Hybrid particle swarm optimization and pattern search algorithm

Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two decades, and the pattern search (PS) method is one of the most important local optimization algorithms. In this paper, we test three methods of hy...

Full description

Saved in:
Bibliographic Details
Published in:Optimization and engineering Vol. 22; no. 3; pp. 1539 - 1555
Main Authors: Koessler, Eric, Almomani, Ahmad
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2021
Springer Nature B.V
Subjects:
ISSN:1389-4420, 1573-2924
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two decades, and the pattern search (PS) method is one of the most important local optimization algorithms. In this paper, we test three methods of hybridizing PSO and PS to improve the global minima and robustness. All methods let PSO run first followed by PS. The first method lets PSO use a large number of particles for a limited number of iterations. The second method lets PSO run normally until tolerance is reached. The third method lets PSO run normally until the average particle distance from the global best location is within a threshold. Numerical results using non-differentiable test functions reveal that all three methods improve the global minima and robustness versus PSO. The third hybrid method was also applied to a basin network optimization problem and outperformed PSO with filter method and genetic algorithm with implicit filtering.
AbstractList Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two decades, and the pattern search (PS) method is one of the most important local optimization algorithms. In this paper, we test three methods of hybridizing PSO and PS to improve the global minima and robustness. All methods let PSO run first followed by PS. The first method lets PSO use a large number of particles for a limited number of iterations. The second method lets PSO run normally until tolerance is reached. The third method lets PSO run normally until the average particle distance from the global best location is within a threshold. Numerical results using non-differentiable test functions reveal that all three methods improve the global minima and robustness versus PSO. The third hybrid method was also applied to a basin network optimization problem and outperformed PSO with filter method and genetic algorithm with implicit filtering.
Author Koessler, Eric
Almomani, Ahmad
Author_xml – sequence: 1
  givenname: Eric
  surname: Koessler
  fullname: Koessler, Eric
  organization: Mathematics Department, State University of New York at Geneseo
– sequence: 2
  givenname: Ahmad
  surname: Almomani
  fullname: Almomani, Ahmad
  email: almomani@geneseo.edu
  organization: Mathematics Department, State University of New York at Geneseo
BookMark eNp9kE9LAzEQxYNUsFW_gKcFz9FMstkkJ5GiVih40XPIZrNtyv4zSZH66d22guChpxmY95s382Zo0vWdQ-gGyB0QIu4jAJGACSWYKM5yLM7QFLhgmCqaT8aeSYXznJILNItxQwgUnMopeljsyuCrbDAhedu4LH6Z0Gb9kHzrv03yfZeZbj9PyYUui84Eu85Ms-qDT-v2Cp3Xponu-rdeoo_np_f5Ai_fXl7nj0tsGaiEy1w55WRecFdWDqRlTAGjdV3aqmKOSGtsWRgBBbUgakGkAQEKJGdcFZVhl-j2uHcI_efWxaQ3_TZ0o6WmXBJBBGd0VNGjyoY-xuBqPQTfmrDTQPQ-KH0MSo9B6UNQWoyQ_AdZnw6fp2B8cxplRzSOPt3Khb-rTlA_R35_Cg
CitedBy_id crossref_primary_10_1080_15435075_2023_2194395
crossref_primary_10_3390_en13215678
crossref_primary_10_1177_14750902231200684
crossref_primary_10_1016_j_apm_2023_05_023
crossref_primary_10_1016_j_measurement_2023_113951
crossref_primary_10_1109_ACCESS_2022_3141432
crossref_primary_10_3390_math10193663
crossref_primary_10_1088_1674_1056_ade064
crossref_primary_10_1155_2021_5491017
crossref_primary_10_3390_vibration6030030
crossref_primary_10_3390_math11234810
crossref_primary_10_1007_s00202_024_02375_y
crossref_primary_10_3390_su14031847
crossref_primary_10_3390_fractalfract7060448
crossref_primary_10_1016_j_cej_2023_144792
crossref_primary_10_3390_a15110392
crossref_primary_10_3390_en15103756
crossref_primary_10_1155_2022_7630011
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_3390_app12178796
crossref_primary_10_3390_sym16060661
crossref_primary_10_1016_j_buildenv_2023_110883
crossref_primary_10_1016_j_buildenv_2022_109157
crossref_primary_10_1007_s12065_024_00966_z
crossref_primary_10_1007_s11081_021_09658_4
crossref_primary_10_1007_s40997_022_00520_1
crossref_primary_10_1016_j_buildenv_2023_110082
Cites_doi 10.1109/AISP.2012.6313781
10.1007/s11771-014-2291-y
10.1145/321062.321069
10.1504/IJMMNO.2013.055204
10.1007/s10898-007-9133-5
10.1007/978-3-319-72550-5_2
10.1007/978-0-387-30164-8_630
10.1061/(ASCE)IR.1943-4774.0001310
10.1016/j.apenergy.2009.10.007
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11081-020-09534-7
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2924
EndPage 1555
ExternalDocumentID 10_1007_s11081_020_09534_7
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
S0W
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c319t-b49e9e8465ebde18c339132ffbcdd3e08cacb6a7162c17f708a17191853596da3
IEDL.DBID RSV
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548826700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-4420
IngestDate Thu Sep 25 00:40:24 EDT 2025
Tue Nov 18 21:45:48 EST 2025
Sat Nov 29 01:39:09 EST 2025
Fri Feb 21 02:47:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Pattern search
Test problem benchmarking
Particle swarm optimization
Hybrid algorithm
Derivative-free optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b49e9e8465ebde18c339132ffbcdd3e08cacb6a7162c17f708a17191853596da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2580707532
PQPubID 326265
PageCount 17
ParticipantIDs proquest_journals_2580707532
crossref_primary_10_1007_s11081_020_09534_7
crossref_citationtrail_10_1007_s11081_020_09534_7
springer_journals_10_1007_s11081_020_09534_7
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences
PublicationTitle Optimization and engineering
PublicationTitleAbbrev Optim Eng
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Meftahi M, Jazi SH (2012) A new hybrid algorithm of pattern search and abc for optimization. In: The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012), pp 403–406
Jamil M, Yang X-S (2013). A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008
Wahid F, Ghazali R (2018) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evolut Intell
Clerc M et al. (2007) Standard pso 2007. Particle Swarm Central Website
Ritz B (2017) A hybrid genetic algorithm with implicit filtering for mixed integer optimization problem. PhD thesis, Clarkson University, Potsdam, NY
HookeRA JeevesT”direct search” solution of numerical and statistical problemsJ ACM (JACM)19618221222910.1145/321062.321069
KhadangaRKSatapathyJKA hybrid gravitational search and pattern search algorithm for tuning damping controller parameters for a unified power flow controller-a comparative approachInt J Numer Modell Electron Netw Dev Fields2018313e231
AlsumaitJSSykulskiJKAl-OthmanAKA hybrid ga-ps-sqp method to solve power system valve-point economic dispatch problemsAppl Energy20108751773178110.1016/j.apenergy.2009.10.007
Ansari Ardeh M. Benchmarkfcns toolbox
LongWZhangWHuangYChenYA hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimizationJ Central South Univ20142183197320410.1007/s11771-014-2291-y
Matlab, MATLAB2017b, The MathWorks, Natick, MA, USA
McCartJAlmomaniANew criteria for comparing global stochastic derivative-free optimization algorithms(IJACSA) Int J Adv Comput Sci Appl2019107614625
BeauregardJRitzBW JenkinsER KavanaghKW FarthingMOptimization of a basin network using hybridized global search algorithmsJ Irrig Drain Eng201814480401801710.1061/(ASCE)IR.1943-4774.0001310
Weihang Z, Curry J (2009) Particle swarm with graphics hardware acceleration and local pattern search on bound constrained problems. In: 2009 IEEE swarm intelligence symposium, SIS 2009–proceedings, pp 1 – 8
Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766
Almomani A (2012) Constraint handling for derivative-free optimization. PhD thesis, Clarkson University, Potsdam, NY
MirjaliliSAMohd HashimSZTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248
Ismael F. VazAVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ Global Optim2007392197219233637110.1007/s10898-007-9133-5
R Hooke (9534_CR6) 1961; 8
W Long (9534_CR10) 2014; 21
SA Mirjalili (9534_CR14) 2012; 218
A Ismael F. Vaz (9534_CR16) 2007; 39
9534_CR18
9534_CR17
9534_CR5
9534_CR8
9534_CR15
9534_CR7
JS Alsumait (9534_CR2) 2010; 87
J McCart (9534_CR12) 2019; 10
9534_CR13
9534_CR1
J Beauregard (9534_CR4) 2018; 144
RK Khadanga (9534_CR9) 2018; 31
9534_CR11
9534_CR3
References_xml – reference: Meftahi M, Jazi SH (2012) A new hybrid algorithm of pattern search and abc for optimization. In: The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012), pp 403–406
– reference: Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766
– reference: MirjaliliSAMohd HashimSZTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248
– reference: Wahid F, Ghazali R (2018) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evolut Intell
– reference: Ansari Ardeh M. Benchmarkfcns toolbox
– reference: Ritz B (2017) A hybrid genetic algorithm with implicit filtering for mixed integer optimization problem. PhD thesis, Clarkson University, Potsdam, NY
– reference: BeauregardJRitzBW JenkinsER KavanaghKW FarthingMOptimization of a basin network using hybridized global search algorithmsJ Irrig Drain Eng201814480401801710.1061/(ASCE)IR.1943-4774.0001310
– reference: Jamil M, Yang X-S (2013). A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008
– reference: Weihang Z, Curry J (2009) Particle swarm with graphics hardware acceleration and local pattern search on bound constrained problems. In: 2009 IEEE swarm intelligence symposium, SIS 2009–proceedings, pp 1 – 8
– reference: Ismael F. VazAVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ Global Optim2007392197219233637110.1007/s10898-007-9133-5
– reference: AlsumaitJSSykulskiJKAl-OthmanAKA hybrid ga-ps-sqp method to solve power system valve-point economic dispatch problemsAppl Energy20108751773178110.1016/j.apenergy.2009.10.007
– reference: HookeRA JeevesT”direct search” solution of numerical and statistical problemsJ ACM (JACM)19618221222910.1145/321062.321069
– reference: McCartJAlmomaniANew criteria for comparing global stochastic derivative-free optimization algorithms(IJACSA) Int J Adv Comput Sci Appl2019107614625
– reference: Almomani A (2012) Constraint handling for derivative-free optimization. PhD thesis, Clarkson University, Potsdam, NY
– reference: Clerc M et al. (2007) Standard pso 2007. Particle Swarm Central Website
– reference: KhadangaRKSatapathyJKA hybrid gravitational search and pattern search algorithm for tuning damping controller parameters for a unified power flow controller-a comparative approachInt J Numer Modell Electron Netw Dev Fields2018313e231
– reference: LongWZhangWHuangYChenYA hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimizationJ Central South Univ20142183197320410.1007/s11771-014-2291-y
– reference: Matlab, MATLAB2017b, The MathWorks, Natick, MA, USA
– ident: 9534_CR13
  doi: 10.1109/AISP.2012.6313781
– ident: 9534_CR3
– volume: 21
  start-page: 3197
  issue: 8
  year: 2014
  ident: 9534_CR10
  publication-title: J Central South Univ
  doi: 10.1007/s11771-014-2291-y
– ident: 9534_CR18
– ident: 9534_CR5
– volume: 218
  start-page: 11125
  issue: 22
  year: 2012
  ident: 9534_CR14
  publication-title: Appl Math Comput
– ident: 9534_CR1
– volume: 8
  start-page: 212
  issue: 2
  year: 1961
  ident: 9534_CR6
  publication-title: J ACM (JACM)
  doi: 10.1145/321062.321069
– ident: 9534_CR7
  doi: 10.1504/IJMMNO.2013.055204
– volume: 31
  start-page: e231
  issue: 3
  year: 2018
  ident: 9534_CR9
  publication-title: Int J Numer Modell Electron Netw Dev Fields
– volume: 39
  start-page: 197
  issue: 2
  year: 2007
  ident: 9534_CR16
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9133-5
– ident: 9534_CR17
  doi: 10.1007/978-3-319-72550-5_2
– ident: 9534_CR8
  doi: 10.1007/978-0-387-30164-8_630
– volume: 144
  start-page: 04018017
  issue: 8
  year: 2018
  ident: 9534_CR4
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0001310
– volume: 10
  start-page: 614
  issue: 7
  year: 2019
  ident: 9534_CR12
  publication-title: (IJACSA) Int J Adv Comput Sci Appl
– volume: 87
  start-page: 1773
  issue: 5
  year: 2010
  ident: 9534_CR2
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.10.007
– ident: 9534_CR15
– ident: 9534_CR11
SSID ssj0016528
Score 2.402567
Snippet Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1539
SubjectTerms Control
Engineering
Environmental Management
Financial Engineering
Genetic algorithms
Local optimization
Mathematics
Mathematics and Statistics
Minima
Operations Research/Decision Theory
Optimization
Optimization algorithms
Particle swarm optimization
Pattern search
Research Article
Robustness (mathematics)
Search algorithms
Systems Theory
Title Hybrid particle swarm optimization and pattern search algorithm
URI https://link.springer.com/article/10.1007/s11081-020-09534-7
https://www.proquest.com/docview/2580707532
Volume 22
WOSCitedRecordID wos000548826700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-2924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016528
  issn: 1389-4420
  databaseCode: RSV
  dateStart: 20000601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F1lR68aaBt0iY5iYiLB13EF3sreerCbndpq-K_N-m2WxUV9FIoSUOZzGQmzHzfAHDIERZWUyT0VSwhRkZCoYTroRFqg0gkfVMChS9Jr0f7fXZdgcLyutq9TkmWJ3UDdgus-4LuuuM40jAk82DBujvqGjbc3D7McgdxVHZUdRk4iHHoV1CZ79f47I6aGPNLWrT0Nt3V__3nGlipokvvdKoO62BOpxtg-QPnoH27mhG15pvg5OLNQba8SaVBXv7Ks5E3tgfJqEJoejx14w71k3pTw_D48HGcDYqn0Ra4757fnV3AqqcClNbYCigw00zboCPSQumASoSYvZAaI6RSSPtUcili7nilZEAM8SkPiL3TWa8esVhxtA1a6TjVO8AzhjETKU5jLDARijOqjKbIPjEXkWyDoBZtIivCcdf3Ypg0VMlOVIkVVVKKKiFtcDT7ZjKl2_h1dqfesaQyvTwJI-oojCIUtsFxvUPN8M-r7f5t-h5YCl19S1lv1gGtInvW-2BRvhSDPDsoVfIdO4DauQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itmoM3XUiym9dJRCwV2yJapbewTy20aWmi4r93N01aFRX0Egi7WcLszM4sM983AMcUE6Y1hSNb-BwRrDhigpkeGq5UOPC4rXKgcDNot8NuN7opQGFpWe1epiTzk3oGdnO0-0LmumM40ggK5mGBaI9lGPNv7x6muQPfyzuqmgwcIsS1C6jM92t8dkezGPNLWjT3NvW1__3nOqwW0aV1PlGHDZiTySasfOAc1G-tKVFrugVnjTcD2bJGhQZZ6SsdD6yhPkgGBULTookZN6ifxJoYhkX7j8NxL3sabMN9_bJz0UBFTwXEtbFliJFIRlIHHZ5kQjohxzjSF1KlGBcCSzvklDOfGl4p7gQqsEPqBPpOp726F_mC4h2oJMNE7oKlVBQpT9DQJ4wETNAoFEqGWD8JZR6vglOKNuYF4bjpe9GPZ1TJRlSxFlWciyoOqnAy_WY0odv4dXat3LG4ML00dr3QUBh52K3CablDs-GfV9v72_QjWGp0Ws24edW-3odl19S65LVnNahk42d5AIv8Jeul48NcPd8BhRHdnQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiDt1itmgffdGmS3VxPImqpWEvBg76FPbXQpiWNiv_e3TQ9FBXEl0DYgzA7k9lh5vsG4JhiwrSmcGQLnyOCFUdMMNNDw5UKBx63VQ4UbgTNZthuR60ZFH9e7T5OSY4wDYalKcmqA6GqU-Cbo10ZMqGP4UsjKJiHBWIK6U28fvc4ySP4Xt5d1WTjECGuXcBmvt_js2ua3je_pEhzz1Nb-_83r8Nqceu0zkdqsgFzMtmElRkuQv12OyFwHW7BWf3dQLmsQaFZ1vCNpj2rr38wvQK5adHEjBs0UGKNDMai3ad-2smee9vwULu6v6ijotcC4toIM8RIJCOpLyOeZEI6Icc40oGqUowLgaUdcsqZTw3fFHcCFdghdQId62lv70W-oHgHSkk_kbtgKRVFyhM09AkjARM0CoWSIdZPQpnHy-CMxRzzgojc9MPoxlMKZSOqWIsqzkUVB2U4mawZjGg4fp1dGZ9eXJjkMHa90FAbedgtw-n4tKbDP--297fpR7DUuqzFjevmzT4su6YEJi9Jq0ApS1_kASzy16wzTA9zTf0AsxLmgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+particle+swarm+optimization+and+pattern+search+algorithm&rft.jtitle=Optimization+and+engineering&rft.au=Koessler%2C+Eric&rft.au=Almomani%2C+Ahmad&rft.date=2021-09-01&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=22&rft.issue=3&rft.spage=1539&rft.epage=1555&rft_id=info:doi/10.1007%2Fs11081-020-09534-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11081_020_09534_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon