Hybrid data augmentation method for combined failure recognition in rotating machines
Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In indus...
Uloženo v:
| Vydáno v: | Journal of intelligent manufacturing Ročník 34; číslo 4; s. 1795 - 1813 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0956-5515, 1572-8145 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines,
K
-nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s. |
|---|---|
| AbstractList | Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K-nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s. Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K -nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s. |
| Author | Martins, Dionísio H. C. S. S. e Silva, Fabrício L. Gutiérrez, Ricardo H. R. Pinto, Milena F. Tarrataca, Luís Hemerly, Douglas de O. Prego, Thiago de M. Monteiro, Ulisses A. Haddad, Diego B. de Lima, Amaro A. |
| Author_xml | – sequence: 1 givenname: Dionísio H. C. S. S. orcidid: 0000-0001-7136-1119 surname: Martins fullname: Martins, Dionísio H. C. S. S. organization: Federal Center for Technological Education of Rio de Janeiro – sequence: 2 givenname: Amaro A. orcidid: 0000-0001-5397-6531 surname: de Lima fullname: de Lima, Amaro A. organization: Federal Center for Technological Education of Rio de Janeiro – sequence: 3 givenname: Milena F. orcidid: 0000-0001-6916-700X surname: Pinto fullname: Pinto, Milena F. organization: Federal Center for Technological Education of Rio de Janeiro – sequence: 4 givenname: Douglas de O. orcidid: 0000-0003-2243-3184 surname: Hemerly fullname: Hemerly, Douglas de O. organization: International Business Machines Corporation – sequence: 5 givenname: Thiago de M. orcidid: 0000-0003-1404-4349 surname: Prego fullname: Prego, Thiago de M. organization: Federal Center for Technological Education of Rio de Janeiro – sequence: 6 givenname: Fabrício L. orcidid: 0000-0002-8220-8344 surname: e Silva fullname: e Silva, Fabrício L. organization: Federal Center for Technological Education of Rio de Janeiro – sequence: 7 givenname: Luís orcidid: 0000-0001-9359-5143 surname: Tarrataca fullname: Tarrataca, Luís organization: Federal Center for Technological Education of Rio de Janeiro – sequence: 8 givenname: Ulisses A. orcidid: 0000-0001-8530-5775 surname: Monteiro fullname: Monteiro, Ulisses A. organization: Federal University of Rio de Janeiro – sequence: 9 givenname: Ricardo H. R. orcidid: 0000-0003-4768-3243 surname: Gutiérrez fullname: Gutiérrez, Ricardo H. R. organization: Federal University of Rio de Janeiro – sequence: 10 givenname: Diego B. orcidid: 0000-0002-7634-5481 surname: Haddad fullname: Haddad, Diego B. organization: Federal Center for Technological Education of Rio de Janeiro |
| BookMark | eNp9kE1LwzAYx4NMcJt-AU8Bz9G8NE16lKFOGHhx55C0aZexJjNpD_v2ZqsgePD08MDv97z8F2Dmg7cA3BP8SDAWT4lgWXCEKUGYSMEQuQJzwgVFkhR8Bua44iXinPAbsEhpjzGuZEnmYLs-mega2OhBQz12vfWDHlzwsLfDLjSwDRHWoTfO29xodxijhdHWofPuwjkPYzg7voO9rncZTLfgutWHZO9-6hJsX18-V2u0-Xh7Xz1vUM1INSDDTE25IVQzastGW0yxZoZhXhhtOa-aUkrZ5qu5NhWTxlak0LlnjWhtK9gSPExzjzF8jTYNah_G6PNKRYUUuGRMlJmSE1XHkFK0rard9OQQ80OKYHUOUU0hqhyiuoSoSFbpH_UYXa_j6X-JTVLKsO9s_L3qH-sb462HVA |
| CitedBy_id | crossref_primary_10_1007_s10462_024_11021_9 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_56407_bs_agrarian_4_2023_60 crossref_primary_10_1177_08953996241296249 crossref_primary_10_1007_s10845_024_02458_4 crossref_primary_10_1109_JSEN_2024_3443871 crossref_primary_10_1007_s11665_022_07431_x crossref_primary_10_1007_s10845_023_02131_2 crossref_primary_10_1016_j_aei_2024_102976 |
| Cites_doi | 10.1109/ICICIP47338.2019.9012197 10.1016/j.csmssp.2016.07.001 10.1007/s10845-020-01543-8 10.1109/MCI.2018.2866730 10.1016/j.ymssp.2019.106443 10.1016/j.ymssp.2017.03.034 10.1016/j.eswa.2011.05.081 10.1016/j.mechmachtheory.2018.03.009 10.1109/IJCNN.2008.4633794 10.1016/j.scitotenv.2018.10.064 10.1186/s40537-019-0197-0 10.1109/IIPHDW.2018.8388338 10.1109/TII.2017.2755064 10.1016/j.ijepes.2019.105570 10.1016/j.ymssp.2018.12.051 10.1007/978-3-319-94463-0 10.33969/JIEC.2020.21006 10.1007/s10845-019-01522-8 10.1109/UBMK.2019.8907003 10.1098/rspa.2011.0704 10.1109/ICNP49622.2020.9259390 10.1016/j.measurement.2018.04.059 10.1016/j.jestch.2018.12.006 10.3390/s141120713 10.1016/j.jsv.2003.03.006 10.1016/j.knosys.2019.02.008 10.1007/978-3-319-72347-1 10.1109/TIM.2019.2901514 10.1109/TIM.2019.2913058 10.1017/CBO9780511781667 10.1007/s10845-018-1456-1 10.1007/978-3-319-74693-7_20 10.23940/ijpe.17.04.p1.337347 10.1109/ICELMACH.2018.8507056 10.1016/j.jsv.2019.03.007 10.1007/s12046-018-0859-1 10.1016/j.aei.2019.100944 10.1016/j.eswa.2013.01.033 10.1016/j.ics.2004.03.238 10.1007/978-3-319-23528-8_13 10.1109/ACCESS.2020.2972859 10.1016/j.asoc.2019.105564 10.1177/1461348418821582 10.1007/978-3-319-99268-6_11 10.1016/j.ymssp.2011.06.001 10.1007/978-3-030-36178-5_27 10.1109/ACCESS.2019.2955754 10.1109/ACCESS.2019.2955086 10.1613/jair.953 10.1016/j.compag.2015.07.004 10.1016/j.ymssp.2017.02.015 10.1155/2020/8819676 10.1007/s00170-021-06873-2 10.1016/j.measurement.2020.108500 10.1109/ELMA.2019.8771525 10.1016/j.patcog.2019.106993 10.1109/BIFE.2011.25 10.1109/LASCAS.2013.6518984 10.1016/j.matpr.2018.10.178 10.1109/ICREST.2019.8644089 10.1007/s11668-014-9785-7 10.1007/s10845-014-0987-3 10.1109/ICMSAO.2019.8880437 10.1016/j.compag.2016.09.004 10.1016/j.ymssp.2020.107043 10.1016/j.measurement.2021.109186 10.1006/jsvi.1994.1405 10.1023/A:1010933404324 10.1016/j.procs.2020.07.013 10.1109/UEMCON47517.2019.8993085 10.1016/j.ymssp.2017.06.012 10.1016/j.ejor.2010.11.018 10.1145/3386723.3387898 10.1016/j.ymssp.2011.12.013 10.1016/j.measurement.2021.109548 10.1016/j.eswa.2010.07.119 10.1613/jair.1.11192 10.1007/s00034-019-01246-3 10.1016/j.apacoust.2018.03.010 10.1016/j.measurement.2019.107232 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10845-021-01873-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1572-8145 |
| EndPage | 1813 |
| ExternalDocumentID | 10_1007_s10845_021_01873_1 |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: http://doi.org/10.13039/501100002322 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: http://doi.org/10.13039/501100003593 – fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro funderid: http://doi.org/10.13039/501100004586 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-b3bc25b12a32e6dae020a3b3054bae559d6888f5155ab938be914af513d7fef73 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-5515 |
| IngestDate | Wed Nov 05 04:20:27 EST 2025 Sat Nov 29 04:20:09 EST 2025 Tue Nov 18 21:26:09 EST 2025 Fri Feb 21 02:44:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Combined failures recognition Data augmentation Imbalance Rotating machines Misalignment Predictive maintenance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b3bc25b12a32e6dae020a3b3054bae559d6888f5155ab938be914af513d7fef73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8220-8344 0000-0001-8530-5775 0000-0001-6916-700X 0000-0001-5397-6531 0000-0001-7136-1119 0000-0001-9359-5143 0000-0002-7634-5481 0000-0003-2243-3184 0000-0003-1404-4349 0000-0003-4768-3243 |
| PQID | 2787063376 |
| PQPubID | 32407 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2787063376 crossref_citationtrail_10_1007_s10845_021_01873_1 crossref_primary_10_1007_s10845_021_01873_1 springer_journals_10_1007_s10845_021_01873_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20230400 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ZhangYLiXGaoLChenWLiPIntelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder methodMeasurement2020151110723210.1016/j.measurement.2019.107232 VapnikVThe Nature of Statistical Learning Theory2013BerlinSpringer WangNJiangDVibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental studyMechanism and Machine Theory2018125120721910.1016/j.mechmachtheory.2018.03.009 Suarez-AlvarezMMPhamDTProstovMYProstovYIStatistical approach to normalization of feature vectors and clustering of mixed datasetsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences201246821452630265110.1098/rspa.2011.0704 PolatKThe fault diagnosis based on deep long short-term memory model from the vibration signals in the computer numerical control machinesJournal of the Institute of Electronics and Computer202021729210.33969/JIEC.2020.21006 ZianiRFelkaouiAZegadiRBearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fishers criterionJournal of Intelligent Manufacturing201728240541710.1007/s10845-014-0987-3 ChoubinBMoradiEGolshanMAdamowskiJSajedi-HosseiniFMosaviAAn ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machinesScience of The Total Environment201965112087209610.1016/j.scitotenv.2018.10.064 Aouedi, O., Piamrat, K., Bagadthey, D. (2020). A semi-supervised stacked autoencoder approach for network traffic classification. In 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, pp 1–6, https://doi.org/10.1109/ICNP49622.2020.9259390. FuXWeiYXuFWangTLuYLiJHuangJZSemi-supervised aspect-level sentiment classification model based on variational autoencoderKnowledge-Based Systems20191711819210.1016/j.knosys.2019.02.008 XingWBeiYMedical health big data classification based on KNN classification algorithmIEEE Access202081288082881910.1109/ACCESS.2019.2955754 FletcherRSReddyKNRandom forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweedsComputers and Electronics in Agriculture2016128119920610.1016/j.compag.2016.09.004 Martins, D.H.C.D.S.S., Hemerly, D.O., Marins, M., Lima, A.A., Silva, F.L., Prego, T.D.M., Ribeiro, F.M.L., Netto, S.L., da Silva, E.A.B. (2019). Application of machine learning to evaluate unbalance severity in rotating machines. In Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Rio de Janeiro, Brazil, pp 144–160. https://doi.org/10.1007/978-3-319-99268-6_11. Ruiz-GonzalezRGomez-GilJGomez-GilFJMartínez-MartínezVAn SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassisSensors20141411207132073510.3390/s141120713 LiPHuWHuRChenZImbalance fault detection based on the integrated analysis strategy for variable-speed wind turbinesInternational Journal of Electrical Power & Energy Systems2020116110557010.1016/j.ijepes.2019.105570 Dekhane, A., Djellal, A., Boutebbakh, F., Lakel, R. (2020). Cooling fan combined fault vibration analysis using convolutional neural network classifier. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, New York, USA, pp 1–6. https://doi.org/10.1145/3386723.3387898. BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324 JinYQinCHuangYLiuCActual bearing compound fault diagnosis based on active learning and decoupling attentional residual networkMeasurement2021173110850010.1016/j.measurement.2020.108500 AsadiRMustaphaNSulaimanNShiriNNew supervised multi layer feed forward neural network model to accelerate classification with high accuracyEuropean Journal of Scientific Research2009331163178 DinovIDData Science and Predictive Analytics: Biomedical and Health Applications Using R2018BerlinSpringer10.1007/978-3-319-72347-1 SrinivasRSTiwariRKannababuCModel based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearingJournal of Sound and Vibration2019450110914010.1016/j.jsv.2019.03.007 Burks, R., Islam, K.A., Lu, Y., Li, J. (2019). Data augmentation with generative models for improved malware detection: A comparative study. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 0660–0665. https://doi.org/10.1109/UEMCON47517.2019.8993085. DesoukiMSassiSRennoJGowidSADynamic response of a rotating assembly under the coupled effects of misalignment and imbalanceShock and Vibration202011070962210.1155/2020/8819676 QinCJinYTaoJXiaoDYuHLiuCShiGLeiJLiuCDTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detectionMeasurement2021180110954810.1016/j.measurement.2021.109548 KankarPKSharmaSCHarshaSPFault diagnosis of ball bearings using machine learning methodsExpert Systems with Applications20113831876188610.1016/j.eswa.2010.07.119 QianWLiSJiangXDeep transfer network for rotating machine fault analysisPattern Recognition201996110699310.1016/j.patcog.2019.106993 Razavi-FarRFarajzadeh-ZanjaniMSaifMAn integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motorsIEEE Transactions on Industrial Informatics20171362758276910.1109/TII.2017.2755064 RashidKMLouisJTimes-series data augmentation and deep learning for construction equipment activity recognitionAdvanced Engineering Informatics201942110094410.1016/j.aei.2019.100944 SiXSWangWHuCHZhouDHRemaining useful life estimation—A review on the statistical data driven approachesEuropean Journal of Operational Research2011213111410.1016/j.ejor.2010.11.018 CerradaMA review on data-driven fault severity assessment in rolling bearingsMechanical Systems and Signal Processing201810.1016/j.ymssp.2017.06.012 de Lima, A.A., Prego, T.D.M., Netto, S.L., da Silva, E.A., Gutierrez, R.H., Monteiro, U.A., Troyman, A.C., Silveira, F.J.D.C., Vaz, L. (2013). On fault classification in rotating machines using fourier domain features and neural networks. In 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, pp 1–4. https://doi.org/10.1109/LASCAS.2013.6518984. ZurRJiangYMetzCComparison of two methods of adding jitter to artificial neural network trainingInternational Congress Series20041268188688910.1016/j.ics.2004.03.238 Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics-a comprehensive review. IEEE Access,8(1), 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859 Li, J., Li, H., Yu. J.L. (2011). Application of random-SMOTE on imbalanced data mining. In 2011 Fourth International Conference on Business Intelligence and Financial Engineering, Wuhan, China, pp 130–133. https://doi.org/10.1109/BIFE.2011.25. Walpole, R.E., Myers, R.H. (2012). Probability & Statistics for Engineers & Scientists. Pearson Education Limited. Ali, M.A., Bingamil, A.A., Jarndal, A., Alsyouf, I. (2019). The influence of handling imbalance classes on the classification of mechanical faults using neural networks. In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, pp 1–5. https://doi.org/10.1109/ICMSAO.2019.8880437. ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJournal of Big Data20196114810.1186/s40537-019-0197-0 McClaning, K., Vito, T. (2000). Radio receiver design. Noble Publishing. LiHLiMLiCLiFMengGMulti-faults decoupling on turbo-expander using differential-based ensemble empirical mode decompositionMechanical Systems and Signal Processing201793126728010.1016/j.ymssp.2017.02.015 PandyaDUpadhyaySHarshaSPFault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNNExpert Systems with Applications201340104137414510.1016/j.eswa.2013.01.033 Sikder, N., Bhakta, K., Al Nahid, A., Islam, M.M. (2019). Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp 564–569. https://doi.org/10.1109/ICREST.2019.8644089. YangBLeiYJiaFXingSAn intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearingsMechanical Systems and Signal Processing2019122169270610.1016/j.ymssp.2018.12.051 ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216132135710.1613/jair.953 VermaAKSarangiSKolekarMExperimental investigation of misalignment effects on rotor shaft vibration and on stator current signatureJournal of Failure Analysis and Prevention201414212513810.1007/s11668-014-9785-7 MartinsDHCVianaDPde LimaAAPintoMFTarratacaLSilvaFLGutiérrezRHRde Moura PregoTMonteiroUABVHaddadDBDiagnostic and severity analysis of combined failures composed by imbalance and misalignment in rotating machinesThe International Journal of Advanced Manufacturing Technology2021114911610.1007/s00170-021-06873-2 GlowaczAAcoustic based fault diagnosis of three-phase induction motorApplied Acoustics20181371828910.1016/j.apacoust.2018.03.010 LiJLiXHeDQuYUnsupervised rotating machinery fault diagnosis method based on integrated sae-dbn and a binary processorJournal of Intelligent Manufacturing202095811810.1007/s10845-020-01543-8 Djagarov, N., Grozdev, Z., Enchev, G., Djagarov, J. (2019). Ship’s induction motors fault diagnosis. In 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, pp 1–4. https://doi.org/10.1109/ELMA.2019.8771525. SantosMSSoaresJPAbreuPHAraujoHSantosJCross-validation for imbalanced datasets: Avoiding overop MS Santos (1873_CR60) 2018; 13 LS Dhamande (1873_CR21) 2018; 125 1873_CR49 W Xing (1873_CR78) 2020; 8 GK Yamamoto (1873_CR81) 2016; 4 G Yu (1873_CR84) 2019; 69 D Xiao (1873_CR77) 2021; 176 DP Hujare (1873_CR34) 2018; 5 V Vapnik (1873_CR68) 2013 R Zur (1873_CR90) 2004; 1268 C Shorten (1873_CR62) 2019; 6 R Ziani (1873_CR89) 2017; 28 1873_CR83 X Li (1873_CR45) 2020; 31 MM Suarez-Alvarez (1873_CR67) 2012; 468 M Desouki (1873_CR19) 2020; 1 1873_CR87 EB Görgens (1873_CR33) 2015; 116 1873_CR41 DHC Martins (1873_CR46) 2021; 114 1873_CR48 1873_CR47 RS Fletcher (1873_CR28) 2016; 128 1873_CR38 N Wang (1873_CR75) 2018; 125 Q Xu (1873_CR80) 2019; 6 W Qian (1873_CR53) 2019; 96 Y Zhang (1873_CR88) 2020; 151 M Lal (1873_CR39) 2018; 43 M Xu (1873_CR79) 1994; 176 P Li (1873_CR43) 2020; 116 X Li (1873_CR44) 2019; 82 K Cheng (1873_CR15) 2019; 7 J Li (1873_CR42) 2020; 95 R Razavi-Far (1873_CR56) 2017; 13 1873_CR73 1873_CR71 D Goyal (1873_CR31) 2019; 22 Z Guan (1873_CR32) 2017; 13 M Cerrada (1873_CR12) 2018 YW Chang (1873_CR13) 2010; 11 A Fernández (1873_CR26) 2018; 61 1873_CR35 A Glowacz (1873_CR30) 2018; 137 RS Srinivas (1873_CR66) 2019; 450 CC Aggarwal (1873_CR1) 2018 C Qin (1873_CR54) 2021; 180 M Elangovan (1873_CR25) 2011; 38 LF Villa (1873_CR70) 2012; 29 L Breiman (1873_CR9) 2001; 45 H Li (1873_CR40) 2017; 93 K Yu (1873_CR86) 2021; 146 M Fernández-Delgado (1873_CR27) 2014; 15 AK Verma (1873_CR69) 2014; 14 D Pandya (1873_CR51) 2013; 40 R Ruiz-Gonzalez (1873_CR59) 2014; 14 1873_CR20 1873_CR64 1873_CR24 1873_CR6 PS Diniz (1873_CR22) 2010 1873_CR18 H Wang (1873_CR72) 2019; 38 1873_CR4 1873_CR17 1873_CR3 JK Sinha (1873_CR65) 2004; 272 M Bramer (1873_CR8) 2007 1873_CR2 NV Chawla (1873_CR14) 2002; 16 KM Rashid (1873_CR55) 2019; 42 XS Si (1873_CR63) 2011; 213 K Polat (1873_CR52) 2020; 2 PE William (1873_CR76) 2011; 25 R Asadi (1873_CR5) 2009; 33 B Choubin (1873_CR16) 2019; 651 H Shao (1873_CR61) 2017; 95 Y Jin (1873_CR36) 2021; 173 PK Kankar (1873_CR37) 2011; 38 HP Bloch (1873_CR7) 2005 A Rehman (1873_CR57) 2020; 39 1873_CR11 1873_CR10 JW Oh (1873_CR50) 2020; 175 ID Dinov (1873_CR23) 2018 B Yang (1873_CR82) 2019; 122 1873_CR58 K Yu (1873_CR85) 2019; 69 X Fu (1873_CR29) 2019; 171 J Wang (1873_CR74) 2020; 135 |
| References_xml | – reference: ChengKZhangCYuHYangXZouHGaoSGrouped SMOTE with noise filtering mechanism for classifying imbalanced dataIEEE Access20197117066817068110.1109/ACCESS.2019.2955086 – reference: Sikder, N., Bhakta, K., Al Nahid, A., Islam, M.M. (2019). Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp 564–569. https://doi.org/10.1109/ICREST.2019.8644089. – reference: YamamotoGKda CostaCda Silva SousaJSA smart experimental setup for vibration measurement and imbalance fault detection in rotating machineryCase Studies in Mechanical Systems and Signal Processing20164181810.1016/j.csmssp.2016.07.001 – reference: YuKLinTRMaHLiHZengJA combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machineryIEEE Transactions on Instrumentation and Measurement20196941505151810.1109/TIM.2019.2913058 – reference: de Lima, A.A., Prego, T.D.M., Netto, S.L., da Silva, E.A., Gutierrez, R.H., Monteiro, U.A., Troyman, A.C., Silveira, F.J.D.C., Vaz, L. (2013). On fault classification in rotating machines using fourier domain features and neural networks. In 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, pp 1–4. https://doi.org/10.1109/LASCAS.2013.6518984. – reference: DinizPSDa SilvaEANettoSLDigital Signal Processing: System Analysis and Design2010CambridgeCambridge University Press10.1017/CBO9780511781667 – reference: XuQLuSJiaWJiangCImbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learningJournal of Intelligent Manufacturing2019611510.1007/s10845-019-01522-8 – reference: WangNJiangDVibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental studyMechanism and Machine Theory2018125120721910.1016/j.mechmachtheory.2018.03.009 – reference: ZhangYLiXGaoLChenWLiPIntelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder methodMeasurement2020151110723210.1016/j.measurement.2019.107232 – reference: ZianiRFelkaouiAZegadiRBearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fishers criterionJournal of Intelligent Manufacturing201728240541710.1007/s10845-014-0987-3 – reference: ISO (2016) Mechanical vibration—Rotor balancing—Part 11: Procedures and tolerances for rotors with rigid behaviour. ISO 21940-11. – reference: SrinivasRSTiwariRKannababuCModel based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearingJournal of Sound and Vibration2019450110914010.1016/j.jsv.2019.03.007 – reference: HujareDPKarnikMGVibration responses of parallel misalignment in al shaft rotor bearing system with rigid couplingMaterials Today: Proceedings2018511238632387110.1016/j.matpr.2018.10.178 – reference: DinovIDData Science and Predictive Analytics: Biomedical and Health Applications Using R2018BerlinSpringer10.1007/978-3-319-72347-1 – reference: FernándezAGarciaSHerreraFChawlaNVSMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversaryJournal of Artificial Intelligence Research201861186390510.1613/jair.1.11192 – reference: Canbaz, H., Polat, K. (2019). Fault detection of cnc machines from vibration signals using machine learning methods. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Antalya, Turkey, pp 365–374. https://doi.org/10.1007/978-3-030-36178-5_27. – reference: BlochHPGeitnerFKMachinery Component Maintenance and Repair2005AmsterdamElsevier – reference: ShaoHJiangHZhaoHWangFA novel deep autoencoder feature learning method for rotating machinery fault diagnosisMechanical Systems and Signal Processing201795118720410.1016/j.ymssp.2017.03.034 – reference: QianWLiSJiangXDeep transfer network for rotating machine fault analysisPattern Recognition201996110699310.1016/j.patcog.2019.106993 – reference: Razavi-FarRFarajzadeh-ZanjaniMSaifMAn integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motorsIEEE Transactions on Industrial Informatics20171362758276910.1109/TII.2017.2755064 – reference: Klausen, A., Van Khang, H., Robbersmyr, K.G. (2018). Novel threshold calculations for remaining useful lifetime estimation of rolling element bearings. In 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, pp 1912–1918. https://doi.org/10.1109/ICELMACH.2018.8507056. – reference: Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics-a comprehensive review. IEEE Access,8(1), 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859 – reference: ZurRJiangYMetzCComparison of two methods of adding jitter to artificial neural network trainingInternational Congress Series20041268188688910.1016/j.ics.2004.03.238 – reference: XuMMarangoniRVibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, part i: Theoretical model and analysisJournal of Sound and Vibration1994176566367910.1006/jsvi.1994.1405 – reference: CerradaMA review on data-driven fault severity assessment in rolling bearingsMechanical Systems and Signal Processing201810.1016/j.ymssp.2017.06.012 – reference: Bai, C, Ganeriwala, S.S., Sawalhi, N. (2019). A rational basis for determining vibration signature of shaft/coupling misalignment in rotating machinery. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, Florida, USA, pp 207–217. https://doi.org/10.1007/978-3-319-74693-7_20. – reference: RehmanANazSRazzakMIAkramFImranMA deep learning-based framework for automatic brain tumors classification using transfer learningCircuits, Systems, and Signal Processing202039275777510.1007/s00034-019-01246-3 – reference: Dekhane, A., Djellal, A., Boutebbakh, F., Lakel, R. (2020). Cooling fan combined fault vibration analysis using convolutional neural network classifier. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, New York, USA, pp 1–6. https://doi.org/10.1145/3386723.3387898. – reference: FletcherRSReddyKNRandom forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweedsComputers and Electronics in Agriculture2016128119920610.1016/j.compag.2016.09.004 – reference: SantosMSSoaresJPAbreuPHAraujoHSantosJCross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]IEEE Computational Intelligence Magazine2018134597610.1109/MCI.2018.2866730 – reference: PandyaDUpadhyaySHarshaSPFault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNNExpert Systems with Applications201340104137414510.1016/j.eswa.2013.01.033 – reference: LiHLiMLiCLiFMengGMulti-faults decoupling on turbo-expander using differential-based ensemble empirical mode decompositionMechanical Systems and Signal Processing201793126728010.1016/j.ymssp.2017.02.015 – reference: VapnikVThe Nature of Statistical Learning Theory2013BerlinSpringer – reference: LalMTiwariRExperimental identification of shaft misalignment in a turbo-generator systemSādhanā20184358010.1007/s12046-018-0859-1 – reference: WangJDuGZhuZShenCHeQFault diagnosis of rotating machines based on the EMD manifoldMechanical Systems and Signal Processing2020135110644310.1016/j.ymssp.2019.106443 – reference: SinhaJKLeesAFriswellMEstimating unbalance and misalignment of a flexible rotating machine from a single run-downJournal of Sound and Vibration2004272396798910.1016/j.jsv.2003.03.006 – reference: Ali, M.A., Bingamil, A.A., Jarndal, A., Alsyouf, I. (2019). The influence of handling imbalance classes on the classification of mechanical faults using neural networks. In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, pp 1–5. https://doi.org/10.1109/ICMSAO.2019.8880437. – reference: Martins, D.H.C.D.S.S., Hemerly, D.O., Marins, M., Lima, A.A., Silva, F.L., Prego, T.D.M., Ribeiro, F.M.L., Netto, S.L., da Silva, E.A.B. (2019). Application of machine learning to evaluate unbalance severity in rotating machines. In Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Rio de Janeiro, Brazil, pp 144–160. https://doi.org/10.1007/978-3-319-99268-6_11. – reference: Arslan, M., Guzel, M., Demirci, M., Ozdemir, S. (2019). SMOTE and gaussian noise based sensor data augmentation. In 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, pp 1–5. https://doi.org/10.1109/UBMK.2019.8907003. – reference: DhamandeLSChaudhariMBCompound gear-bearing fault feature extraction using statistical features based on time-frequency methodMeasurement20181251637710.1016/j.measurement.2018.04.059 – reference: VermaAKSarangiSKolekarMExperimental investigation of misalignment effects on rotor shaft vibration and on stator current signatureJournal of Failure Analysis and Prevention201414212513810.1007/s11668-014-9785-7 – reference: WangHGongJDynamic analysis of coupling misalignment and unbalance coupled faultsJournal of Low Frequency Noise, Vibration and Active Control201938236337610.1177/1461348418821582 – reference: Wang, H.Y. (2008). Combination approach of SMOTE and biased-SVM for imbalanced datasets. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, pp 228–231. https://doi.org/10.1109/IJCNN.2008.4633794. – reference: Djagarov, N., Grozdev, Z., Enchev, G., Djagarov, J. (2019). Ship’s induction motors fault diagnosis. In 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, pp 1–4. https://doi.org/10.1109/ELMA.2019.8771525. – reference: GuanZChenPZhangXZhouXLiKVibration analysis of shaft misalignment and diagnosis method of structure faults for rotating machineryInternational Journal of Performability Engineering201713433734710.23940/ijpe.17.04.p1.337347 – reference: BramerMPrinciples of Data Mining2007BerlinSpringer – reference: KankarPKSharmaSCHarshaSPFault diagnosis of ball bearings using machine learning methodsExpert Systems with Applications20113831876188610.1016/j.eswa.2010.07.119 – reference: LiXZhangWDingQSunJQIntelligent rotating machinery fault diagnosis based on deep learning using data augmentationJournal of Intelligent Manufacturing202031243345210.1007/s10845-018-1456-1 – reference: Walpole, R.E., Myers, R.H. (2012). Probability & Statistics for Engineers & Scientists. Pearson Education Limited. – reference: ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216132135710.1613/jair.953 – reference: FuXWeiYXuFWangTLuYLiJHuangJZSemi-supervised aspect-level sentiment classification model based on variational autoencoderKnowledge-Based Systems20191711819210.1016/j.knosys.2019.02.008 – reference: LiPHuWHuRChenZImbalance fault detection based on the integrated analysis strategy for variable-speed wind turbinesInternational Journal of Electrical Power & Energy Systems2020116110557010.1016/j.ijepes.2019.105570 – reference: LiJLiXHeDQuYUnsupervised rotating machinery fault diagnosis method based on integrated sae-dbn and a binary processorJournal of Intelligent Manufacturing202095811810.1007/s10845-020-01543-8 – reference: Burks, R., Islam, K.A., Lu, Y., Li, J. (2019). Data augmentation with generative models for improved malware detection: A comparative study. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 0660–0665. https://doi.org/10.1109/UEMCON47517.2019.8993085. – reference: LiXYangXYangYBennettIMbaDA novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machinesApplied Soft Computing201982110556410.1016/j.asoc.2019.105564 – reference: QinCJinYTaoJXiaoDYuHLiuCShiGLeiJLiuCDTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detectionMeasurement2021180110954810.1016/j.measurement.2021.109548 – reference: DesoukiMSassiSRennoJGowidSADynamic response of a rotating assembly under the coupled effects of misalignment and imbalanceShock and Vibration202011070962210.1155/2020/8819676 – reference: GoyalDPablaBDhamiSNon-contact sensor placement strategy for condition monitoring of rotating machine-elementsEngineering Science and Technology, an International Journal201922248950110.1016/j.jestch.2018.12.006 – reference: GörgensEBMontaghiARodriguezLCEA performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metricsComputers and Electronics in Agriculture2015116122122710.1016/j.compag.2015.07.004 – reference: Mikołajczyk, A., Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), Swinoujscie, Poland, pp 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338. – reference: WilliamPEHoffmanMWIdentification of bearing faults using time domain zero-crossingsMechanical Systems and Signal Processing20112583078308810.1016/j.ymssp.2011.06.001 – reference: JinYQinCHuangYLiuCActual bearing compound fault diagnosis based on active learning and decoupling attentional residual networkMeasurement2021173110850010.1016/j.measurement.2020.108500 – reference: ElangovanMSugumaranVRamachandranKRavikumarSEffect of SVM kernel functions on classification of vibration signals of a single point cutting toolExpert Systems with Applications20113812152021520710.1016/j.eswa.2011.05.081 – reference: Ruiz-GonzalezRGomez-GilJGomez-GilFJMartínez-MartínezVAn SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassisSensors20141411207132073510.3390/s141120713 – reference: YuGA concentrated time-frequency analysis tool for bearing fault diagnosisIEEE Transactions on Instrumentation and Measurement201969237138110.1109/TIM.2019.2901514 – reference: McClaning, K., Vito, T. (2000). Radio receiver design. Noble Publishing. – reference: Aouedi, O., Piamrat, K., Bagadthey, D. (2020). A semi-supervised stacked autoencoder approach for network traffic classification. In 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, pp 1–6, https://doi.org/10.1109/ICNP49622.2020.9259390. – reference: ChangYWHsiehCJChangKWRinggaardMLinCJTraining and testing low-degree polynomial data mappings via linear SVMJournal of Machine Learning Research201011414711490 – reference: VillaLFReñonesAPeránJRde MiguelLJStatistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and loadMechanical Systems and Signal Processing201229143644610.1016/j.ymssp.2011.12.013 – reference: MartinsDHCVianaDPde LimaAAPintoMFTarratacaLSilvaFLGutiérrezRHRde Moura PregoTMonteiroUABVHaddadDBDiagnostic and severity analysis of combined failures composed by imbalance and misalignment in rotating machinesThe International Journal of Advanced Manufacturing Technology2021114911610.1007/s00170-021-06873-2 – reference: XiaoDQinCYuHHuangYLiuCZhangJUnsupervised machine fault diagnosis for noisy domain adaptation using marginal denoising autoencoder based on acoustic signalsMeasurement2021176110918610.1016/j.measurement.2021.109186 – reference: SiXSWangWHuCHZhouDHRemaining useful life estimation—A review on the statistical data driven approachesEuropean Journal of Operational Research2011213111410.1016/j.ejor.2010.11.018 – reference: Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?The Journal of Machine Learning Research201415131333181 – reference: OhJWJeongJData augmentation for bearing fault detection with a light weight CNNProcedia Computer Science20201751727910.1016/j.procs.2020.07.013 – reference: ChoubinBMoradiEGolshanMAdamowskiJSajedi-HosseiniFMosaviAAn ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machinesScience of The Total Environment201965112087209610.1016/j.scitotenv.2018.10.064 – reference: YangBLeiYJiaFXingSAn intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearingsMechanical Systems and Signal Processing2019122169270610.1016/j.ymssp.2018.12.051 – reference: Li, J., Li, H., Yu. J.L. (2011). Application of random-SMOTE on imbalanced data mining. In 2011 Fourth International Conference on Business Intelligence and Financial Engineering, Wuhan, China, pp 130–133. https://doi.org/10.1109/BIFE.2011.25. – reference: AggarwalCCNeural Networks and Deep Learning2018BerlinSpringer10.1007/978-3-319-94463-0 – reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324 – reference: Rochac, J.F.R., Liang, L., Zhang, N., Oladunni, T. (2019). A gaussian data augmentation technique on highly dimensional, limited labeled data for multiclass classification using deep learning. In 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh, Morocco, pp 145–151. https://doi.org/10.1109/ICICIP47338.2019.9012197. – reference: RashidKMLouisJTimes-series data augmentation and deep learning for construction equipment activity recognitionAdvanced Engineering Informatics201942110094410.1016/j.aei.2019.100944 – reference: Suarez-AlvarezMMPhamDTProstovMYProstovYIStatistical approach to normalization of feature vectors and clustering of mixed datasetsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences201246821452630265110.1098/rspa.2011.0704 – reference: XingWBeiYMedical health big data classification based on KNN classification algorithmIEEE Access202081288082881910.1109/ACCESS.2019.2955754 – reference: YuKLinTRMaHLiXLiXA multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learningMechanical Systems and Signal Processing2021146110704310.1016/j.ymssp.2020.107043 – reference: Dal Pozzolo, A., Caelen, O., Bontempi, G. (2015). When is undersampling effective in unbalanced classification tasks? In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Porto, Portugal, pp 200–215. https://doi.org/10.1007/978-3-319-23528-8_13. – reference: AsadiRMustaphaNSulaimanNShiriNNew supervised multi layer feed forward neural network model to accelerate classification with high accuracyEuropean Journal of Scientific Research2009331163178 – reference: Yoon, J., Friel, N. (2013). Efficient estimation of the number of neighbours in probabilistic K-Nearest Neighbour classification. https://arxiv.org/abs/1305.1002 – reference: ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJournal of Big Data20196114810.1186/s40537-019-0197-0 – reference: GlowaczAAcoustic based fault diagnosis of three-phase induction motorApplied Acoustics20181371828910.1016/j.apacoust.2018.03.010 – reference: PolatKThe fault diagnosis based on deep long short-term memory model from the vibration signals in the computer numerical control machinesJournal of the Institute of Electronics and Computer202021729210.33969/JIEC.2020.21006 – ident: 1873_CR58 doi: 10.1109/ICICIP47338.2019.9012197 – volume: 4 start-page: 8 issue: 1 year: 2016 ident: 1873_CR81 publication-title: Case Studies in Mechanical Systems and Signal Processing doi: 10.1016/j.csmssp.2016.07.001 – ident: 1873_CR71 – volume: 95 start-page: 1 issue: 8 year: 2020 ident: 1873_CR42 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01543-8 – volume: 13 start-page: 59 issue: 4 year: 2018 ident: 1873_CR60 publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2018.2866730 – volume: 135 start-page: 106443 issue: 1 year: 2020 ident: 1873_CR74 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106443 – volume: 95 start-page: 187 issue: 1 year: 2017 ident: 1873_CR61 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.03.034 – volume: 38 start-page: 15202 issue: 12 year: 2011 ident: 1873_CR25 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.05.081 – volume: 125 start-page: 207 issue: 1 year: 2018 ident: 1873_CR75 publication-title: Mechanism and Machine Theory doi: 10.1016/j.mechmachtheory.2018.03.009 – ident: 1873_CR73 doi: 10.1109/IJCNN.2008.4633794 – volume: 651 start-page: 2087 issue: 1 year: 2019 ident: 1873_CR16 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2018.10.064 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 1873_CR62 publication-title: Journal of Big Data doi: 10.1186/s40537-019-0197-0 – ident: 1873_CR49 doi: 10.1109/IIPHDW.2018.8388338 – volume: 13 start-page: 2758 issue: 6 year: 2017 ident: 1873_CR56 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2755064 – volume: 116 start-page: 105570 issue: 1 year: 2020 ident: 1873_CR43 publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2019.105570 – volume: 122 start-page: 692 issue: 1 year: 2019 ident: 1873_CR82 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.12.051 – volume-title: Neural Networks and Deep Learning year: 2018 ident: 1873_CR1 doi: 10.1007/978-3-319-94463-0 – volume: 2 start-page: 72 issue: 1 year: 2020 ident: 1873_CR52 publication-title: Journal of the Institute of Electronics and Computer doi: 10.33969/JIEC.2020.21006 – volume: 6 start-page: 1 year: 2019 ident: 1873_CR80 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01522-8 – ident: 1873_CR4 doi: 10.1109/UBMK.2019.8907003 – volume: 468 start-page: 2630 issue: 2145 year: 2012 ident: 1873_CR67 publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2011.0704 – ident: 1873_CR3 doi: 10.1109/ICNP49622.2020.9259390 – volume: 11 start-page: 1471 issue: 4 year: 2010 ident: 1873_CR13 publication-title: Journal of Machine Learning Research – volume: 125 start-page: 63 issue: 1 year: 2018 ident: 1873_CR21 publication-title: Measurement doi: 10.1016/j.measurement.2018.04.059 – volume: 22 start-page: 489 issue: 2 year: 2019 ident: 1873_CR31 publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2018.12.006 – volume: 14 start-page: 20713 issue: 11 year: 2014 ident: 1873_CR59 publication-title: Sensors doi: 10.3390/s141120713 – volume: 272 start-page: 967 issue: 3 year: 2004 ident: 1873_CR65 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2003.03.006 – volume: 171 start-page: 81 issue: 1 year: 2019 ident: 1873_CR29 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.02.008 – volume-title: Data Science and Predictive Analytics: Biomedical and Health Applications Using R year: 2018 ident: 1873_CR23 doi: 10.1007/978-3-319-72347-1 – volume: 69 start-page: 371 issue: 2 year: 2019 ident: 1873_CR84 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2019.2901514 – volume: 69 start-page: 1505 issue: 4 year: 2019 ident: 1873_CR85 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2019.2913058 – volume-title: Digital Signal Processing: System Analysis and Design year: 2010 ident: 1873_CR22 doi: 10.1017/CBO9780511781667 – volume: 31 start-page: 433 issue: 2 year: 2020 ident: 1873_CR45 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-018-1456-1 – ident: 1873_CR6 doi: 10.1007/978-3-319-74693-7_20 – volume: 13 start-page: 337 issue: 4 year: 2017 ident: 1873_CR32 publication-title: International Journal of Performability Engineering doi: 10.23940/ijpe.17.04.p1.337347 – ident: 1873_CR38 doi: 10.1109/ICELMACH.2018.8507056 – volume: 450 start-page: 109 issue: 1 year: 2019 ident: 1873_CR66 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2019.03.007 – volume: 43 start-page: 80 issue: 5 year: 2018 ident: 1873_CR39 publication-title: Sādhanā doi: 10.1007/s12046-018-0859-1 – volume: 42 start-page: 100944 issue: 1 year: 2019 ident: 1873_CR55 publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2019.100944 – volume: 40 start-page: 4137 issue: 10 year: 2013 ident: 1873_CR51 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.01.033 – volume: 1268 start-page: 886 issue: 1 year: 2004 ident: 1873_CR90 publication-title: International Congress Series doi: 10.1016/j.ics.2004.03.238 – ident: 1873_CR17 doi: 10.1007/978-3-319-23528-8_13 – ident: 1873_CR87 doi: 10.1109/ACCESS.2020.2972859 – volume: 82 start-page: 105564 issue: 1 year: 2019 ident: 1873_CR44 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105564 – volume: 38 start-page: 363 issue: 2 year: 2019 ident: 1873_CR72 publication-title: Journal of Low Frequency Noise, Vibration and Active Control doi: 10.1177/1461348418821582 – ident: 1873_CR47 doi: 10.1007/978-3-319-99268-6_11 – volume: 25 start-page: 3078 issue: 8 year: 2011 ident: 1873_CR76 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2011.06.001 – ident: 1873_CR11 doi: 10.1007/978-3-030-36178-5_27 – volume-title: Principles of Data Mining year: 2007 ident: 1873_CR8 – volume: 8 start-page: 28808 issue: 1 year: 2020 ident: 1873_CR78 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955754 – volume: 7 start-page: 170668 issue: 1 year: 2019 ident: 1873_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955086 – volume: 16 start-page: 321 issue: 1 year: 2002 ident: 1873_CR14 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 116 start-page: 221 issue: 1 year: 2015 ident: 1873_CR33 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.07.004 – volume: 93 start-page: 267 issue: 1 year: 2017 ident: 1873_CR40 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.02.015 – volume: 1 start-page: 1070 year: 2020 ident: 1873_CR19 publication-title: Shock and Vibration doi: 10.1155/2020/8819676 – volume: 114 start-page: 1 issue: 9 year: 2021 ident: 1873_CR46 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-021-06873-2 – ident: 1873_CR48 – volume: 173 start-page: 108500 issue: 1 year: 2021 ident: 1873_CR36 publication-title: Measurement doi: 10.1016/j.measurement.2020.108500 – ident: 1873_CR24 doi: 10.1109/ELMA.2019.8771525 – volume: 96 start-page: 106993 issue: 1 year: 2019 ident: 1873_CR53 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2019.106993 – ident: 1873_CR41 doi: 10.1109/BIFE.2011.25 – ident: 1873_CR35 – ident: 1873_CR20 doi: 10.1109/LASCAS.2013.6518984 – volume: 5 start-page: 23863 issue: 11 year: 2018 ident: 1873_CR34 publication-title: Materials Today: Proceedings doi: 10.1016/j.matpr.2018.10.178 – ident: 1873_CR64 doi: 10.1109/ICREST.2019.8644089 – volume: 14 start-page: 125 issue: 2 year: 2014 ident: 1873_CR69 publication-title: Journal of Failure Analysis and Prevention doi: 10.1007/s11668-014-9785-7 – volume: 28 start-page: 405 issue: 2 year: 2017 ident: 1873_CR89 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-0987-3 – ident: 1873_CR2 doi: 10.1109/ICMSAO.2019.8880437 – volume: 128 start-page: 199 issue: 1 year: 2016 ident: 1873_CR28 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.09.004 – volume: 146 start-page: 107043 issue: 1 year: 2021 ident: 1873_CR86 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107043 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 1873_CR27 publication-title: The Journal of Machine Learning Research – volume: 176 start-page: 109186 issue: 1 year: 2021 ident: 1873_CR77 publication-title: Measurement doi: 10.1016/j.measurement.2021.109186 – volume: 33 start-page: 163 issue: 1 year: 2009 ident: 1873_CR5 publication-title: European Journal of Scientific Research – volume: 176 start-page: 663 issue: 5 year: 1994 ident: 1873_CR79 publication-title: Journal of Sound and Vibration doi: 10.1006/jsvi.1994.1405 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1873_CR9 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 175 start-page: 72 issue: 1 year: 2020 ident: 1873_CR50 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.07.013 – volume-title: The Nature of Statistical Learning Theory year: 2013 ident: 1873_CR68 – volume-title: Machinery Component Maintenance and Repair year: 2005 ident: 1873_CR7 – ident: 1873_CR10 doi: 10.1109/UEMCON47517.2019.8993085 – year: 2018 ident: 1873_CR12 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.06.012 – volume: 213 start-page: 1 issue: 1 year: 2011 ident: 1873_CR63 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2010.11.018 – ident: 1873_CR18 doi: 10.1145/3386723.3387898 – volume: 29 start-page: 436 issue: 1 year: 2012 ident: 1873_CR70 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2011.12.013 – volume: 180 start-page: 109548 issue: 1 year: 2021 ident: 1873_CR54 publication-title: Measurement doi: 10.1016/j.measurement.2021.109548 – ident: 1873_CR83 – volume: 38 start-page: 1876 issue: 3 year: 2011 ident: 1873_CR37 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.07.119 – volume: 61 start-page: 863 issue: 1 year: 2018 ident: 1873_CR26 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1.11192 – volume: 39 start-page: 757 issue: 2 year: 2020 ident: 1873_CR57 publication-title: Circuits, Systems, and Signal Processing doi: 10.1007/s00034-019-01246-3 – volume: 137 start-page: 82 issue: 1 year: 2018 ident: 1873_CR30 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2018.03.010 – volume: 151 start-page: 107232 issue: 1 year: 2020 ident: 1873_CR88 publication-title: Measurement doi: 10.1016/j.measurement.2019.107232 |
| SSID | ssj0009861 |
| Score | 2.4248588 |
| Snippet | Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1795 |
| SubjectTerms | Advanced manufacturing technologies Algorithms Business and Management Classification Control Data augmentation Failure Failure detection Machine learning Machines Manufacturing Mechatronics Performance degradation Processes Production Random noise Recognition Robotics Rotating machinery Rotating machines Support vector machines |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6IetCD06k4nZKDNy3Ypkubo4hjpyHoZLeStOkYuE72Q_C_9700XaeooMfSJC0vL8n7yPu-B3BpJUJELrzQIFYNc6E8paXxZMiF9GWkTVYWm4j6_Xg4lA-OFDavst2rK0m7U6-R3eKQ2MQEf-OIe4h5tjqkNkMY_fG5ltqNrUqqVdjDeKDjqDLfj_H5OKpjzC_Xova06Tb-95_7sOeiS3ZbusMBbJiiCY2qcgNzC7kJu2syhIcw6L0Tb4tRtihTy9HE8ZEKVtaXZhjYMvw4gmiDD2pMqexslXqE7cYFm02pTzFiE5ueaeZHMOjeP931PFduwUtxHS48zXUadLQfKB4YkSmDkaTiGjeEUCuDyCMTCJdzqgmD08ljbaQfKnzmWZSbPOLHsFlMC3MCzGAcJcKMSK8S8c2N5OgOeZb6OiDib9QCv7J6kjotciqJ8ZLUKspkxQStmFgrJn4LrlZ9Xksljl9bt6vJTNyqnCcB7U6Co3e24LqavPr1z6Od_q35GexQVfoywacNm4vZ0pzDdvq2GM9nF9ZbPwCaCOIG priority: 102 providerName: Springer Nature |
| Title | Hybrid data augmentation method for combined failure recognition in rotating machines |
| URI | https://link.springer.com/article/10.1007/s10845-021-01873-1 https://www.proquest.com/docview/2787063376 |
| Volume | 34 |
| WOSCitedRecordID | wos000741966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_BanU_LgmwZt0zXtk6hMBHGM-e1LSdpUBtrpNgX_e-_adFVBX3wJhCYh9C7JXXL3-wHs5BAhfupzz6Cv6qW-4kqHhoee8EMnlNokBdmE7HSCu7uway_cRjasstwT8406GcR0R77vkmb5Akc-fHnlxBpFr6uWQmMa6nhQt4jBQN7eV6C7QY6XmmPtoWXQskkzNnUu8Cg3mZzpQArufD-YKmvzxwNpfu6cLvx3xoswby1OdlSoyBJMmWwZFko2B2YX9zLMfYEmXIHrsw_K5WIUQcrU2-OzzVHKWME5zdDYZTgPdKwNVlSfwtvZJBwJ2_UzNhxQn-yRPechm2a0Cten7auTM24pGHiMa3PMtdCx29KOq4Rr_EQZtC6V0LhJeFoZ9EYSH13olHhiUMQi0CZ0PIV1kcjUpFKsQS0bZGYdmEHbyvcSSoQN0ec5CAWqSJrEjnYpGVg2wCn_fxRbfHKiyXiKKmRlklmEMotymUVOA3YnfV4KdI4_WzdLQUV2pY6iSkoN2CtFXX3-fbSNv0fbhFlipi-CfJpQGw_fzBbMxO_j_mi4nevpNtSP251uD2vnkmN5cXBCpbzEstt6wLJ3efMJx03ysA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRQIO7Iiy-gAnsCBx6iQHhBCLWhUqDiBxC3bioEqQQhcQP8U3MpOlASS49cDRij2K4zf2TDzzBmAnpQiRseSOQV_ViaXiSvuG-46QvuW72kRZsQm31fLu7vzrCnwUuTAUVlnsielGHXVC-kd-YBOypEDJx88vnKpG0e1qUUIjg0XTvL-hy9Y7apzh-u7a9sX5zWmd51UFeIhw63MtdGjXtGUrYRsZKYMGkxIace9oZdDAjiR6hTGVPsG3Fp42vuUobIvIjU3sCpQ7BhOO8CRpVNPlJcmvl_Kzptx-aInU8iSdPFXPcygXmpx3zxXc-n4QltbtjwvZ9Jy7mPtvX2geZnOLmp1kKrAAFZMswlxRrYLlm9cizHyhXlyC2_o75aoxipBlavDwlOdgJSyrqc3QmGc4b41DsKHaFL7PhuFW2K-dsG6HxiQP7CkNSTW9ZbgdyVRXYDzpJGYVmEHbUToRJfr66NMd-gJVII5CS9uU7OxWwSrWOwhz_nUqA_IYlMzRhJEAMRKkGAmsKuwNxzxn7CN_9t4ogBHkO1EvKFFRhf0CWuXj36Wt_S1tG6bqN1eXwWWj1VyHaRttvyygaQPG-92B2YTJ8LXf7nW3Uh1hcD9qyH0CnJNJjg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLbGQAgOjKcYzxzgBBG0KW1zQIjHJqahaUIgcStJm6JJrBvbAPHX-HU4bboCEtw4cIyaREry2bEb2x_ATloixI1d6ij0VZ3YFVRIrih3mMst7kkVZWQTXqvl393xdgne81wYHVaZ68RUUUe9UP8jP7A1slyGMx_EJiyifVE_6T9RzSClX1pzOo0MIk319oru2_C4cYFnvWvb9drN-SU1DAM0ROiNqGQytI-kZQtmKzcSCo0nwSTKgCOFQmM7ctFDjDUNCq6A-VJxyxHYZpEXq9hjOO8ETHoMnZ4yTJ7VWu3rouSvn1ZrTSv9oV1yZFJ2TOKe7-jMaO3K-x6j1tdrsbB1vz3PprdevfKf92se5oytTU4z4ViAkkoWoZLzWBCj1hZh9lNRxiW4vXzTWWxEx84S8fzQNdlZCcnYtgma-QT3QOIQbIiODuwn40As7NdJyKCnxyQPpJsGq6rhMtz-yVJXoJz0ErUKRKFV6TqRTgHm6O0dcobCEUehJW2dBu1VwcrPPghNZXZNEPIYFDWlNV4CxEuQ4iWwqrA3HtPP6pL82nsjB0lgdNQwKBBShf0cZsXnn2db-322bZhGpAVXjVZzHWZsNAqzSKcNKI8Gz2oTpsKXUWc42DICQ-D-rzH3ATT4U-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+data+augmentation+method+for+combined+failure+recognition+in+rotating+machines&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Martins%2C+Dion%C3%ADsio+H.+C.+S.+S&rft.au=de+Lima%2C+Amaro+A&rft.au=Pinto%2C+Milena+F&rft.au=Hemerly%2C+Douglas+de+O&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=34&rft.issue=4&rft.spage=1795&rft.epage=1813&rft_id=info:doi/10.1007%2Fs10845-021-01873-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |