Identifiability in Bilinear Inverse Problems With Applications to Subspace or Sparsity-Constrained Blind Gain and Phase Calibration
Bilinear inverse problems (BIPs), the resolution of two vectors given their image under a bilinear mapping, arise in many applications. Without further constraints, BIPs are usually ill-posed. In practice, the properties of natural signals are exploited to solve BIPs. For example, subspace constrain...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 63; číslo 2; s. 822 - 842 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Bilinear inverse problems (BIPs), the resolution of two vectors given their image under a bilinear mapping, arise in many applications. Without further constraints, BIPs are usually ill-posed. In practice, the properties of natural signals are exploited to solve BIPs. For example, subspace constraints or sparsity constraints are imposed to reduce the search space. These approaches have shown some success in practice. However, there are few results on uniqueness in BIPs. For most BIPs, the fundamental question of under what condition the problem admits a unique solution is yet to be answered. For example, blind gain and phase calibration (BGPC) is a structured BIP, which arises in many applications, including inverse rendering in computational relighting (albedo estimation with unknown lighting), blind phase and gain calibration in sensor array processing, and multichannel blind deconvolution (MBD). It is interesting to study the uniqueness of such problems. In this paper, we define identifiability of a BIP up to a group of transformations. We derive necessary and sufficient conditions for such identifiability, i.e., the conditions under which the solutions can be uniquely determined up to the transformation group. These conditions take the form of dividing the identifiability of the pair of unknown variables into the individual identifiability of each variable. Although verifying these individual conditions requires problem-specific procedures, this framework is universally applicable to all BIPs. Applying these results to BGPC, we derive sufficient conditions for unique recovery under several scenarios, including subspace, joint sparsity, and sparsity models. For BGPC with joint sparsity or sparsity constraints, we develop a procedure to compute the transformation groups corresponding to inherent ambiguities. We also give necessary conditions in the form of tight lower bounds on sample complexities, and demonstrate the tightness of these bounds by numerical experiments. The results for BGPC not only demonstrate the application of the proposed general framework for identifiability analysis, but are also of interest in their own right. |
|---|---|
| AbstractList | Bilinear inverse problems (BIPs), the resolution of two vectors given their image under a bilinear mapping, arise in many applications. Without further constraints, BIPs are usually ill-posed. In practice, the properties of natural signals are exploited to solve BIPs. For example, subspace constraints or sparsity constraints are imposed to reduce the search space. These approaches have shown some success in practice. However, there are few results on uniqueness in BIPs. For most BIPs, the fundamental question of under what condition the problem admits a unique solution is yet to be answered. For example, blind gain and phase calibration (BGPC) is a structured BIP, which arises in many applications, including inverse rendering in computational relighting (albedo estimation with unknown lighting), blind phase and gain calibration in sensor array processing, and multichannel blind deconvolution (MBD). It is interesting to study the uniqueness of such problems. In this paper, we define identifiability of a BIP up to a group of transformations. We derive necessary and sufficient conditions for such identifiability, i.e., the conditions under which the solutions can be uniquely determined up to the transformation group. These conditions take the form of dividing the identifiability of the pair of unknown variables into the individual identifiability of each variable. Although verifying these individual conditions requires problem-specific procedures, this framework is universally applicable to all BIPs. Applying these results to BGPC, we derive sufficient conditions for unique recovery under several scenarios, including subspace, joint sparsity, and sparsity models. For BGPC with joint sparsity or sparsity constraints, we develop a procedure to compute the transformation groups corresponding to inherent ambiguities. We also give necessary conditions in the form of tight lower bounds on sample complexities, and demonstrate the tightness of these bounds by numerical experiments. The results for BGPC not only demonstrate the application of the proposed general framework for identifiability analysis, but are also of interest in their own right. |
| Author | Kiryung Lee Bresler, Yoram Yanjun Li |
| Author_xml | – sequence: 1 surname: Yanjun Li fullname: Yanjun Li email: yli145@illinois.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA – sequence: 2 surname: Kiryung Lee fullname: Kiryung Lee email: kiryung@ece.gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 3 givenname: Yoram surname: Bresler fullname: Bresler, Yoram email: ybresler@illinois.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA |
| BookMark | eNp9kctLxDAQxoMouD7ugpeA566Z5tUcdfGxICi44LGkzSxGaluTrODZf9zsAw8ePGWG-b7fMPmOyH4_9EjIGbApADOXi_liWjJQ01JxbTjfIxOQUhdGSbFPJoxBVRghqkNyFONbboWEckK-5w775JfeNr7z6Yv6nl7nqkcb6Lz_xBCRPoWh6fA90hefXunVOHa-tckPfaRpoM-rJo62RToE-jzaEDOmmOVhCjZzHL3OOEfvckNtLp5ebWbObOebsKGckIOl7SKe7t5jsri9Wczui4fHu_ns6qFoOZhUNIJpJVre2EpIhNIKqREqgZwJ54wqZdU6lNoZkW82qlXOcW1BOoW8WfJjcrHFjmH4WGFM9duwCn3eWJegBS-1Yvw_FVQKOAMDVVaxraoNQ4wBl_UY_LsNXzWwep1HnfOo13nUuzyyRf2xtD5t7l__U_ef8Xxr9Ij4u0drbSBLfgC9Spo9 |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_TSP_2024_3433527 crossref_primary_10_1109_TIT_2019_2928576 crossref_primary_10_1016_j_sigpro_2024_109757 crossref_primary_10_1109_TSP_2020_3011804 crossref_primary_10_1109_TIM_2024_3470238 crossref_primary_10_1016_j_dsp_2025_105555 crossref_primary_10_1016_j_sigpro_2024_109864 crossref_primary_10_1109_TSP_2018_2866826 crossref_primary_10_1109_TIT_2018_2840711 crossref_primary_10_1109_TSP_2023_3278861 crossref_primary_10_1109_JSTSP_2021_3054338 crossref_primary_10_1109_TSP_2022_3170688 crossref_primary_10_1109_TCI_2018_2875375 crossref_primary_10_1137_19M1291327 crossref_primary_10_1088_1361_6420_ab2fb3 crossref_primary_10_1109_TIT_2018_2883623 |
| Cites_doi | 10.1137/110848074 10.1007/s10208-013-9162-z 10.1109/79.489268 10.1073/pnas.0437847100 10.1109/TIT.2016.2569578 10.1109/TAP.1981.1142559 10.1109/TIT.2013.2294644 10.1016/0165-1684(96)00013-8 10.1109/78.482113 10.1109/ISIT.2014.6875385 10.1109/5.622507 10.1109/SAMPTA.2015.7148955 10.1364/AO.21.002758 10.1109/ACSSC.1991.186568 10.1109/TIP.2009.2012883 10.1016/j.sysconle.2004.07.004 10.1109/78.365293 10.1002/cpa.21432 10.1109/JPROC.2010.2040551 10.1109/78.348133 10.1109/ICASSP.1985.1168341 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2017 Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2017 – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2016.2637933 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 842 |
| ExternalDocumentID | 4307460631 10_1109_TIT_2016_2637933 7779126 |
| Genre | orig-research Feature |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF 10-18789; IIS 14-47879 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c319t-b40764c3ba845e12a457e184e304dd96258cde57d9465496c6dd37a15d6e3bf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394667700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sun Nov 09 06:29:54 EST 2025 Mon Jun 30 07:03:01 EDT 2025 Sat Nov 29 03:31:37 EST 2025 Tue Nov 18 21:52:30 EST 2025 Tue Aug 26 16:43:24 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b40764c3ba845e12a457e184e304dd96258cde57d9465496c6dd37a15d6e3bf3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
| ORCID | 0000-0002-8979-6337 0000-0003-1909-6041 |
| PQID | 1861301918 |
| PQPubID | 36024 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_1861301918 crossref_citationtrail_10_1109_TIT_2016_2637933 proquest_journals_2174327603 crossref_primary_10_1109_TIT_2016_2637933 ieee_primary_7779126 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 choudhary (ref10) 2014 ref2 ref1 ref17 ref16 ref19 ref18 agarwal (ref21) 2013 nguyen (ref11) 2013; 8657 spielman (ref20) 2012; 23 li (ref29) 2015 ref26 ref25 arora (ref23) 2014; 35 kammoun (ref6) 2010 arora (ref24) 2014 ref28 liu (ref3) 1996; 50 ref27 ref8 ref7 ref9 ref4 ref5 agarwal (ref22) 2013 bredon (ref30) 1972; 46 |
| References_xml | – ident: ref18 doi: 10.1137/110848074 – ident: ref17 doi: 10.1007/s10208-013-9162-z – ident: ref2 doi: 10.1109/79.489268 – start-page: 1 year: 2010 ident: ref6 article-title: Robustness of blind subspace based techniques using $\ell _{p}$ quasi-norms publication-title: Proc IEEE Int Workshop Signal Process Adv Wireless Commun (SPAWC) – year: 2013 ident: ref21 article-title: A clustering approach to learn sparsely-used overcomplete dictionaries – ident: ref13 doi: 10.1073/pnas.0437847100 – ident: ref28 doi: 10.1109/TIT.2016.2569578 – ident: ref7 doi: 10.1109/TAP.1981.1142559 – ident: ref15 doi: 10.1109/TIT.2013.2294644 – year: 2014 ident: ref24 article-title: More algorithms for provable dictionary learning – volume: 50 start-page: 83 year: 1996 ident: ref3 article-title: Recent developments in blind channel equalization: From cyclostationarity to subspaces publication-title: Signal Process doi: 10.1016/0165-1684(96)00013-8 – ident: ref31 doi: 10.1109/78.482113 – ident: ref19 doi: 10.1109/ISIT.2014.6875385 – year: 2013 ident: ref22 article-title: Learning sparsely used overcomplete dictionaries via alternating minimization – ident: ref4 doi: 10.1109/5.622507 – ident: ref1 doi: 10.1109/SAMPTA.2015.7148955 – volume: 35 start-page: 1 year: 2014 ident: ref23 article-title: New algorithms for learning incoherent and overcomplete dictionaries publication-title: Proc Conf Learning Theory (COLT) – ident: ref8 doi: 10.1364/AO.21.002758 – ident: ref26 doi: 10.1109/ACSSC.1991.186568 – ident: ref14 doi: 10.1109/TIP.2009.2012883 – year: 2014 ident: ref10 article-title: Identifiability scaling laws in bilinear inverse problems – ident: ref5 doi: 10.1016/j.sysconle.2004.07.004 – ident: ref25 doi: 10.1109/78.365293 – ident: ref16 doi: 10.1002/cpa.21432 – year: 2015 ident: ref29 article-title: Identifiability of blind deconvolution with subspace or sparsity constraints publication-title: Proc Signal Process Adapt Sparse Struct Represent (SPARS) – volume: 8657 start-page: 865703.1 year: 2013 ident: ref11 article-title: Subspace methods for computational relighting publication-title: Proc SPIE – volume: 46 year: 1972 ident: ref30 publication-title: Introduction to Compact Transformation Groups – ident: ref9 doi: 10.1109/JPROC.2010.2040551 – volume: 23 start-page: 37.1 year: 2012 ident: ref20 article-title: Exact recovery of sparsely-used dictionaries publication-title: Proc of the Annual Conf on Learning Theory (COLT) – ident: ref27 doi: 10.1109/78.348133 – ident: ref12 doi: 10.1109/ICASSP.1985.1168341 |
| SSID | ssj0014512 |
| Score | 2.424889 |
| Snippet | Bilinear inverse problems (BIPs), the resolution of two vectors given their image under a bilinear mapping, arise in many applications. Without further... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 822 |
| SubjectTerms | Albedo Ambiguity blind gain and phase calibration Calibration Deconvolution Discrete Fourier transforms equivalence class Ill posed problems Information theory Inverse problems inverse rendering Lower bounds Mapping Mathematical models multichannel blind deconvolution Rendering (computer graphics) SAR autofocus sensor array processing Sensor arrays Sparse matrices Sparsity Subspace constraints Subspaces Tightness transformation group Transformations Uniqueness Vector space |
| Title | Identifiability in Bilinear Inverse Problems With Applications to Subspace or Sparsity-Constrained Blind Gain and Phase Calibration |
| URI | https://ieeexplore.ieee.org/document/7779126 https://www.proquest.com/docview/1861301918 https://www.proquest.com/docview/2174327603 |
| Volume | 63 |
| WOSCitedRecordID | wos000394667700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EN6yGdLN0mDDr0U6qwt2ZJ1TErzASXsYaG5GVkaEUPZDbtOIef-8Y4k75KSUOjNxrIseBpJzzPzBuATCh5q0bRZ4WublV7ZzBgirlxxjuid90ld_7u6va3v7vRkA76sc2EQMQaf4Vm4jL58N7eP4VfZWCmlCy43YVMpmXK11h6DsiqSMnhBBkycY-WSzPV4ejMNMVzyjEtB01H8tQXFmiovFuK4u1zu_t-49mBnOEWy8wT7Pmzg7AB2VxUa2GCwB_D2mdzgIfxOWbm-S9rcT6ybsYsunDPNggXBjcUS2SRVmFmyH11_z86f-bdZP2dhnSGWjWxOX3kwMaIjC0U_Y6kJdOyCunPsim6YoYvJPe2SLCSAtWmqvYPp5bfp1-tsKMKQWbLOPmuJ8cnSitbUZYUFN2WlkGghirx0ThN9qq3DSjkdlNm0tNI5oUxROYmi9eI9bM3mM_wArNbKOC8U91jSsU0Yz23OdYmKFpXamhGMV7A0dhAoD4P_2USikuuGgGwCkM0A5Ag-r994SOIc_2h7GIBbtxswG8HJCvlmsN5lU9SBVRGTrV99HFkcVzIXR693egzbPOz-Mbj7BLb6xSN-hDf2V98tF6dx3v4B-y3r2Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB2VggQ9tNAWsW0BH7ggkW5iO3F8bBGlFctqD5HoLXLssRoJ7Va7KRJnfpyxk10VUSFxSxTHsfQ8tl9m5g3AOxQ81KJpksyXNpFe2cQYIq5ccY7onfe9uv5ETafl9bWebcGHTS4MIsbgMzwNl9GX7xb2LvwqGyuldMaLR_A4l5KnfbbWxmcg86zXBs_IhIl1rJ2SqR5XV1WI4ipOeSFoQoo_NqFYVeWvpTjuLxd7_zey57A7nCPZWQ_8C9jC-T7srWs0sMFk92HnnuDgAfzq83J926tz_2TtnJ234aRplixIbixXyGZ9jZkV-9Z2N-zsnoebdQsWVhri2cgW9JVbE2M6klD2MxabQMfOqTvHPtMNM3Qxu6F9koUUsKafbIdQXXyqPl4mQxmGxJJ9dklDnK-QVjSmlDlm3MhcIRFDFKl0ThOBKq3DXDkdtNl0YQvnhDJZ7goUjRcvYXu-mOMrYKVWxnmhuEdJBzdhPLcp1xIVLSulNSMYr2Gp7SBRHgb_vY5UJdU1AVkHIOsByBG837xx28tz_KPtQQBu027AbAQna-TrwX5XdVYGXkVctnzwceRxXBWpOHq407fw9LL6OqknV9Mvx_CMh7NADPU-ge1ueYev4Yn90bWr5Zs4h38DYf7vIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifiability+in+Bilinear+Inverse+Problems+With+Applications+to+Subspace+or+Sparsity-Constrained+Blind+Gain+and+Phase+Calibration&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Li%2C+Yanjun&rft.au=Lee%2C+Kiryung&rft.au=Bresler%2C+Yoram&rft.date=2017-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=63&rft.issue=2&rft.spage=822&rft_id=info:doi/10.1109%2FTIT.2016.2637933&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4307460631 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |