconnected structures are further extended to accelerate a factorization update problem where many local coefficient updates are involved. Numerical tests on some PDE problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors in our tests indicate dramatic reduction in the number of low-rank compression operations. |
| ArticleNumber | 15 |
| Author | Liu, Xiao Ou, Xiaofeng Xia, Jianlin V. de Hoop, Maarten |
| Author_xml | – sequence: 1 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Department of Computational and Applied Mathematics, Rice University – sequence: 2 givenname: Jianlin surname: Xia fullname: Xia, Jianlin email: xiaj@math.purdue.edu organization: Department of Mathematics, Purdue University – sequence: 3 givenname: Maarten surname: V. de Hoop fullname: V. de Hoop, Maarten organization: Department of Computational and Applied Mathematics, Rice University – sequence: 4 givenname: Xiaofeng surname: Ou fullname: Ou, Xiaofeng organization: Department of Mathematics, Purdue University |
| BookMark | eNp9kM1OAyEURompiW31BVxN4hrlZwaYpamtNWnioromDDBKM0IFZuHbS62JiYuu7uace7_7zcDEB28BuMboFiPE7xJGLW4gIgQizBmG_AxMccMp5KzFEzBFQjSQ17y-ALOUdgihVrRkCtZPPtuog_dWZ2uqtbNRRf3utBqqbY6jzmO0qepDrFYq5erBxUJWy2Fw--x0tQ3DmF3wl-C8V0OyV79zDl5Xy5fFGm6eH58W9xuoKW4z7JqWGY6N0BgZgTnvuKoZbRjRxComLMWNJb3pDGFcWEG5ol35zVDDhaoFnYOb4959DJ-jTVnuwhh9OSlJi0XRBWsKJY6UjiGlaHupXVaHnDkqN0iM5KE3eexNlt7kT2-SF5X8U_fRfaj4dVqiRykV2L_Z-JfqhPUNGXaBsg |
| CitedBy_id | crossref_primary_10_1109_TAP_2024_3427003 crossref_primary_10_1109_LMWT_2025_3564918 crossref_primary_10_1093_imanum_drae076 |
| Cites_doi | 10.1137/130918988 10.1002/nla.691 10.1016/j.jcp.2011.10.013 10.21136/MB.2002.134156 10.1137/120895755 10.1137/1034004 10.1007/s00211-002-0445-6 10.1137/110827788 10.1137/110831982 10.1017/S0962492900002427 10.1137/15M1023774 10.1137/090775932 10.1137/120903476 10.1016/j.jcp.2013.02.019 10.1016/j.jcp.2013.10.030 10.1007/s00791-005-0008-3 10.1137/18M1224623 10.1137/100786617 10.1137/1003021 10.1137/15M1010117 10.1137/130914966 10.1137/S0895479803436652 10.1002/cpa.20358 10.1137/0710032 10.1007/s00607-002-1450-4 10.1111/j.1365-2478.2011.00982.x 10.1137/18M1194961 10.1137/1.9780898719574 10.1016/j.jcp.2011.02.033 10.1007/s10543-014-0499-8 10.1137/16M1079221 10.1145/356044.356047 10.1093/imamat/hxx026 10.1137/120867032 10.1016/j.jcp.2010.07.027 10.1137/12087116X 10.1186/s40687-017-0100-6 10.1002/cpa.21582 10.1137/09074543X |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-022-01761-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_022_01761_7 |
| GrantInformation_xml | – fundername: Corporate members of the Geo-Mathematical Imaging Group at Rice University – fundername: Simons Foundation grantid: MATH+X program funderid: http://dx.doi.org/10.13039/100000893 – fundername: Total funderid: http://dx.doi.org/10.13039/501100007185 – fundername: National Science Foundation grantid: DMS-1819166; DMS-1559587 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-b596d71d8c10d8177b7a463562c2ea68e315e2fdbd2678e837a3b091d3d78a483 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761327700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 04:07:24 EST 2025 Sat Nov 29 01:56:29 EST 2025 Tue Nov 18 22:44:23 EST 2025 Fri Feb 21 02:47:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Interconnected hierarchical structure Elliptic equation Basis reuse Fast sparse direct solver Neighbor tree Schur complement update |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b596d71d8c10d8177b7a463562c2ea68e315e2fdbd2678e837a3b091d3d78a483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918315865 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_2918315865 crossref_citationtrail_10_1007_s10915_022_01761_7 crossref_primary_10_1007_s10915_022_01761_7 springer_journals_10_1007_s10915_022_01761_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20220400 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | PedneaultMCatalinTBoubendirYSchur complement domain decomposition methods for the solution of multiple scattering problemsIMA J. Appl. Math.20178211041134379893910.1093/imamat/hxx026 ChanTFMathewTPDomain decomposition algorithmsActa Numer.1994361143128809610.1017/S0962492900002427 SchmitzPGYingLA fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matricesJ. Comput. Phys.2014258227245314527710.1016/j.jcp.2013.10.030 WangSde HoopMVXiaJAcoustic inverse scattering via Helmholtz operator factorization and optimizationJ. Comput. Phys.201022984458462271918110.1016/j.jcp.2010.07.027 GhyselsPLiXSRouetFHWilliamsSNapovAAn efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized samplingSIAM J. Sci. Comput.201638S358S384356556710.1137/15M1010117 GrasedyckLKriemannRLe BorneSWidlundOB KeyesDEDomain-decomposition based mathcalH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mathcal{H}$$\end{document}-LU preconditionersDomain Decomposition Methods in Science and Engineering XVI2006BerlinSpringer LNCSE661668 LinLLuJYingLFast construction of hierarchical matrix representation from matrix–vector multiplicationJ. Comput. Phys.201123040714087278383310.1016/j.jcp.2011.02.033 LiuJWThe multifrontal method for sparse matrix solution: theory and practiceSIAM Rev.19923482109115629010.1137/1034004 XiaJEfficient structured multifrontal factorization for general large sparse matricesSIAM J. Sci. Comput.201335A832A860303548810.1137/120867032 ChandrasekaranSGuMPalsTA fast ULV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ULV$$\end{document} decomposition solver for hierarchically semiseparable representationsSIAM J. Matrix Anal. Appl.200628603622226297110.1137/S0895479803436652 XiaJOn the complexity of some hierarchical structured matrix algorithmsSIAM J. Matrix Anal. Appl.201233388410297021210.1137/110827788 XinZXiaJde HoopMVCauleySBalakrishnanVA distributed-memory randomized structured multifrontal method for sparse direct solutionsSIAM J. Sci. Comput.201739C292C318368681010.1137/16M1079221 XiaJXiYGuMA superfast structured solver for Toeplitz linear systems via randomized samplingSIAM J. Matrix Anal. Appl.201233837858302345410.1137/110831982 GillmanABarnettAHMartinssonPGA spectrally accurate direct solution technique for frequency-domain scattering problems with variable mediaBIT Numer. Math.201555141170331360510.1007/s10543-014-0499-8 XiaJRandomized sparse direct solversSIAM J. Matrix Anal. Appl.201334197227303547810.1137/12087116X GormanCChávezGGhyselsPMaryTRouetF-HLiXSRobust and accurate stopping criteria for adaptive randomized sampling in matrix-free hierarchically semiseparable constructionSIAM J. Sci. Comput.201941S61S85402477310.1137/18M1194961 WangSde HoopMVXiaJOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solverGeophys. Prospect.20115985787310.1111/j.1365-2478.2011.00982.x EngquistBYingLSweeping preconditioner for the Helmholtz equation: hierarchical matrix representationCommun. Pure Appl. Math.201164697735278949210.1002/cpa.20358 XiYXiaJCauleySBalakrishnanVSuperfast and stable structured solvers for Toeplitz least squares via randomized samplingSIAM J. Matrix Anal. Appl.2014354472315273710.1137/120895755 HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068 Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU users’ guide. http://crd.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf HackbuschWGrasedyckLBörmSAn introduction to hierarchical matricesMath. Bohem.2002127229241198152810.21136/MB.2002.134156 ChandrasekaranSDewildePGuMSomasunderamNOn the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEsSIAM J. Matrix Anal. Appl.20103122612290274061910.1137/090775932 ParterSThe use of linear graphs in Gauss eliminationSIAM Rev.1961311913014334910.1137/1003021 XiYXiaJChanRA fast randomized eigensolver with structured LDL factorization updateSIAM J. Matrix Anal. Appl.201435974996323198410.1137/130914966 XiaJChandrasekaranSGuMLiXSSuperfast multifrontal method for large structured linear systems of equationsSIAM J. Matrix Anal. Appl.20093113821411258778310.1137/09074543X LiuXXiaJde HoopMVFast factorization update for general elliptic equations under multiple coefficient updatesSIAM J. Sci. Comput.202042A1174A1199408513510.1137/18M1224623 DuffISReidJKThe multifrontal solution of indefinite sparse symmetric linear equationsACM Trans. Math. Softw.1983930232579196810.1145/356044.356047 GeorgeANested dissection of a regular finite element meshSIAM J. Numer. Anal.19731034536338875610.1137/0710032 HackbuschWBörmSData-sparse approximation by adaptive H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}^{2}$$\end{document}-matricesComputing200269135195414210.1007/s00607-002-1450-4 GillmanAMartinssonPGA direct solver with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation methodSIAM J. Sci. Comput.201436A2023A2046325369210.1137/130918988 LiYYingLDistributed-memory hierarchical interpolative factorizationRes. Math. Sci.20174123365903010.1186/s40687-017-0100-6 XiaJChandrasekaranSGuMLiXSFast algorithms for hierarchically semiseparable matricesNumer. Linear Algebra Appl.201017953976275960310.1002/nla.691 HoKLYingLHierarchical interpolative factorization for elliptic operators: differential equationsCommun. Pure Appl. Math.20166914151451351823610.1002/cpa.21582 BebendorfMHackbuschWExistence of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximants to the inverse FE-matrix of elliptic operator with L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-coefficientsNumer. Math.200395128199393610.1007/s00211-002-0445-6 SchmitzPGYingLA fast direct solver for elliptic problems on general meshes in 2DJ. Comput. Phys.201223113141338287645610.1016/j.jcp.2011.10.013 MartinssonPGA fast randomized algorithm for computing hierarchically semiseparable representation of a matrixSIAM. J. Matrix Anal. Appl.20113212511274285461210.1137/100786617 Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37, A1451–A1474 (2015) HackbuschWKhoromskijBNKriemannRDirect Schur complement method by domain decomposition based on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximationComput. Vis. Sci.20058179188219167710.1007/s00791-005-0008-3 LiuXXiaJde HoopMVParallel randomized and matrix-free direct solvers for large structured dense linear systemsSIAM J. Sci. Comput.201638S508S538356557510.1137/15M1023774 TrefethenLNDavidBNumerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.9780898719574 MartinssonPGA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation methodJ. Comput. Phys.2013242460479306204310.1016/j.jcp.2013.02.019 B Engquist (1761_CR8) 2011; 64 M Pedneault (1761_CR28) 2017; 82 J Xia (1761_CR41) 2012; 33 C Gorman (1761_CR13) 2019; 41 L Grasedyck (1761_CR14) 2006 W Hackbusch (1761_CR15) 2002; 69 JW Liu (1761_CR22) 1992; 34 J Xia (1761_CR40) 2010; 17 S Wang (1761_CR33) 2011; 59 W Hackbusch (1761_CR16) 2002; 127 JS Hesthaven (1761_CR18) 2007 X Liu (1761_CR24) 2020; 42 A George (1761_CR9) 1973; 10 S Chandrasekaran (1761_CR5) 2006; 28 PG Martinsson (1761_CR26) 2013; 242 1761_CR1 S Parter (1761_CR27) 1961; 3 PG Schmitz (1761_CR30) 2014; 258 J Xia (1761_CR37) 2013; 34 X Liu (1761_CR23) 2016; 38 TF Chan (1761_CR3) 1994; 3 S Chandrasekaran (1761_CR4) 2010; 31 Y Xi (1761_CR34) 2014; 35 W Hackbusch (1761_CR17) 2005; 8 A Gillman (1761_CR11) 2015; 55 1761_CR6 PG Martinsson (1761_CR25) 2011; 32 LN Trefethen (1761_CR31) 1997 Z Xin (1761_CR42) 2017; 39 A Gillman (1761_CR12) 2014; 36 KL Ho (1761_CR19) 2016; 69 J Xia (1761_CR36) 2012; 33 J Xia (1761_CR38) 2013; 35 M Bebendorf (1761_CR2) 2003; 95 J Xia (1761_CR39) 2009; 31 S Wang (1761_CR32) 2010; 229 Y Xi (1761_CR35) 2014; 35 L Lin (1761_CR21) 2011; 230 Y Li (1761_CR20) 2017; 4 IS Duff (1761_CR7) 1983; 9 P Ghysels (1761_CR10) 2016; 38 PG Schmitz (1761_CR29) 2012; 231 |
| References_xml | – reference: MartinssonPGA fast randomized algorithm for computing hierarchically semiseparable representation of a matrixSIAM. J. Matrix Anal. Appl.20113212511274285461210.1137/100786617 – reference: LiuJWThe multifrontal method for sparse matrix solution: theory and practiceSIAM Rev.19923482109115629010.1137/1034004 – reference: XinZXiaJde HoopMVCauleySBalakrishnanVA distributed-memory randomized structured multifrontal method for sparse direct solutionsSIAM J. Sci. Comput.201739C292C318368681010.1137/16M1079221 – reference: XiaJXiYGuMA superfast structured solver for Toeplitz linear systems via randomized samplingSIAM J. Matrix Anal. Appl.201233837858302345410.1137/110831982 – reference: Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU users’ guide. http://crd.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf – reference: XiaJChandrasekaranSGuMLiXSFast algorithms for hierarchically semiseparable matricesNumer. Linear Algebra Appl.201017953976275960310.1002/nla.691 – reference: GillmanAMartinssonPGA direct solver with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation methodSIAM J. Sci. Comput.201436A2023A2046325369210.1137/130918988 – reference: PedneaultMCatalinTBoubendirYSchur complement domain decomposition methods for the solution of multiple scattering problemsIMA J. Appl. Math.20178211041134379893910.1093/imamat/hxx026 – reference: LiYYingLDistributed-memory hierarchical interpolative factorizationRes. Math. Sci.20174123365903010.1186/s40687-017-0100-6 – reference: GillmanABarnettAHMartinssonPGA spectrally accurate direct solution technique for frequency-domain scattering problems with variable mediaBIT Numer. Math.201555141170331360510.1007/s10543-014-0499-8 – reference: MartinssonPGA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation methodJ. Comput. Phys.2013242460479306204310.1016/j.jcp.2013.02.019 – reference: LiuXXiaJde HoopMVFast factorization update for general elliptic equations under multiple coefficient updatesSIAM J. Sci. Comput.202042A1174A1199408513510.1137/18M1224623 – reference: HoKLYingLHierarchical interpolative factorization for elliptic operators: differential equationsCommun. Pure Appl. Math.20166914151451351823610.1002/cpa.21582 – reference: HackbuschWKhoromskijBNKriemannRDirect Schur complement method by domain decomposition based on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximationComput. Vis. Sci.20058179188219167710.1007/s00791-005-0008-3 – reference: WangSde HoopMVXiaJAcoustic inverse scattering via Helmholtz operator factorization and optimizationJ. Comput. Phys.201022984458462271918110.1016/j.jcp.2010.07.027 – reference: GhyselsPLiXSRouetFHWilliamsSNapovAAn efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized samplingSIAM J. Sci. Comput.201638S358S384356556710.1137/15M1010117 – reference: XiaJEfficient structured multifrontal factorization for general large sparse matricesSIAM J. Sci. Comput.201335A832A860303548810.1137/120867032 – reference: TrefethenLNDavidBNumerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.9780898719574 – reference: ChandrasekaranSDewildePGuMSomasunderamNOn the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEsSIAM J. Matrix Anal. Appl.20103122612290274061910.1137/090775932 – reference: XiYXiaJChanRA fast randomized eigensolver with structured LDL factorization updateSIAM J. Matrix Anal. Appl.201435974996323198410.1137/130914966 – reference: HesthavenJSWarburtonTNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications2007BerlinSpringer1134.65068 – reference: LinLLuJYingLFast construction of hierarchical matrix representation from matrix–vector multiplicationJ. Comput. Phys.201123040714087278383310.1016/j.jcp.2011.02.033 – reference: EngquistBYingLSweeping preconditioner for the Helmholtz equation: hierarchical matrix representationCommun. Pure Appl. Math.201164697735278949210.1002/cpa.20358 – reference: XiYXiaJCauleySBalakrishnanVSuperfast and stable structured solvers for Toeplitz least squares via randomized samplingSIAM J. Matrix Anal. Appl.2014354472315273710.1137/120895755 – reference: LiuXXiaJde HoopMVParallel randomized and matrix-free direct solvers for large structured dense linear systemsSIAM J. Sci. Comput.201638S508S538356557510.1137/15M1023774 – reference: BebendorfMHackbuschWExistence of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix approximants to the inverse FE-matrix of elliptic operator with L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-coefficientsNumer. Math.200395128199393610.1007/s00211-002-0445-6 – reference: WangSde HoopMVXiaJOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solverGeophys. Prospect.20115985787310.1111/j.1365-2478.2011.00982.x – reference: Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37, A1451–A1474 (2015) – reference: ParterSThe use of linear graphs in Gauss eliminationSIAM Rev.1961311913014334910.1137/1003021 – reference: XiaJChandrasekaranSGuMLiXSSuperfast multifrontal method for large structured linear systems of equationsSIAM J. Matrix Anal. Appl.20093113821411258778310.1137/09074543X – reference: XiaJRandomized sparse direct solversSIAM J. Matrix Anal. Appl.201334197227303547810.1137/12087116X – reference: ChanTFMathewTPDomain decomposition algorithmsActa Numer.1994361143128809610.1017/S0962492900002427 – reference: GeorgeANested dissection of a regular finite element meshSIAM J. Numer. Anal.19731034536338875610.1137/0710032 – reference: HackbuschWGrasedyckLBörmSAn introduction to hierarchical matricesMath. Bohem.2002127229241198152810.21136/MB.2002.134156 – reference: ChandrasekaranSGuMPalsTA fast ULV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ULV$$\end{document} decomposition solver for hierarchically semiseparable representationsSIAM J. Matrix Anal. Appl.200628603622226297110.1137/S0895479803436652 – reference: HackbuschWBörmSData-sparse approximation by adaptive H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}^{2}$$\end{document}-matricesComputing200269135195414210.1007/s00607-002-1450-4 – reference: SchmitzPGYingLA fast direct solver for elliptic problems on general meshes in 2DJ. Comput. Phys.201223113141338287645610.1016/j.jcp.2011.10.013 – reference: DuffISReidJKThe multifrontal solution of indefinite sparse symmetric linear equationsACM Trans. Math. Softw.1983930232579196810.1145/356044.356047 – reference: GrasedyckLKriemannRLe BorneSWidlundOB KeyesDEDomain-decomposition based mathcalH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mathcal{H}$$\end{document}-LU preconditionersDomain Decomposition Methods in Science and Engineering XVI2006BerlinSpringer LNCSE661668 – reference: SchmitzPGYingLA fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matricesJ. Comput. Phys.2014258227245314527710.1016/j.jcp.2013.10.030 – reference: XiaJOn the complexity of some hierarchical structured matrix algorithmsSIAM J. Matrix Anal. Appl.201233388410297021210.1137/110827788 – reference: GormanCChávezGGhyselsPMaryTRouetF-HLiXSRobust and accurate stopping criteria for adaptive randomized sampling in matrix-free hierarchically semiseparable constructionSIAM J. Sci. Comput.201941S61S85402477310.1137/18M1194961 – volume: 36 start-page: A2023 year: 2014 ident: 1761_CR12 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130918988 – volume: 17 start-page: 953 year: 2010 ident: 1761_CR40 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.691 – volume: 231 start-page: 1314 year: 2012 ident: 1761_CR29 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.013 – ident: 1761_CR6 – volume: 127 start-page: 229 year: 2002 ident: 1761_CR16 publication-title: Math. Bohem. doi: 10.21136/MB.2002.134156 – volume: 35 start-page: 44 year: 2014 ident: 1761_CR34 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120895755 – start-page: 661 volume-title: Domain Decomposition Methods in Science and Engineering XVI year: 2006 ident: 1761_CR14 – volume: 34 start-page: 82 year: 1992 ident: 1761_CR22 publication-title: SIAM Rev. doi: 10.1137/1034004 – volume: 95 start-page: 1 year: 2003 ident: 1761_CR2 publication-title: Numer. Math. doi: 10.1007/s00211-002-0445-6 – volume: 33 start-page: 388 year: 2012 ident: 1761_CR36 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110827788 – volume: 33 start-page: 837 year: 2012 ident: 1761_CR41 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110831982 – volume: 3 start-page: 61 year: 1994 ident: 1761_CR3 publication-title: Acta Numer. doi: 10.1017/S0962492900002427 – volume: 38 start-page: S508 year: 2016 ident: 1761_CR23 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1023774 – volume: 31 start-page: 2261 year: 2010 ident: 1761_CR4 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090775932 – ident: 1761_CR1 doi: 10.1137/120903476 – volume: 242 start-page: 460 year: 2013 ident: 1761_CR26 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.02.019 – volume: 258 start-page: 227 year: 2014 ident: 1761_CR30 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.030 – volume: 8 start-page: 179 year: 2005 ident: 1761_CR17 publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-005-0008-3 – volume: 42 start-page: A1174 year: 2020 ident: 1761_CR24 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1224623 – volume: 32 start-page: 1251 year: 2011 ident: 1761_CR25 publication-title: SIAM. J. Matrix Anal. Appl. doi: 10.1137/100786617 – volume: 3 start-page: 119 year: 1961 ident: 1761_CR27 publication-title: SIAM Rev. doi: 10.1137/1003021 – volume: 38 start-page: S358 year: 2016 ident: 1761_CR10 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1010117 – volume: 35 start-page: 974 year: 2014 ident: 1761_CR35 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/130914966 – volume: 28 start-page: 603 year: 2006 ident: 1761_CR5 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479803436652 – volume-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications year: 2007 ident: 1761_CR18 – volume: 64 start-page: 697 year: 2011 ident: 1761_CR8 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20358 – volume: 10 start-page: 345 year: 1973 ident: 1761_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0710032 – volume: 69 start-page: 1 year: 2002 ident: 1761_CR15 publication-title: Computing doi: 10.1007/s00607-002-1450-4 – volume: 59 start-page: 857 year: 2011 ident: 1761_CR33 publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2011.00982.x – volume: 41 start-page: S61 year: 2019 ident: 1761_CR13 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1194961 – volume-title: Numerical Linear Algebra year: 1997 ident: 1761_CR31 doi: 10.1137/1.9780898719574 – volume: 230 start-page: 4071 year: 2011 ident: 1761_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.02.033 – volume: 55 start-page: 141 year: 2015 ident: 1761_CR11 publication-title: BIT Numer. Math. doi: 10.1007/s10543-014-0499-8 – volume: 39 start-page: C292 year: 2017 ident: 1761_CR42 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1079221 – volume: 9 start-page: 302 year: 1983 ident: 1761_CR7 publication-title: ACM Trans. Math. Softw. doi: 10.1145/356044.356047 – volume: 82 start-page: 1104 year: 2017 ident: 1761_CR28 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxx026 – volume: 35 start-page: A832 year: 2013 ident: 1761_CR38 publication-title: SIAM J. Sci. Comput. doi: 10.1137/120867032 – volume: 229 start-page: 8445 year: 2010 ident: 1761_CR32 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.07.027 – volume: 34 start-page: 197 year: 2013 ident: 1761_CR37 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/12087116X – volume: 4 start-page: 1 year: 2017 ident: 1761_CR20 publication-title: Res. Math. Sci. doi: 10.1186/s40687-017-0100-6 – volume: 69 start-page: 1415 year: 2016 ident: 1761_CR19 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21582 – volume: 31 start-page: 1382 year: 2009 ident: 1761_CR39 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/09074543X |
| SSID | ssj0009892 |
| Score | 2.3242233 |
| Snippet | We propose an interconnected hierarchical rank structure and use it to design a fast direct elliptic solver that can significantly reduce the amount of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Algorithms Approximation Computational Mathematics and Numerical Analysis Design Factorization Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Solvers Theoretical |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50-uCLOn_gdEoefFA02KRpkzyJiGMgDEGFvZU0yWAwtmmnf79JlloU3IvPbUOa7-5yudx9B3AuGRkxJRW2IVqVaoJLTnzpE0nzkcy1tkloNsEHAzEcyqcYcKtiWmVtE4OhNjPtY-Q3VDrhI5nIs9v5G_Zdo_ztamyhsQ4bhFLi5fyR44Z0V4SmyE6RMuzcZhaLZmLpnCS-NtknJrijPOY_N6bG2_x1QRr2nd7Of2e8C9vR40R3SxFpw5qd7kE76nSFLiLx9OU-9EN4UPvUF-0cUdQf--rk0Cxlgp4D0eyHO50j5-einqoWaGkvkc_7cJZHozrGdgCvvYeX-z6OnRawdiq4wGUmc8OJEZokRhDOS66YZ66jmlqVC-v-w9KRKQ11m5t1h1qVlm4BTWq4UEykh9Cazqb2CBBhXMkstVmZMUYZlyphOudWEGJ1UqoOkHqZCx1pyH03jEnRECh7aAoHTRGgKXgHrr6_mS9JOFa-3a3xKKJCVkUDRgeua0Sbx3-Pdrx6tBPYokGIfC5PF1oOC3sKm_pzMa7ez4I4fgFIleJG priority: 102 providerName: ProQuest |
| Title | Interconnected Hierarchical Structures for Fast Direct Elliptic Solution |
| URI | https://link.springer.com/article/10.1007/s10915-022-01761-7 https://www.proquest.com/docview/2918315865 |
| Volume | 91 |
| WOSCitedRecordID | wos000761327700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-4zYMe1E3F6Rw5eFC00LRJkxxVNgbiGJvK8FLSNIPBmGKnf79J1q4qKuillyahfS_vIy_v_R7AiSB4QqSQnnbRqlBhL2HYlj7hMJqISCntu2YTrN_n47EY5EVhWZHtXlxJOk39odhNYFtNbFMJzOHbYxWoGXPHrTgORw8l1C53rZCN-FDPOMskL5X5fo3P5qj0Mb9cizpr093-33fuwFbuXaLL5Xaow5qeN2DzdgXNmjWgnktzhk5zyOmzXei5wKCySS_KuKCoN7V1ya5NygyNHMTsqzmXI-Phoq7MFmipKZHN-DA6R6EiurYH993O3XXPy3sseMoI38JLqIhShlOusJ9yzFjCJLGYdYEKtIy4DjHVwSRN0sCYNW2OszJMzA-mYcq4JDzch-r8aa4PAGHCpKChpgklJCBMSJ-oiGmOsVZ-IpuAC1LHKgcgt30wZnEJnWxJFxvSxY50MWvC-WrO8xJ-49fRrYKDcS6KWRwIo7Uw5RFtwkXBsfL1z6sd_m34EWwEjuk2q6cFVcMbfQzr6m0xzV7aULvq9AfDNlRumGeeA_rYdtv2HTt_4G4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FfSirg9cXTUHBUWLmzZtkoOIqMuKuggqiJeapllYkPXRVfFP-RudZFuLgt724LltSjvfPDKZ-QZgXTLaYUoqz7hsVaCpl3BqW59oEHVkpLVpuGETvN0WNzfyYgQ-il4YW1ZZ2ERnqNMHbXPku75E8NFQROH-45Nnp0bZ09VihMYAFqfm_Q23bNneyRHKd8P3m8dXhy0vnyrgaYRb30tCGaWcpkLTRioo5wlXzLK0-do3KhIG32L8TpqkPhpygxs4FSToVdMg5UIxEeC6ozDGGG6WUH8uwtuS5Fe4IcyouKGHYTrLm3TyVj1JbS-0LYTgEfX4d0dYRrc_DmSdn2tO_7c_NANTeURNDgYqUIUR05uFam6zMrKZE2tvzUHLpT-1Le3RGGiTVtd2X7thMPfk0hHpvjzjIxjHk6bK-mTgD4ita0HLqkmRQ5yH66F80QJUeg89swiEMq5kGJgwCRECjEvVYDriRlBqdCNRNaCFWGOd06zbaR_3cUkQbaEQIxRiB4WY12D765nHAcnIn3fXC_nHucHJ4lL4NdgpEFRe_n21pb9XW4OJ1tX5WXx20j5dhknfAdjWLdWhgnIxKzCuX_vd7HnVqQKBu2Ej6xNVlD5g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED50iuiDuqk4nZoHHxQtW9qkSR5FHRN1DKbiW0nTFAajDjv9_SZZu01RQXxuGtq73OUuue87gGNBcEqkkJ52p1WBwl7MsIU-4SBMRaiUbrlmE6zb5c_PojeH4nfV7uWV5ATTYFmasnFzlKTNOeCbwBZZbMsKTCLusUVYIrZpkM3X-08z2l3u2iIbU6KeCZxJAZv5fo7PW9Ms3vxyRep2nvbG_795E9aLqBNdTJZJFRZ0VoO1-ylla16DamHlOTopqKhPt6DjDgyVLYZRJjRFnYHFK7v2KUPUd9SzbyZfRybyRW2Zj9HEgyJbCWJ8kULlqds2PLavHy47XtF7wVPGKMdeTEWYMJxwhVsJx4zFTBLLZecrX8uQ6wBT7adJnPhmu9MmzZVBbH4wCRLGJeHBDlSyl0zvAsKESUEDTWNKiE-YkC2iQqY5xlq1YlkHXIo9UgUxue2PMYxmlMpWdJERXeREF7E6nE3fGU1oOX4d3Si1GRUmmke-MN4MUx7SOpyX2ps9_nm2vb8NP4KV3lU7urvp3u7Dqu_0bwt_GlAxatIHsKzex4P89dCt3A_m3-jM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interconnected+Hierarchical+Structures+for+Fast+Direct+Elliptic+Solution&rft.jtitle=Journal+of+scientific+computing&rft.au=Liu%2C+Xiao&rft.au=Xia%2C+Jianlin&rft.au=V.+de+Hoop%2C+Maarten&rft.au=Ou%2C+Xiaofeng&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=91&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-022-01761-7&rft.externalDocID=10_1007_s10915_022_01761_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |