Hybrid particle swarm optimization and pattern search algorithm
Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two decades, and the pattern search (PS) method is one of the most important local optimization algorithms. In this paper, we test three methods of hy...
Saved in:
| Published in: | Optimization and engineering Vol. 22; no. 3; pp. 1539 - 1555 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.09.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1389-4420, 1573-2924 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two decades, and the pattern search (PS) method is one of the most important local optimization algorithms. In this paper, we test three methods of hybridizing PSO and PS to improve the global minima and robustness. All methods let PSO run first followed by PS. The first method lets PSO use a large number of particles for a limited number of iterations. The second method lets PSO run normally until tolerance is reached. The third method lets PSO run normally until the average particle distance from the global best location is within a threshold. Numerical results using non-differentiable test functions reveal that all three methods improve the global minima and robustness versus PSO. The third hybrid method was also applied to a basin network optimization problem and outperformed PSO with filter method and genetic algorithm with implicit filtering. |
|---|---|
| AbstractList | Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two decades, and the pattern search (PS) method is one of the most important local optimization algorithms. In this paper, we test three methods of hybridizing PSO and PS to improve the global minima and robustness. All methods let PSO run first followed by PS. The first method lets PSO use a large number of particles for a limited number of iterations. The second method lets PSO run normally until tolerance is reached. The third method lets PSO run normally until the average particle distance from the global best location is within a threshold. Numerical results using non-differentiable test functions reveal that all three methods improve the global minima and robustness versus PSO. The third hybrid method was also applied to a basin network optimization problem and outperformed PSO with filter method and genetic algorithm with implicit filtering. |
| Author | Koessler, Eric Almomani, Ahmad |
| Author_xml | – sequence: 1 givenname: Eric surname: Koessler fullname: Koessler, Eric organization: Mathematics Department, State University of New York at Geneseo – sequence: 2 givenname: Ahmad surname: Almomani fullname: Almomani, Ahmad email: almomani@geneseo.edu organization: Mathematics Department, State University of New York at Geneseo |
| BookMark | eNp9kE9LAzEQxYNUsFW_gKcFz9FMstkkJ5GiVih40XPIZrNtyv4zSZH66d22guChpxmY95s382Zo0vWdQ-gGyB0QIu4jAJGACSWYKM5yLM7QFLhgmCqaT8aeSYXznJILNItxQwgUnMopeljsyuCrbDAhedu4LH6Z0Gb9kHzrv03yfZeZbj9PyYUui84Eu85Ms-qDT-v2Cp3Xponu-rdeoo_np_f5Ai_fXl7nj0tsGaiEy1w55WRecFdWDqRlTAGjdV3aqmKOSGtsWRgBBbUgakGkAQEKJGdcFZVhl-j2uHcI_efWxaQ3_TZ0o6WmXBJBBGd0VNGjyoY-xuBqPQTfmrDTQPQ-KH0MSo9B6UNQWoyQ_AdZnw6fp2B8cxplRzSOPt3Khb-rTlA_R35_Cg |
| CitedBy_id | crossref_primary_10_1080_15435075_2023_2194395 crossref_primary_10_3390_en13215678 crossref_primary_10_1177_14750902231200684 crossref_primary_10_1016_j_apm_2023_05_023 crossref_primary_10_1016_j_measurement_2023_113951 crossref_primary_10_1109_ACCESS_2022_3141432 crossref_primary_10_3390_math10193663 crossref_primary_10_1088_1674_1056_ade064 crossref_primary_10_1155_2021_5491017 crossref_primary_10_3390_vibration6030030 crossref_primary_10_3390_math11234810 crossref_primary_10_1007_s00202_024_02375_y crossref_primary_10_3390_su14031847 crossref_primary_10_3390_fractalfract7060448 crossref_primary_10_1016_j_cej_2023_144792 crossref_primary_10_3390_a15110392 crossref_primary_10_3390_en15103756 crossref_primary_10_1155_2022_7630011 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_3390_app12178796 crossref_primary_10_3390_sym16060661 crossref_primary_10_1016_j_buildenv_2023_110883 crossref_primary_10_1016_j_buildenv_2022_109157 crossref_primary_10_1007_s12065_024_00966_z crossref_primary_10_1007_s11081_021_09658_4 crossref_primary_10_1007_s40997_022_00520_1 crossref_primary_10_1016_j_buildenv_2023_110082 |
| Cites_doi | 10.1109/AISP.2012.6313781 10.1007/s11771-014-2291-y 10.1145/321062.321069 10.1504/IJMMNO.2013.055204 10.1007/s10898-007-9133-5 10.1007/978-3-319-72550-5_2 10.1007/978-0-387-30164-8_630 10.1061/(ASCE)IR.1943-4774.0001310 10.1016/j.apenergy.2009.10.007 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1007/s11081-020-09534-7 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2924 |
| EndPage | 1555 |
| ExternalDocumentID | 10_1007_s11081_020_09534_7 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS S0W 7TB 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c319t-b49e9e8465ebde18c339132ffbcdd3e08cacb6a7162c17f708a17191853596da3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548826700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-4420 |
| IngestDate | Thu Sep 25 00:40:24 EDT 2025 Tue Nov 18 21:45:48 EST 2025 Sat Nov 29 01:39:09 EST 2025 Fri Feb 21 02:47:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Pattern search Test problem benchmarking Particle swarm optimization Hybrid algorithm Derivative-free optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b49e9e8465ebde18c339132ffbcdd3e08cacb6a7162c17f708a17191853596da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2580707532 |
| PQPubID | 326265 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2580707532 crossref_primary_10_1007_s11081_020_09534_7 crossref_citationtrail_10_1007_s11081_020_09534_7 springer_journals_10_1007_s11081_020_09534_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences |
| PublicationTitle | Optimization and engineering |
| PublicationTitleAbbrev | Optim Eng |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Meftahi M, Jazi SH (2012) A new hybrid algorithm of pattern search and abc for optimization. In: The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012), pp 403–406 Jamil M, Yang X-S (2013). A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008 Wahid F, Ghazali R (2018) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evolut Intell Clerc M et al. (2007) Standard pso 2007. Particle Swarm Central Website Ritz B (2017) A hybrid genetic algorithm with implicit filtering for mixed integer optimization problem. PhD thesis, Clarkson University, Potsdam, NY HookeRA JeevesT”direct search” solution of numerical and statistical problemsJ ACM (JACM)19618221222910.1145/321062.321069 KhadangaRKSatapathyJKA hybrid gravitational search and pattern search algorithm for tuning damping controller parameters for a unified power flow controller-a comparative approachInt J Numer Modell Electron Netw Dev Fields2018313e231 AlsumaitJSSykulskiJKAl-OthmanAKA hybrid ga-ps-sqp method to solve power system valve-point economic dispatch problemsAppl Energy20108751773178110.1016/j.apenergy.2009.10.007 Ansari Ardeh M. Benchmarkfcns toolbox LongWZhangWHuangYChenYA hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimizationJ Central South Univ20142183197320410.1007/s11771-014-2291-y Matlab, MATLAB2017b, The MathWorks, Natick, MA, USA McCartJAlmomaniANew criteria for comparing global stochastic derivative-free optimization algorithms(IJACSA) Int J Adv Comput Sci Appl2019107614625 BeauregardJRitzBW JenkinsER KavanaghKW FarthingMOptimization of a basin network using hybridized global search algorithmsJ Irrig Drain Eng201814480401801710.1061/(ASCE)IR.1943-4774.0001310 Weihang Z, Curry J (2009) Particle swarm with graphics hardware acceleration and local pattern search on bound constrained problems. In: 2009 IEEE swarm intelligence symposium, SIS 2009–proceedings, pp 1 – 8 Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766 Almomani A (2012) Constraint handling for derivative-free optimization. PhD thesis, Clarkson University, Potsdam, NY MirjaliliSAMohd HashimSZTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248 Ismael F. VazAVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ Global Optim2007392197219233637110.1007/s10898-007-9133-5 R Hooke (9534_CR6) 1961; 8 W Long (9534_CR10) 2014; 21 SA Mirjalili (9534_CR14) 2012; 218 A Ismael F. Vaz (9534_CR16) 2007; 39 9534_CR18 9534_CR17 9534_CR5 9534_CR8 9534_CR15 9534_CR7 JS Alsumait (9534_CR2) 2010; 87 J McCart (9534_CR12) 2019; 10 9534_CR13 9534_CR1 J Beauregard (9534_CR4) 2018; 144 RK Khadanga (9534_CR9) 2018; 31 9534_CR11 9534_CR3 |
| References_xml | – reference: Meftahi M, Jazi SH (2012) A new hybrid algorithm of pattern search and abc for optimization. In: The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012), pp 403–406 – reference: Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766 – reference: MirjaliliSAMohd HashimSZTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248 – reference: Wahid F, Ghazali R (2018) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evolut Intell – reference: Ansari Ardeh M. Benchmarkfcns toolbox – reference: Ritz B (2017) A hybrid genetic algorithm with implicit filtering for mixed integer optimization problem. PhD thesis, Clarkson University, Potsdam, NY – reference: BeauregardJRitzBW JenkinsER KavanaghKW FarthingMOptimization of a basin network using hybridized global search algorithmsJ Irrig Drain Eng201814480401801710.1061/(ASCE)IR.1943-4774.0001310 – reference: Jamil M, Yang X-S (2013). A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008 – reference: Weihang Z, Curry J (2009) Particle swarm with graphics hardware acceleration and local pattern search on bound constrained problems. In: 2009 IEEE swarm intelligence symposium, SIS 2009–proceedings, pp 1 – 8 – reference: Ismael F. VazAVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ Global Optim2007392197219233637110.1007/s10898-007-9133-5 – reference: AlsumaitJSSykulskiJKAl-OthmanAKA hybrid ga-ps-sqp method to solve power system valve-point economic dispatch problemsAppl Energy20108751773178110.1016/j.apenergy.2009.10.007 – reference: HookeRA JeevesT”direct search” solution of numerical and statistical problemsJ ACM (JACM)19618221222910.1145/321062.321069 – reference: McCartJAlmomaniANew criteria for comparing global stochastic derivative-free optimization algorithms(IJACSA) Int J Adv Comput Sci Appl2019107614625 – reference: Almomani A (2012) Constraint handling for derivative-free optimization. PhD thesis, Clarkson University, Potsdam, NY – reference: Clerc M et al. (2007) Standard pso 2007. Particle Swarm Central Website – reference: KhadangaRKSatapathyJKA hybrid gravitational search and pattern search algorithm for tuning damping controller parameters for a unified power flow controller-a comparative approachInt J Numer Modell Electron Netw Dev Fields2018313e231 – reference: LongWZhangWHuangYChenYA hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimizationJ Central South Univ20142183197320410.1007/s11771-014-2291-y – reference: Matlab, MATLAB2017b, The MathWorks, Natick, MA, USA – ident: 9534_CR13 doi: 10.1109/AISP.2012.6313781 – ident: 9534_CR3 – volume: 21 start-page: 3197 issue: 8 year: 2014 ident: 9534_CR10 publication-title: J Central South Univ doi: 10.1007/s11771-014-2291-y – ident: 9534_CR18 – ident: 9534_CR5 – volume: 218 start-page: 11125 issue: 22 year: 2012 ident: 9534_CR14 publication-title: Appl Math Comput – ident: 9534_CR1 – volume: 8 start-page: 212 issue: 2 year: 1961 ident: 9534_CR6 publication-title: J ACM (JACM) doi: 10.1145/321062.321069 – ident: 9534_CR7 doi: 10.1504/IJMMNO.2013.055204 – volume: 31 start-page: e231 issue: 3 year: 2018 ident: 9534_CR9 publication-title: Int J Numer Modell Electron Netw Dev Fields – volume: 39 start-page: 197 issue: 2 year: 2007 ident: 9534_CR16 publication-title: J Global Optim doi: 10.1007/s10898-007-9133-5 – ident: 9534_CR17 doi: 10.1007/978-3-319-72550-5_2 – ident: 9534_CR8 doi: 10.1007/978-0-387-30164-8_630 – volume: 144 start-page: 04018017 issue: 8 year: 2018 ident: 9534_CR4 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0001310 – volume: 10 start-page: 614 issue: 7 year: 2019 ident: 9534_CR12 publication-title: (IJACSA) Int J Adv Comput Sci Appl – volume: 87 start-page: 1773 issue: 5 year: 2010 ident: 9534_CR2 publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.10.007 – ident: 9534_CR15 – ident: 9534_CR11 |
| SSID | ssj0016528 |
| Score | 2.402567 |
| Snippet | Particle swarm optimization (PSO) is one of the most commonly used stochastic optimization algorithms for many researchers and scientists of the last two... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1539 |
| SubjectTerms | Control Engineering Environmental Management Financial Engineering Genetic algorithms Local optimization Mathematics Mathematics and Statistics Minima Operations Research/Decision Theory Optimization Optimization algorithms Particle swarm optimization Pattern search Research Article Robustness (mathematics) Search algorithms Systems Theory |
| Title | Hybrid particle swarm optimization and pattern search algorithm |
| URI | https://link.springer.com/article/10.1007/s11081-020-09534-7 https://www.proquest.com/docview/2580707532 |
| Volume | 22 |
| WOSCitedRecordID | wos000548826700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-2924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: RSV dateStart: 20000601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F1lR68aaBt0iY5iYiLB13EF3sreerCbndpq-K_N-m2WxUV9FIoSUOZzGQmzHzfAHDIERZWUyT0VSwhRkZCoYTroRFqg0gkfVMChS9Jr0f7fXZdgcLyutq9TkmWJ3UDdgus-4LuuuM40jAk82DBujvqGjbc3D7McgdxVHZUdRk4iHHoV1CZ79f47I6aGPNLWrT0Nt3V__3nGlipokvvdKoO62BOpxtg-QPnoH27mhG15pvg5OLNQba8SaVBXv7Ks5E3tgfJqEJoejx14w71k3pTw_D48HGcDYqn0Ra4757fnV3AqqcClNbYCigw00zboCPSQumASoSYvZAaI6RSSPtUcili7nilZEAM8SkPiL3TWa8esVhxtA1a6TjVO8AzhjETKU5jLDARijOqjKbIPjEXkWyDoBZtIivCcdf3Ypg0VMlOVIkVVVKKKiFtcDT7ZjKl2_h1dqfesaQyvTwJI-oojCIUtsFxvUPN8M-r7f5t-h5YCl19S1lv1gGtInvW-2BRvhSDPDsoVfIdO4DauQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itmoM3XUiym9dJRCwV2yJapbewTy20aWmi4r93N01aFRX0Egi7WcLszM4sM983AMcUE6Y1hSNb-BwRrDhigpkeGq5UOPC4rXKgcDNot8NuN7opQGFpWe1epiTzk3oGdnO0-0LmumM40ggK5mGBaI9lGPNv7x6muQPfyzuqmgwcIsS1C6jM92t8dkezGPNLWjT3NvW1__3nOqwW0aV1PlGHDZiTySasfOAc1G-tKVFrugVnjTcD2bJGhQZZ6SsdD6yhPkgGBULTookZN6ifxJoYhkX7j8NxL3sabMN9_bJz0UBFTwXEtbFliJFIRlIHHZ5kQjohxzjSF1KlGBcCSzvklDOfGl4p7gQqsEPqBPpOp726F_mC4h2oJMNE7oKlVBQpT9DQJ4wETNAoFEqGWD8JZR6vglOKNuYF4bjpe9GPZ1TJRlSxFlWciyoOqnAy_WY0odv4dXat3LG4ML00dr3QUBh52K3CablDs-GfV9v72_QjWGp0Ws24edW-3odl19S65LVnNahk42d5AIv8Jeul48NcPd8BhRHdnQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiDt1itmgffdGmS3VxPImqpWEvBg76FPbXQpiWNiv_e3TQ9FBXEl0DYgzA7k9lh5vsG4JhiwrSmcGQLnyOCFUdMMNNDw5UKBx63VQ4UbgTNZthuR60ZFH9e7T5OSY4wDYalKcmqA6GqU-Cbo10ZMqGP4UsjKJiHBWIK6U28fvc4ySP4Xt5d1WTjECGuXcBmvt_js2ua3je_pEhzz1Nb-_83r8Nqceu0zkdqsgFzMtmElRkuQv12OyFwHW7BWf3dQLmsQaFZ1vCNpj2rr38wvQK5adHEjBs0UGKNDMai3ad-2smee9vwULu6v6ijotcC4toIM8RIJCOpLyOeZEI6Icc40oGqUowLgaUdcsqZTw3fFHcCFdghdQId62lv70W-oHgHSkk_kbtgKRVFyhM09AkjARM0CoWSIdZPQpnHy-CMxRzzgojc9MPoxlMKZSOqWIsqzkUVB2U4mawZjGg4fp1dGZ9eXJjkMHa90FAbedgtw-n4tKbDP--297fpR7DUuqzFjevmzT4su6YEJi9Jq0ApS1_kASzy16wzTA9zTf0AsxLmgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+particle+swarm+optimization+and+pattern+search+algorithm&rft.jtitle=Optimization+and+engineering&rft.au=Koessler%2C+Eric&rft.au=Almomani%2C+Ahmad&rft.date=2021-09-01&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=22&rft.issue=3&rft.spage=1539&rft.epage=1555&rft_id=info:doi/10.1007%2Fs11081-020-09534-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11081_020_09534_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon |