Hybrid data augmentation method for combined failure recognition in rotating machines

Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In indus...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent manufacturing Ročník 34; číslo 4; s. 1795 - 1813
Hlavní autoři: Martins, Dionísio H. C. S. S., de Lima, Amaro A., Pinto, Milena F., Hemerly, Douglas de O., Prego, Thiago de M., e Silva, Fabrício L., Tarrataca, Luís, Monteiro, Ulisses A., Gutiérrez, Ricardo H. R., Haddad, Diego B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2023
Springer Nature B.V
Témata:
ISSN:0956-5515, 1572-8145
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K -nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s.
AbstractList Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K-nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s.
Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K -nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s.
Author Martins, Dionísio H. C. S. S.
e Silva, Fabrício L.
Gutiérrez, Ricardo H. R.
Pinto, Milena F.
Tarrataca, Luís
Hemerly, Douglas de O.
Prego, Thiago de M.
Monteiro, Ulisses A.
Haddad, Diego B.
de Lima, Amaro A.
Author_xml – sequence: 1
  givenname: Dionísio H. C. S. S.
  orcidid: 0000-0001-7136-1119
  surname: Martins
  fullname: Martins, Dionísio H. C. S. S.
  organization: Federal Center for Technological Education of Rio de Janeiro
– sequence: 2
  givenname: Amaro A.
  orcidid: 0000-0001-5397-6531
  surname: de Lima
  fullname: de Lima, Amaro A.
  organization: Federal Center for Technological Education of Rio de Janeiro
– sequence: 3
  givenname: Milena F.
  orcidid: 0000-0001-6916-700X
  surname: Pinto
  fullname: Pinto, Milena F.
  organization: Federal Center for Technological Education of Rio de Janeiro
– sequence: 4
  givenname: Douglas de O.
  orcidid: 0000-0003-2243-3184
  surname: Hemerly
  fullname: Hemerly, Douglas de O.
  organization: International Business Machines Corporation
– sequence: 5
  givenname: Thiago de M.
  orcidid: 0000-0003-1404-4349
  surname: Prego
  fullname: Prego, Thiago de M.
  organization: Federal Center for Technological Education of Rio de Janeiro
– sequence: 6
  givenname: Fabrício L.
  orcidid: 0000-0002-8220-8344
  surname: e Silva
  fullname: e Silva, Fabrício L.
  organization: Federal Center for Technological Education of Rio de Janeiro
– sequence: 7
  givenname: Luís
  orcidid: 0000-0001-9359-5143
  surname: Tarrataca
  fullname: Tarrataca, Luís
  organization: Federal Center for Technological Education of Rio de Janeiro
– sequence: 8
  givenname: Ulisses A.
  orcidid: 0000-0001-8530-5775
  surname: Monteiro
  fullname: Monteiro, Ulisses A.
  organization: Federal University of Rio de Janeiro
– sequence: 9
  givenname: Ricardo H. R.
  orcidid: 0000-0003-4768-3243
  surname: Gutiérrez
  fullname: Gutiérrez, Ricardo H. R.
  organization: Federal University of Rio de Janeiro
– sequence: 10
  givenname: Diego B.
  orcidid: 0000-0002-7634-5481
  surname: Haddad
  fullname: Haddad, Diego B.
  organization: Federal Center for Technological Education of Rio de Janeiro
BookMark eNp9kE1LwzAYx4NMcJt-AU8Bz9G8NE16lKFOGHhx55C0aZexJjNpD_v2ZqsgePD08MDv97z8F2Dmg7cA3BP8SDAWT4lgWXCEKUGYSMEQuQJzwgVFkhR8Bua44iXinPAbsEhpjzGuZEnmYLs-mega2OhBQz12vfWDHlzwsLfDLjSwDRHWoTfO29xodxijhdHWofPuwjkPYzg7voO9rncZTLfgutWHZO9-6hJsX18-V2u0-Xh7Xz1vUM1INSDDTE25IVQzastGW0yxZoZhXhhtOa-aUkrZ5qu5NhWTxlak0LlnjWhtK9gSPExzjzF8jTYNah_G6PNKRYUUuGRMlJmSE1XHkFK0rard9OQQ80OKYHUOUU0hqhyiuoSoSFbpH_UYXa_j6X-JTVLKsO9s_L3qH-sb462HVA
CitedBy_id crossref_primary_10_1007_s10462_024_11021_9
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_56407_bs_agrarian_4_2023_60
crossref_primary_10_1177_08953996241296249
crossref_primary_10_1007_s10845_024_02458_4
crossref_primary_10_1109_JSEN_2024_3443871
crossref_primary_10_1007_s11665_022_07431_x
crossref_primary_10_1007_s10845_023_02131_2
crossref_primary_10_1016_j_aei_2024_102976
Cites_doi 10.1109/ICICIP47338.2019.9012197
10.1016/j.csmssp.2016.07.001
10.1007/s10845-020-01543-8
10.1109/MCI.2018.2866730
10.1016/j.ymssp.2019.106443
10.1016/j.ymssp.2017.03.034
10.1016/j.eswa.2011.05.081
10.1016/j.mechmachtheory.2018.03.009
10.1109/IJCNN.2008.4633794
10.1016/j.scitotenv.2018.10.064
10.1186/s40537-019-0197-0
10.1109/IIPHDW.2018.8388338
10.1109/TII.2017.2755064
10.1016/j.ijepes.2019.105570
10.1016/j.ymssp.2018.12.051
10.1007/978-3-319-94463-0
10.33969/JIEC.2020.21006
10.1007/s10845-019-01522-8
10.1109/UBMK.2019.8907003
10.1098/rspa.2011.0704
10.1109/ICNP49622.2020.9259390
10.1016/j.measurement.2018.04.059
10.1016/j.jestch.2018.12.006
10.3390/s141120713
10.1016/j.jsv.2003.03.006
10.1016/j.knosys.2019.02.008
10.1007/978-3-319-72347-1
10.1109/TIM.2019.2901514
10.1109/TIM.2019.2913058
10.1017/CBO9780511781667
10.1007/s10845-018-1456-1
10.1007/978-3-319-74693-7_20
10.23940/ijpe.17.04.p1.337347
10.1109/ICELMACH.2018.8507056
10.1016/j.jsv.2019.03.007
10.1007/s12046-018-0859-1
10.1016/j.aei.2019.100944
10.1016/j.eswa.2013.01.033
10.1016/j.ics.2004.03.238
10.1007/978-3-319-23528-8_13
10.1109/ACCESS.2020.2972859
10.1016/j.asoc.2019.105564
10.1177/1461348418821582
10.1007/978-3-319-99268-6_11
10.1016/j.ymssp.2011.06.001
10.1007/978-3-030-36178-5_27
10.1109/ACCESS.2019.2955754
10.1109/ACCESS.2019.2955086
10.1613/jair.953
10.1016/j.compag.2015.07.004
10.1016/j.ymssp.2017.02.015
10.1155/2020/8819676
10.1007/s00170-021-06873-2
10.1016/j.measurement.2020.108500
10.1109/ELMA.2019.8771525
10.1016/j.patcog.2019.106993
10.1109/BIFE.2011.25
10.1109/LASCAS.2013.6518984
10.1016/j.matpr.2018.10.178
10.1109/ICREST.2019.8644089
10.1007/s11668-014-9785-7
10.1007/s10845-014-0987-3
10.1109/ICMSAO.2019.8880437
10.1016/j.compag.2016.09.004
10.1016/j.ymssp.2020.107043
10.1016/j.measurement.2021.109186
10.1006/jsvi.1994.1405
10.1023/A:1010933404324
10.1016/j.procs.2020.07.013
10.1109/UEMCON47517.2019.8993085
10.1016/j.ymssp.2017.06.012
10.1016/j.ejor.2010.11.018
10.1145/3386723.3387898
10.1016/j.ymssp.2011.12.013
10.1016/j.measurement.2021.109548
10.1016/j.eswa.2010.07.119
10.1613/jair.1.11192
10.1007/s00034-019-01246-3
10.1016/j.apacoust.2018.03.010
10.1016/j.measurement.2019.107232
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10845-021-01873-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 1813
ExternalDocumentID 10_1007_s10845_021_01873_1
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: http://doi.org/10.13039/501100002322
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: http://doi.org/10.13039/501100003593
– fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
  funderid: http://doi.org/10.13039/501100004586
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-b3bc25b12a32e6dae020a3b3054bae559d6888f5155ab938be914af513d7fef73
IEDL.DBID 7WY
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5515
IngestDate Wed Nov 05 04:20:27 EST 2025
Sat Nov 29 04:20:09 EST 2025
Tue Nov 18 21:26:09 EST 2025
Fri Feb 21 02:44:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Combined failures recognition
Data augmentation
Imbalance
Rotating machines
Misalignment
Predictive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b3bc25b12a32e6dae020a3b3054bae559d6888f5155ab938be914af513d7fef73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8220-8344
0000-0001-8530-5775
0000-0001-6916-700X
0000-0001-5397-6531
0000-0001-7136-1119
0000-0001-9359-5143
0000-0002-7634-5481
0000-0003-2243-3184
0000-0003-1404-4349
0000-0003-4768-3243
PQID 2787063376
PQPubID 32407
PageCount 19
ParticipantIDs proquest_journals_2787063376
crossref_citationtrail_10_1007_s10845_021_01873_1
crossref_primary_10_1007_s10845_021_01873_1
springer_journals_10_1007_s10845_021_01873_1
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhangYLiXGaoLChenWLiPIntelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder methodMeasurement2020151110723210.1016/j.measurement.2019.107232
VapnikVThe Nature of Statistical Learning Theory2013BerlinSpringer
WangNJiangDVibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental studyMechanism and Machine Theory2018125120721910.1016/j.mechmachtheory.2018.03.009
Suarez-AlvarezMMPhamDTProstovMYProstovYIStatistical approach to normalization of feature vectors and clustering of mixed datasetsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences201246821452630265110.1098/rspa.2011.0704
PolatKThe fault diagnosis based on deep long short-term memory model from the vibration signals in the computer numerical control machinesJournal of the Institute of Electronics and Computer202021729210.33969/JIEC.2020.21006
ZianiRFelkaouiAZegadiRBearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fishers criterionJournal of Intelligent Manufacturing201728240541710.1007/s10845-014-0987-3
ChoubinBMoradiEGolshanMAdamowskiJSajedi-HosseiniFMosaviAAn ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machinesScience of The Total Environment201965112087209610.1016/j.scitotenv.2018.10.064
Aouedi, O., Piamrat, K., Bagadthey, D. (2020). A semi-supervised stacked autoencoder approach for network traffic classification. In 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, pp 1–6, https://doi.org/10.1109/ICNP49622.2020.9259390.
FuXWeiYXuFWangTLuYLiJHuangJZSemi-supervised aspect-level sentiment classification model based on variational autoencoderKnowledge-Based Systems20191711819210.1016/j.knosys.2019.02.008
XingWBeiYMedical health big data classification based on KNN classification algorithmIEEE Access202081288082881910.1109/ACCESS.2019.2955754
FletcherRSReddyKNRandom forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweedsComputers and Electronics in Agriculture2016128119920610.1016/j.compag.2016.09.004
Martins, D.H.C.D.S.S., Hemerly, D.O., Marins, M., Lima, A.A., Silva, F.L., Prego, T.D.M., Ribeiro, F.M.L., Netto, S.L., da Silva, E.A.B. (2019). Application of machine learning to evaluate unbalance severity in rotating machines. In Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Rio de Janeiro, Brazil, pp 144–160. https://doi.org/10.1007/978-3-319-99268-6_11.
Ruiz-GonzalezRGomez-GilJGomez-GilFJMartínez-MartínezVAn SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassisSensors20141411207132073510.3390/s141120713
LiPHuWHuRChenZImbalance fault detection based on the integrated analysis strategy for variable-speed wind turbinesInternational Journal of Electrical Power & Energy Systems2020116110557010.1016/j.ijepes.2019.105570
Dekhane, A., Djellal, A., Boutebbakh, F., Lakel, R. (2020). Cooling fan combined fault vibration analysis using convolutional neural network classifier. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, New York, USA, pp 1–6. https://doi.org/10.1145/3386723.3387898.
BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
JinYQinCHuangYLiuCActual bearing compound fault diagnosis based on active learning and decoupling attentional residual networkMeasurement2021173110850010.1016/j.measurement.2020.108500
AsadiRMustaphaNSulaimanNShiriNNew supervised multi layer feed forward neural network model to accelerate classification with high accuracyEuropean Journal of Scientific Research2009331163178
DinovIDData Science and Predictive Analytics: Biomedical and Health Applications Using R2018BerlinSpringer10.1007/978-3-319-72347-1
SrinivasRSTiwariRKannababuCModel based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearingJournal of Sound and Vibration2019450110914010.1016/j.jsv.2019.03.007
Burks, R., Islam, K.A., Lu, Y., Li, J. (2019). Data augmentation with generative models for improved malware detection: A comparative study. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 0660–0665. https://doi.org/10.1109/UEMCON47517.2019.8993085.
DesoukiMSassiSRennoJGowidSADynamic response of a rotating assembly under the coupled effects of misalignment and imbalanceShock and Vibration202011070962210.1155/2020/8819676
QinCJinYTaoJXiaoDYuHLiuCShiGLeiJLiuCDTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detectionMeasurement2021180110954810.1016/j.measurement.2021.109548
KankarPKSharmaSCHarshaSPFault diagnosis of ball bearings using machine learning methodsExpert Systems with Applications20113831876188610.1016/j.eswa.2010.07.119
QianWLiSJiangXDeep transfer network for rotating machine fault analysisPattern Recognition201996110699310.1016/j.patcog.2019.106993
Razavi-FarRFarajzadeh-ZanjaniMSaifMAn integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motorsIEEE Transactions on Industrial Informatics20171362758276910.1109/TII.2017.2755064
RashidKMLouisJTimes-series data augmentation and deep learning for construction equipment activity recognitionAdvanced Engineering Informatics201942110094410.1016/j.aei.2019.100944
SiXSWangWHuCHZhouDHRemaining useful life estimation—A review on the statistical data driven approachesEuropean Journal of Operational Research2011213111410.1016/j.ejor.2010.11.018
CerradaMA review on data-driven fault severity assessment in rolling bearingsMechanical Systems and Signal Processing201810.1016/j.ymssp.2017.06.012
de Lima, A.A., Prego, T.D.M., Netto, S.L., da Silva, E.A., Gutierrez, R.H., Monteiro, U.A., Troyman, A.C., Silveira, F.J.D.C., Vaz, L. (2013). On fault classification in rotating machines using fourier domain features and neural networks. In 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, pp 1–4. https://doi.org/10.1109/LASCAS.2013.6518984.
ZurRJiangYMetzCComparison of two methods of adding jitter to artificial neural network trainingInternational Congress Series20041268188688910.1016/j.ics.2004.03.238
Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics-a comprehensive review. IEEE Access,8(1), 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859
Li, J., Li, H., Yu. J.L. (2011). Application of random-SMOTE on imbalanced data mining. In 2011 Fourth International Conference on Business Intelligence and Financial Engineering, Wuhan, China, pp 130–133. https://doi.org/10.1109/BIFE.2011.25.
Walpole, R.E., Myers, R.H. (2012). Probability & Statistics for Engineers & Scientists. Pearson Education Limited.
Ali, M.A., Bingamil, A.A., Jarndal, A., Alsyouf, I. (2019). The influence of handling imbalance classes on the classification of mechanical faults using neural networks. In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, pp 1–5. https://doi.org/10.1109/ICMSAO.2019.8880437.
ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJournal of Big Data20196114810.1186/s40537-019-0197-0
McClaning, K., Vito, T. (2000). Radio receiver design. Noble Publishing.
LiHLiMLiCLiFMengGMulti-faults decoupling on turbo-expander using differential-based ensemble empirical mode decompositionMechanical Systems and Signal Processing201793126728010.1016/j.ymssp.2017.02.015
PandyaDUpadhyaySHarshaSPFault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNNExpert Systems with Applications201340104137414510.1016/j.eswa.2013.01.033
Sikder, N., Bhakta, K., Al Nahid, A., Islam, M.M. (2019). Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp 564–569. https://doi.org/10.1109/ICREST.2019.8644089.
YangBLeiYJiaFXingSAn intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearingsMechanical Systems and Signal Processing2019122169270610.1016/j.ymssp.2018.12.051
ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216132135710.1613/jair.953
VermaAKSarangiSKolekarMExperimental investigation of misalignment effects on rotor shaft vibration and on stator current signatureJournal of Failure Analysis and Prevention201414212513810.1007/s11668-014-9785-7
MartinsDHCVianaDPde LimaAAPintoMFTarratacaLSilvaFLGutiérrezRHRde Moura PregoTMonteiroUABVHaddadDBDiagnostic and severity analysis of combined failures composed by imbalance and misalignment in rotating machinesThe International Journal of Advanced Manufacturing Technology2021114911610.1007/s00170-021-06873-2
GlowaczAAcoustic based fault diagnosis of three-phase induction motorApplied Acoustics20181371828910.1016/j.apacoust.2018.03.010
LiJLiXHeDQuYUnsupervised rotating machinery fault diagnosis method based on integrated sae-dbn and a binary processorJournal of Intelligent Manufacturing202095811810.1007/s10845-020-01543-8
Djagarov, N., Grozdev, Z., Enchev, G., Djagarov, J. (2019). Ship’s induction motors fault diagnosis. In 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, pp 1–4. https://doi.org/10.1109/ELMA.2019.8771525.
SantosMSSoaresJPAbreuPHAraujoHSantosJCross-validation for imbalanced datasets: Avoiding overop
MS Santos (1873_CR60) 2018; 13
LS Dhamande (1873_CR21) 2018; 125
1873_CR49
W Xing (1873_CR78) 2020; 8
GK Yamamoto (1873_CR81) 2016; 4
G Yu (1873_CR84) 2019; 69
D Xiao (1873_CR77) 2021; 176
DP Hujare (1873_CR34) 2018; 5
V Vapnik (1873_CR68) 2013
R Zur (1873_CR90) 2004; 1268
C Shorten (1873_CR62) 2019; 6
R Ziani (1873_CR89) 2017; 28
1873_CR83
X Li (1873_CR45) 2020; 31
MM Suarez-Alvarez (1873_CR67) 2012; 468
M Desouki (1873_CR19) 2020; 1
1873_CR87
EB Görgens (1873_CR33) 2015; 116
1873_CR41
DHC Martins (1873_CR46) 2021; 114
1873_CR48
1873_CR47
RS Fletcher (1873_CR28) 2016; 128
1873_CR38
N Wang (1873_CR75) 2018; 125
Q Xu (1873_CR80) 2019; 6
W Qian (1873_CR53) 2019; 96
Y Zhang (1873_CR88) 2020; 151
M Lal (1873_CR39) 2018; 43
M Xu (1873_CR79) 1994; 176
P Li (1873_CR43) 2020; 116
X Li (1873_CR44) 2019; 82
K Cheng (1873_CR15) 2019; 7
J Li (1873_CR42) 2020; 95
R Razavi-Far (1873_CR56) 2017; 13
1873_CR73
1873_CR71
D Goyal (1873_CR31) 2019; 22
Z Guan (1873_CR32) 2017; 13
M Cerrada (1873_CR12) 2018
YW Chang (1873_CR13) 2010; 11
A Fernández (1873_CR26) 2018; 61
1873_CR35
A Glowacz (1873_CR30) 2018; 137
RS Srinivas (1873_CR66) 2019; 450
CC Aggarwal (1873_CR1) 2018
C Qin (1873_CR54) 2021; 180
M Elangovan (1873_CR25) 2011; 38
LF Villa (1873_CR70) 2012; 29
L Breiman (1873_CR9) 2001; 45
H Li (1873_CR40) 2017; 93
K Yu (1873_CR86) 2021; 146
M Fernández-Delgado (1873_CR27) 2014; 15
AK Verma (1873_CR69) 2014; 14
D Pandya (1873_CR51) 2013; 40
R Ruiz-Gonzalez (1873_CR59) 2014; 14
1873_CR20
1873_CR64
1873_CR24
1873_CR6
PS Diniz (1873_CR22) 2010
1873_CR18
H Wang (1873_CR72) 2019; 38
1873_CR4
1873_CR17
1873_CR3
JK Sinha (1873_CR65) 2004; 272
M Bramer (1873_CR8) 2007
1873_CR2
NV Chawla (1873_CR14) 2002; 16
KM Rashid (1873_CR55) 2019; 42
XS Si (1873_CR63) 2011; 213
K Polat (1873_CR52) 2020; 2
PE William (1873_CR76) 2011; 25
R Asadi (1873_CR5) 2009; 33
B Choubin (1873_CR16) 2019; 651
H Shao (1873_CR61) 2017; 95
Y Jin (1873_CR36) 2021; 173
PK Kankar (1873_CR37) 2011; 38
HP Bloch (1873_CR7) 2005
A Rehman (1873_CR57) 2020; 39
1873_CR11
1873_CR10
JW Oh (1873_CR50) 2020; 175
ID Dinov (1873_CR23) 2018
B Yang (1873_CR82) 2019; 122
1873_CR58
K Yu (1873_CR85) 2019; 69
X Fu (1873_CR29) 2019; 171
J Wang (1873_CR74) 2020; 135
References_xml – reference: ChengKZhangCYuHYangXZouHGaoSGrouped SMOTE with noise filtering mechanism for classifying imbalanced dataIEEE Access20197117066817068110.1109/ACCESS.2019.2955086
– reference: Sikder, N., Bhakta, K., Al Nahid, A., Islam, M.M. (2019). Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp 564–569. https://doi.org/10.1109/ICREST.2019.8644089.
– reference: YamamotoGKda CostaCda Silva SousaJSA smart experimental setup for vibration measurement and imbalance fault detection in rotating machineryCase Studies in Mechanical Systems and Signal Processing20164181810.1016/j.csmssp.2016.07.001
– reference: YuKLinTRMaHLiHZengJA combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machineryIEEE Transactions on Instrumentation and Measurement20196941505151810.1109/TIM.2019.2913058
– reference: de Lima, A.A., Prego, T.D.M., Netto, S.L., da Silva, E.A., Gutierrez, R.H., Monteiro, U.A., Troyman, A.C., Silveira, F.J.D.C., Vaz, L. (2013). On fault classification in rotating machines using fourier domain features and neural networks. In 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, pp 1–4. https://doi.org/10.1109/LASCAS.2013.6518984.
– reference: DinizPSDa SilvaEANettoSLDigital Signal Processing: System Analysis and Design2010CambridgeCambridge University Press10.1017/CBO9780511781667
– reference: XuQLuSJiaWJiangCImbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learningJournal of Intelligent Manufacturing2019611510.1007/s10845-019-01522-8
– reference: WangNJiangDVibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental studyMechanism and Machine Theory2018125120721910.1016/j.mechmachtheory.2018.03.009
– reference: ZhangYLiXGaoLChenWLiPIntelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder methodMeasurement2020151110723210.1016/j.measurement.2019.107232
– reference: ZianiRFelkaouiAZegadiRBearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fishers criterionJournal of Intelligent Manufacturing201728240541710.1007/s10845-014-0987-3
– reference: ISO (2016) Mechanical vibration—Rotor balancing—Part 11: Procedures and tolerances for rotors with rigid behaviour. ISO 21940-11.
– reference: SrinivasRSTiwariRKannababuCModel based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearingJournal of Sound and Vibration2019450110914010.1016/j.jsv.2019.03.007
– reference: HujareDPKarnikMGVibration responses of parallel misalignment in al shaft rotor bearing system with rigid couplingMaterials Today: Proceedings2018511238632387110.1016/j.matpr.2018.10.178
– reference: DinovIDData Science and Predictive Analytics: Biomedical and Health Applications Using R2018BerlinSpringer10.1007/978-3-319-72347-1
– reference: FernándezAGarciaSHerreraFChawlaNVSMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversaryJournal of Artificial Intelligence Research201861186390510.1613/jair.1.11192
– reference: Canbaz, H., Polat, K. (2019). Fault detection of cnc machines from vibration signals using machine learning methods. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Antalya, Turkey, pp 365–374. https://doi.org/10.1007/978-3-030-36178-5_27.
– reference: BlochHPGeitnerFKMachinery Component Maintenance and Repair2005AmsterdamElsevier
– reference: ShaoHJiangHZhaoHWangFA novel deep autoencoder feature learning method for rotating machinery fault diagnosisMechanical Systems and Signal Processing201795118720410.1016/j.ymssp.2017.03.034
– reference: QianWLiSJiangXDeep transfer network for rotating machine fault analysisPattern Recognition201996110699310.1016/j.patcog.2019.106993
– reference: Razavi-FarRFarajzadeh-ZanjaniMSaifMAn integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motorsIEEE Transactions on Industrial Informatics20171362758276910.1109/TII.2017.2755064
– reference: Klausen, A., Van Khang, H., Robbersmyr, K.G. (2018). Novel threshold calculations for remaining useful lifetime estimation of rolling element bearings. In 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, pp 1912–1918. https://doi.org/10.1109/ICELMACH.2018.8507056.
– reference: Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics-a comprehensive review. IEEE Access,8(1), 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859
– reference: ZurRJiangYMetzCComparison of two methods of adding jitter to artificial neural network trainingInternational Congress Series20041268188688910.1016/j.ics.2004.03.238
– reference: XuMMarangoniRVibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, part i: Theoretical model and analysisJournal of Sound and Vibration1994176566367910.1006/jsvi.1994.1405
– reference: CerradaMA review on data-driven fault severity assessment in rolling bearingsMechanical Systems and Signal Processing201810.1016/j.ymssp.2017.06.012
– reference: Bai, C, Ganeriwala, S.S., Sawalhi, N. (2019). A rational basis for determining vibration signature of shaft/coupling misalignment in rotating machinery. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, Florida, USA, pp 207–217. https://doi.org/10.1007/978-3-319-74693-7_20.
– reference: RehmanANazSRazzakMIAkramFImranMA deep learning-based framework for automatic brain tumors classification using transfer learningCircuits, Systems, and Signal Processing202039275777510.1007/s00034-019-01246-3
– reference: Dekhane, A., Djellal, A., Boutebbakh, F., Lakel, R. (2020). Cooling fan combined fault vibration analysis using convolutional neural network classifier. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, New York, USA, pp 1–6. https://doi.org/10.1145/3386723.3387898.
– reference: FletcherRSReddyKNRandom forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweedsComputers and Electronics in Agriculture2016128119920610.1016/j.compag.2016.09.004
– reference: SantosMSSoaresJPAbreuPHAraujoHSantosJCross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]IEEE Computational Intelligence Magazine2018134597610.1109/MCI.2018.2866730
– reference: PandyaDUpadhyaySHarshaSPFault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNNExpert Systems with Applications201340104137414510.1016/j.eswa.2013.01.033
– reference: LiHLiMLiCLiFMengGMulti-faults decoupling on turbo-expander using differential-based ensemble empirical mode decompositionMechanical Systems and Signal Processing201793126728010.1016/j.ymssp.2017.02.015
– reference: VapnikVThe Nature of Statistical Learning Theory2013BerlinSpringer
– reference: LalMTiwariRExperimental identification of shaft misalignment in a turbo-generator systemSādhanā20184358010.1007/s12046-018-0859-1
– reference: WangJDuGZhuZShenCHeQFault diagnosis of rotating machines based on the EMD manifoldMechanical Systems and Signal Processing2020135110644310.1016/j.ymssp.2019.106443
– reference: SinhaJKLeesAFriswellMEstimating unbalance and misalignment of a flexible rotating machine from a single run-downJournal of Sound and Vibration2004272396798910.1016/j.jsv.2003.03.006
– reference: Ali, M.A., Bingamil, A.A., Jarndal, A., Alsyouf, I. (2019). The influence of handling imbalance classes on the classification of mechanical faults using neural networks. In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, pp 1–5. https://doi.org/10.1109/ICMSAO.2019.8880437.
– reference: Martins, D.H.C.D.S.S., Hemerly, D.O., Marins, M., Lima, A.A., Silva, F.L., Prego, T.D.M., Ribeiro, F.M.L., Netto, S.L., da Silva, E.A.B. (2019). Application of machine learning to evaluate unbalance severity in rotating machines. In Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Rio de Janeiro, Brazil, pp 144–160. https://doi.org/10.1007/978-3-319-99268-6_11.
– reference: Arslan, M., Guzel, M., Demirci, M., Ozdemir, S. (2019). SMOTE and gaussian noise based sensor data augmentation. In 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, pp 1–5. https://doi.org/10.1109/UBMK.2019.8907003.
– reference: DhamandeLSChaudhariMBCompound gear-bearing fault feature extraction using statistical features based on time-frequency methodMeasurement20181251637710.1016/j.measurement.2018.04.059
– reference: VermaAKSarangiSKolekarMExperimental investigation of misalignment effects on rotor shaft vibration and on stator current signatureJournal of Failure Analysis and Prevention201414212513810.1007/s11668-014-9785-7
– reference: WangHGongJDynamic analysis of coupling misalignment and unbalance coupled faultsJournal of Low Frequency Noise, Vibration and Active Control201938236337610.1177/1461348418821582
– reference: Wang, H.Y. (2008). Combination approach of SMOTE and biased-SVM for imbalanced datasets. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, pp 228–231. https://doi.org/10.1109/IJCNN.2008.4633794.
– reference: Djagarov, N., Grozdev, Z., Enchev, G., Djagarov, J. (2019). Ship’s induction motors fault diagnosis. In 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, pp 1–4. https://doi.org/10.1109/ELMA.2019.8771525.
– reference: GuanZChenPZhangXZhouXLiKVibration analysis of shaft misalignment and diagnosis method of structure faults for rotating machineryInternational Journal of Performability Engineering201713433734710.23940/ijpe.17.04.p1.337347
– reference: BramerMPrinciples of Data Mining2007BerlinSpringer
– reference: KankarPKSharmaSCHarshaSPFault diagnosis of ball bearings using machine learning methodsExpert Systems with Applications20113831876188610.1016/j.eswa.2010.07.119
– reference: LiXZhangWDingQSunJQIntelligent rotating machinery fault diagnosis based on deep learning using data augmentationJournal of Intelligent Manufacturing202031243345210.1007/s10845-018-1456-1
– reference: Walpole, R.E., Myers, R.H. (2012). Probability & Statistics for Engineers & Scientists. Pearson Education Limited.
– reference: ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216132135710.1613/jair.953
– reference: FuXWeiYXuFWangTLuYLiJHuangJZSemi-supervised aspect-level sentiment classification model based on variational autoencoderKnowledge-Based Systems20191711819210.1016/j.knosys.2019.02.008
– reference: LiPHuWHuRChenZImbalance fault detection based on the integrated analysis strategy for variable-speed wind turbinesInternational Journal of Electrical Power & Energy Systems2020116110557010.1016/j.ijepes.2019.105570
– reference: LiJLiXHeDQuYUnsupervised rotating machinery fault diagnosis method based on integrated sae-dbn and a binary processorJournal of Intelligent Manufacturing202095811810.1007/s10845-020-01543-8
– reference: Burks, R., Islam, K.A., Lu, Y., Li, J. (2019). Data augmentation with generative models for improved malware detection: A comparative study. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 0660–0665. https://doi.org/10.1109/UEMCON47517.2019.8993085.
– reference: LiXYangXYangYBennettIMbaDA novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machinesApplied Soft Computing201982110556410.1016/j.asoc.2019.105564
– reference: QinCJinYTaoJXiaoDYuHLiuCShiGLeiJLiuCDTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detectionMeasurement2021180110954810.1016/j.measurement.2021.109548
– reference: DesoukiMSassiSRennoJGowidSADynamic response of a rotating assembly under the coupled effects of misalignment and imbalanceShock and Vibration202011070962210.1155/2020/8819676
– reference: GoyalDPablaBDhamiSNon-contact sensor placement strategy for condition monitoring of rotating machine-elementsEngineering Science and Technology, an International Journal201922248950110.1016/j.jestch.2018.12.006
– reference: GörgensEBMontaghiARodriguezLCEA performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metricsComputers and Electronics in Agriculture2015116122122710.1016/j.compag.2015.07.004
– reference: Mikołajczyk, A., Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), Swinoujscie, Poland, pp 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338.
– reference: WilliamPEHoffmanMWIdentification of bearing faults using time domain zero-crossingsMechanical Systems and Signal Processing20112583078308810.1016/j.ymssp.2011.06.001
– reference: JinYQinCHuangYLiuCActual bearing compound fault diagnosis based on active learning and decoupling attentional residual networkMeasurement2021173110850010.1016/j.measurement.2020.108500
– reference: ElangovanMSugumaranVRamachandranKRavikumarSEffect of SVM kernel functions on classification of vibration signals of a single point cutting toolExpert Systems with Applications20113812152021520710.1016/j.eswa.2011.05.081
– reference: Ruiz-GonzalezRGomez-GilJGomez-GilFJMartínez-MartínezVAn SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassisSensors20141411207132073510.3390/s141120713
– reference: YuGA concentrated time-frequency analysis tool for bearing fault diagnosisIEEE Transactions on Instrumentation and Measurement201969237138110.1109/TIM.2019.2901514
– reference: McClaning, K., Vito, T. (2000). Radio receiver design. Noble Publishing.
– reference: Aouedi, O., Piamrat, K., Bagadthey, D. (2020). A semi-supervised stacked autoencoder approach for network traffic classification. In 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, pp 1–6, https://doi.org/10.1109/ICNP49622.2020.9259390.
– reference: ChangYWHsiehCJChangKWRinggaardMLinCJTraining and testing low-degree polynomial data mappings via linear SVMJournal of Machine Learning Research201011414711490
– reference: VillaLFReñonesAPeránJRde MiguelLJStatistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and loadMechanical Systems and Signal Processing201229143644610.1016/j.ymssp.2011.12.013
– reference: MartinsDHCVianaDPde LimaAAPintoMFTarratacaLSilvaFLGutiérrezRHRde Moura PregoTMonteiroUABVHaddadDBDiagnostic and severity analysis of combined failures composed by imbalance and misalignment in rotating machinesThe International Journal of Advanced Manufacturing Technology2021114911610.1007/s00170-021-06873-2
– reference: XiaoDQinCYuHHuangYLiuCZhangJUnsupervised machine fault diagnosis for noisy domain adaptation using marginal denoising autoencoder based on acoustic signalsMeasurement2021176110918610.1016/j.measurement.2021.109186
– reference: SiXSWangWHuCHZhouDHRemaining useful life estimation—A review on the statistical data driven approachesEuropean Journal of Operational Research2011213111410.1016/j.ejor.2010.11.018
– reference: Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?The Journal of Machine Learning Research201415131333181
– reference: OhJWJeongJData augmentation for bearing fault detection with a light weight CNNProcedia Computer Science20201751727910.1016/j.procs.2020.07.013
– reference: ChoubinBMoradiEGolshanMAdamowskiJSajedi-HosseiniFMosaviAAn ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machinesScience of The Total Environment201965112087209610.1016/j.scitotenv.2018.10.064
– reference: YangBLeiYJiaFXingSAn intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearingsMechanical Systems and Signal Processing2019122169270610.1016/j.ymssp.2018.12.051
– reference: Li, J., Li, H., Yu. J.L. (2011). Application of random-SMOTE on imbalanced data mining. In 2011 Fourth International Conference on Business Intelligence and Financial Engineering, Wuhan, China, pp 130–133. https://doi.org/10.1109/BIFE.2011.25.
– reference: AggarwalCCNeural Networks and Deep Learning2018BerlinSpringer10.1007/978-3-319-94463-0
– reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
– reference: Rochac, J.F.R., Liang, L., Zhang, N., Oladunni, T. (2019). A gaussian data augmentation technique on highly dimensional, limited labeled data for multiclass classification using deep learning. In 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh, Morocco, pp 145–151. https://doi.org/10.1109/ICICIP47338.2019.9012197.
– reference: RashidKMLouisJTimes-series data augmentation and deep learning for construction equipment activity recognitionAdvanced Engineering Informatics201942110094410.1016/j.aei.2019.100944
– reference: Suarez-AlvarezMMPhamDTProstovMYProstovYIStatistical approach to normalization of feature vectors and clustering of mixed datasetsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences201246821452630265110.1098/rspa.2011.0704
– reference: XingWBeiYMedical health big data classification based on KNN classification algorithmIEEE Access202081288082881910.1109/ACCESS.2019.2955754
– reference: YuKLinTRMaHLiXLiXA multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learningMechanical Systems and Signal Processing2021146110704310.1016/j.ymssp.2020.107043
– reference: Dal Pozzolo, A., Caelen, O., Bontempi, G. (2015). When is undersampling effective in unbalanced classification tasks? In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Porto, Portugal, pp 200–215. https://doi.org/10.1007/978-3-319-23528-8_13.
– reference: AsadiRMustaphaNSulaimanNShiriNNew supervised multi layer feed forward neural network model to accelerate classification with high accuracyEuropean Journal of Scientific Research2009331163178
– reference: Yoon, J., Friel, N. (2013). Efficient estimation of the number of neighbours in probabilistic K-Nearest Neighbour classification. https://arxiv.org/abs/1305.1002
– reference: ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJournal of Big Data20196114810.1186/s40537-019-0197-0
– reference: GlowaczAAcoustic based fault diagnosis of three-phase induction motorApplied Acoustics20181371828910.1016/j.apacoust.2018.03.010
– reference: PolatKThe fault diagnosis based on deep long short-term memory model from the vibration signals in the computer numerical control machinesJournal of the Institute of Electronics and Computer202021729210.33969/JIEC.2020.21006
– ident: 1873_CR58
  doi: 10.1109/ICICIP47338.2019.9012197
– volume: 4
  start-page: 8
  issue: 1
  year: 2016
  ident: 1873_CR81
  publication-title: Case Studies in Mechanical Systems and Signal Processing
  doi: 10.1016/j.csmssp.2016.07.001
– ident: 1873_CR71
– volume: 95
  start-page: 1
  issue: 8
  year: 2020
  ident: 1873_CR42
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01543-8
– volume: 13
  start-page: 59
  issue: 4
  year: 2018
  ident: 1873_CR60
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2018.2866730
– volume: 135
  start-page: 106443
  issue: 1
  year: 2020
  ident: 1873_CR74
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.106443
– volume: 95
  start-page: 187
  issue: 1
  year: 2017
  ident: 1873_CR61
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 38
  start-page: 15202
  issue: 12
  year: 2011
  ident: 1873_CR25
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.081
– volume: 125
  start-page: 207
  issue: 1
  year: 2018
  ident: 1873_CR75
  publication-title: Mechanism and Machine Theory
  doi: 10.1016/j.mechmachtheory.2018.03.009
– ident: 1873_CR73
  doi: 10.1109/IJCNN.2008.4633794
– volume: 651
  start-page: 2087
  issue: 1
  year: 2019
  ident: 1873_CR16
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 1873_CR62
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: 1873_CR49
  doi: 10.1109/IIPHDW.2018.8388338
– volume: 13
  start-page: 2758
  issue: 6
  year: 2017
  ident: 1873_CR56
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2755064
– volume: 116
  start-page: 105570
  issue: 1
  year: 2020
  ident: 1873_CR43
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2019.105570
– volume: 122
  start-page: 692
  issue: 1
  year: 2019
  ident: 1873_CR82
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.12.051
– volume-title: Neural Networks and Deep Learning
  year: 2018
  ident: 1873_CR1
  doi: 10.1007/978-3-319-94463-0
– volume: 2
  start-page: 72
  issue: 1
  year: 2020
  ident: 1873_CR52
  publication-title: Journal of the Institute of Electronics and Computer
  doi: 10.33969/JIEC.2020.21006
– volume: 6
  start-page: 1
  year: 2019
  ident: 1873_CR80
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01522-8
– ident: 1873_CR4
  doi: 10.1109/UBMK.2019.8907003
– volume: 468
  start-page: 2630
  issue: 2145
  year: 2012
  ident: 1873_CR67
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2011.0704
– ident: 1873_CR3
  doi: 10.1109/ICNP49622.2020.9259390
– volume: 11
  start-page: 1471
  issue: 4
  year: 2010
  ident: 1873_CR13
  publication-title: Journal of Machine Learning Research
– volume: 125
  start-page: 63
  issue: 1
  year: 2018
  ident: 1873_CR21
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.059
– volume: 22
  start-page: 489
  issue: 2
  year: 2019
  ident: 1873_CR31
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2018.12.006
– volume: 14
  start-page: 20713
  issue: 11
  year: 2014
  ident: 1873_CR59
  publication-title: Sensors
  doi: 10.3390/s141120713
– volume: 272
  start-page: 967
  issue: 3
  year: 2004
  ident: 1873_CR65
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2003.03.006
– volume: 171
  start-page: 81
  issue: 1
  year: 2019
  ident: 1873_CR29
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.02.008
– volume-title: Data Science and Predictive Analytics: Biomedical and Health Applications Using R
  year: 2018
  ident: 1873_CR23
  doi: 10.1007/978-3-319-72347-1
– volume: 69
  start-page: 371
  issue: 2
  year: 2019
  ident: 1873_CR84
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2901514
– volume: 69
  start-page: 1505
  issue: 4
  year: 2019
  ident: 1873_CR85
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2913058
– volume-title: Digital Signal Processing: System Analysis and Design
  year: 2010
  ident: 1873_CR22
  doi: 10.1017/CBO9780511781667
– volume: 31
  start-page: 433
  issue: 2
  year: 2020
  ident: 1873_CR45
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-018-1456-1
– ident: 1873_CR6
  doi: 10.1007/978-3-319-74693-7_20
– volume: 13
  start-page: 337
  issue: 4
  year: 2017
  ident: 1873_CR32
  publication-title: International Journal of Performability Engineering
  doi: 10.23940/ijpe.17.04.p1.337347
– ident: 1873_CR38
  doi: 10.1109/ICELMACH.2018.8507056
– volume: 450
  start-page: 109
  issue: 1
  year: 2019
  ident: 1873_CR66
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2019.03.007
– volume: 43
  start-page: 80
  issue: 5
  year: 2018
  ident: 1873_CR39
  publication-title: Sādhanā
  doi: 10.1007/s12046-018-0859-1
– volume: 42
  start-page: 100944
  issue: 1
  year: 2019
  ident: 1873_CR55
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2019.100944
– volume: 40
  start-page: 4137
  issue: 10
  year: 2013
  ident: 1873_CR51
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.01.033
– volume: 1268
  start-page: 886
  issue: 1
  year: 2004
  ident: 1873_CR90
  publication-title: International Congress Series
  doi: 10.1016/j.ics.2004.03.238
– ident: 1873_CR17
  doi: 10.1007/978-3-319-23528-8_13
– ident: 1873_CR87
  doi: 10.1109/ACCESS.2020.2972859
– volume: 82
  start-page: 105564
  issue: 1
  year: 2019
  ident: 1873_CR44
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105564
– volume: 38
  start-page: 363
  issue: 2
  year: 2019
  ident: 1873_CR72
  publication-title: Journal of Low Frequency Noise, Vibration and Active Control
  doi: 10.1177/1461348418821582
– ident: 1873_CR47
  doi: 10.1007/978-3-319-99268-6_11
– volume: 25
  start-page: 3078
  issue: 8
  year: 2011
  ident: 1873_CR76
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.06.001
– ident: 1873_CR11
  doi: 10.1007/978-3-030-36178-5_27
– volume-title: Principles of Data Mining
  year: 2007
  ident: 1873_CR8
– volume: 8
  start-page: 28808
  issue: 1
  year: 2020
  ident: 1873_CR78
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955754
– volume: 7
  start-page: 170668
  issue: 1
  year: 2019
  ident: 1873_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955086
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  ident: 1873_CR14
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 116
  start-page: 221
  issue: 1
  year: 2015
  ident: 1873_CR33
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.07.004
– volume: 93
  start-page: 267
  issue: 1
  year: 2017
  ident: 1873_CR40
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.02.015
– volume: 1
  start-page: 1070
  year: 2020
  ident: 1873_CR19
  publication-title: Shock and Vibration
  doi: 10.1155/2020/8819676
– volume: 114
  start-page: 1
  issue: 9
  year: 2021
  ident: 1873_CR46
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-021-06873-2
– ident: 1873_CR48
– volume: 173
  start-page: 108500
  issue: 1
  year: 2021
  ident: 1873_CR36
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108500
– ident: 1873_CR24
  doi: 10.1109/ELMA.2019.8771525
– volume: 96
  start-page: 106993
  issue: 1
  year: 2019
  ident: 1873_CR53
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.106993
– ident: 1873_CR41
  doi: 10.1109/BIFE.2011.25
– ident: 1873_CR35
– ident: 1873_CR20
  doi: 10.1109/LASCAS.2013.6518984
– volume: 5
  start-page: 23863
  issue: 11
  year: 2018
  ident: 1873_CR34
  publication-title: Materials Today: Proceedings
  doi: 10.1016/j.matpr.2018.10.178
– ident: 1873_CR64
  doi: 10.1109/ICREST.2019.8644089
– volume: 14
  start-page: 125
  issue: 2
  year: 2014
  ident: 1873_CR69
  publication-title: Journal of Failure Analysis and Prevention
  doi: 10.1007/s11668-014-9785-7
– volume: 28
  start-page: 405
  issue: 2
  year: 2017
  ident: 1873_CR89
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0987-3
– ident: 1873_CR2
  doi: 10.1109/ICMSAO.2019.8880437
– volume: 128
  start-page: 199
  issue: 1
  year: 2016
  ident: 1873_CR28
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.09.004
– volume: 146
  start-page: 107043
  issue: 1
  year: 2021
  ident: 1873_CR86
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107043
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 1873_CR27
  publication-title: The Journal of Machine Learning Research
– volume: 176
  start-page: 109186
  issue: 1
  year: 2021
  ident: 1873_CR77
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109186
– volume: 33
  start-page: 163
  issue: 1
  year: 2009
  ident: 1873_CR5
  publication-title: European Journal of Scientific Research
– volume: 176
  start-page: 663
  issue: 5
  year: 1994
  ident: 1873_CR79
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.1994.1405
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1873_CR9
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 175
  start-page: 72
  issue: 1
  year: 2020
  ident: 1873_CR50
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.07.013
– volume-title: The Nature of Statistical Learning Theory
  year: 2013
  ident: 1873_CR68
– volume-title: Machinery Component Maintenance and Repair
  year: 2005
  ident: 1873_CR7
– ident: 1873_CR10
  doi: 10.1109/UEMCON47517.2019.8993085
– year: 2018
  ident: 1873_CR12
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.06.012
– volume: 213
  start-page: 1
  issue: 1
  year: 2011
  ident: 1873_CR63
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.11.018
– ident: 1873_CR18
  doi: 10.1145/3386723.3387898
– volume: 29
  start-page: 436
  issue: 1
  year: 2012
  ident: 1873_CR70
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.12.013
– volume: 180
  start-page: 109548
  issue: 1
  year: 2021
  ident: 1873_CR54
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109548
– ident: 1873_CR83
– volume: 38
  start-page: 1876
  issue: 3
  year: 2011
  ident: 1873_CR37
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.119
– volume: 61
  start-page: 863
  issue: 1
  year: 2018
  ident: 1873_CR26
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.11192
– volume: 39
  start-page: 757
  issue: 2
  year: 2020
  ident: 1873_CR57
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-019-01246-3
– volume: 137
  start-page: 82
  issue: 1
  year: 2018
  ident: 1873_CR30
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2018.03.010
– volume: 151
  start-page: 107232
  issue: 1
  year: 2020
  ident: 1873_CR88
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107232
SSID ssj0009861
Score 2.4248588
Snippet Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1795
SubjectTerms Advanced manufacturing technologies
Algorithms
Business and Management
Classification
Control
Data augmentation
Failure
Failure detection
Machine learning
Machines
Manufacturing
Mechatronics
Performance degradation
Processes
Production
Random noise
Recognition
Robotics
Rotating machinery
Rotating machines
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6IetCD06k4nZKDNy3Ypkubo4hjpyHoZLeStOkYuE72Q_C_9700XaeooMfSJC0vL8n7yPu-B3BpJUJELrzQIFYNc6E8paXxZMiF9GWkTVYWm4j6_Xg4lA-OFDavst2rK0m7U6-R3eKQ2MQEf-OIe4h5tjqkNkMY_fG5ltqNrUqqVdjDeKDjqDLfj_H5OKpjzC_Xova06Tb-95_7sOeiS3ZbusMBbJiiCY2qcgNzC7kJu2syhIcw6L0Tb4tRtihTy9HE8ZEKVtaXZhjYMvw4gmiDD2pMqexslXqE7cYFm02pTzFiE5ueaeZHMOjeP931PFduwUtxHS48zXUadLQfKB4YkSmDkaTiGjeEUCuDyCMTCJdzqgmD08ljbaQfKnzmWZSbPOLHsFlMC3MCzGAcJcKMSK8S8c2N5OgOeZb6OiDib9QCv7J6kjotciqJ8ZLUKspkxQStmFgrJn4LrlZ9Xksljl9bt6vJTNyqnCcB7U6Co3e24LqavPr1z6Od_q35GexQVfoywacNm4vZ0pzDdvq2GM9nF9ZbPwCaCOIG
  priority: 102
  providerName: Springer Nature
Title Hybrid data augmentation method for combined failure recognition in rotating machines
URI https://link.springer.com/article/10.1007/s10845-021-01873-1
https://www.proquest.com/docview/2787063376
Volume 34
WOSCitedRecordID wos000741966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_BanU_LgmwZt0zXtk6hMBHGM-e1LSdpUBtrpNgX_e-_adFVBX3wJhCYh9C7JXXL3-wHs5BAhfupzz6Cv6qW-4kqHhoee8EMnlNokBdmE7HSCu7uway_cRjasstwT8406GcR0R77vkmb5Akc-fHnlxBpFr6uWQmMa6nhQt4jBQN7eV6C7QY6XmmPtoWXQskkzNnUu8Cg3mZzpQArufD-YKmvzxwNpfu6cLvx3xoswby1OdlSoyBJMmWwZFko2B2YX9zLMfYEmXIHrsw_K5WIUQcrU2-OzzVHKWME5zdDYZTgPdKwNVlSfwtvZJBwJ2_UzNhxQn-yRPechm2a0Cten7auTM24pGHiMa3PMtdCx29KOq4Rr_EQZtC6V0LhJeFoZ9EYSH13olHhiUMQi0CZ0PIV1kcjUpFKsQS0bZGYdmEHbyvcSSoQN0ec5CAWqSJrEjnYpGVg2wCn_fxRbfHKiyXiKKmRlklmEMotymUVOA3YnfV4KdI4_WzdLQUV2pY6iSkoN2CtFXX3-fbSNv0fbhFlipi-CfJpQGw_fzBbMxO_j_mi4nevpNtSP251uD2vnkmN5cXBCpbzEstt6wLJ3efMJx03ysA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRQIO7Iiy-gAnsCBx6iQHhBCLWhUqDiBxC3bioEqQQhcQP8U3MpOlASS49cDRij2K4zf2TDzzBmAnpQiRseSOQV_ViaXiSvuG-46QvuW72kRZsQm31fLu7vzrCnwUuTAUVlnsielGHXVC-kd-YBOypEDJx88vnKpG0e1qUUIjg0XTvL-hy9Y7apzh-u7a9sX5zWmd51UFeIhw63MtdGjXtGUrYRsZKYMGkxIace9oZdDAjiR6hTGVPsG3Fp42vuUobIvIjU3sCpQ7BhOO8CRpVNPlJcmvl_Kzptx-aInU8iSdPFXPcygXmpx3zxXc-n4QltbtjwvZ9Jy7mPtvX2geZnOLmp1kKrAAFZMswlxRrYLlm9cizHyhXlyC2_o75aoxipBlavDwlOdgJSyrqc3QmGc4b41DsKHaFL7PhuFW2K-dsG6HxiQP7CkNSTW9ZbgdyVRXYDzpJGYVmEHbUToRJfr66NMd-gJVII5CS9uU7OxWwSrWOwhz_nUqA_IYlMzRhJEAMRKkGAmsKuwNxzxn7CN_9t4ogBHkO1EvKFFRhf0CWuXj36Wt_S1tG6bqN1eXwWWj1VyHaRttvyygaQPG-92B2YTJ8LXf7nW3Uh1hcD9qyH0CnJNJjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLbGQAgOjKcYzxzgBBG0KW1zQIjHJqahaUIgcStJm6JJrBvbAPHX-HU4bboCEtw4cIyaREry2bEb2x_ATloixI1d6ij0VZ3YFVRIrih3mMst7kkVZWQTXqvl393xdgne81wYHVaZ68RUUUe9UP8jP7A1slyGMx_EJiyifVE_6T9RzSClX1pzOo0MIk319oru2_C4cYFnvWvb9drN-SU1DAM0ROiNqGQytI-kZQtmKzcSCo0nwSTKgCOFQmM7ctFDjDUNCq6A-VJxyxHYZpEXq9hjOO8ETHoMnZ4yTJ7VWu3rouSvn1ZrTSv9oV1yZFJ2TOKe7-jMaO3K-x6j1tdrsbB1vz3PprdevfKf92se5oytTU4z4ViAkkoWoZLzWBCj1hZh9lNRxiW4vXzTWWxEx84S8fzQNdlZCcnYtgma-QT3QOIQbIiODuwn40As7NdJyKCnxyQPpJsGq6rhMtz-yVJXoJz0ErUKRKFV6TqRTgHm6O0dcobCEUehJW2dBu1VwcrPPghNZXZNEPIYFDWlNV4CxEuQ4iWwqrA3HtPP6pL82nsjB0lgdNQwKBBShf0cZsXnn2db-322bZhGpAVXjVZzHWZsNAqzSKcNKI8Gz2oTpsKXUWc42DICQ-D-rzH3ATT4U-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+data+augmentation+method+for+combined+failure+recognition+in+rotating+machines&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Martins%2C+Dion%C3%ADsio+H.+C.+S.+S&rft.au=de+Lima%2C+Amaro+A&rft.au=Pinto%2C+Milena+F&rft.au=Hemerly%2C+Douglas+de+O&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=34&rft.issue=4&rft.spage=1795&rft.epage=1813&rft_id=info:doi/10.1007%2Fs10845-021-01873-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon