Hierarchical Gradient-Based Iterative Parameter Estimation Algorithms for a Nonlinear Feedback System Based on the Hierarchical Identification Principle
This paper focuses on iterative parameter estimation methods for a nonlinear closed-loop system (i.e., a nonlinear feedback system) with an equation-error model for the open-loop part. By applying negative gradient search, a gradient-based iterative algorithm is constructed. To reduce the computatio...
Saved in:
| Published in: | Circuits, systems, and signal processing Vol. 43; no. 1; pp. 124 - 151 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0278-081X, 1531-5878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper focuses on iterative parameter estimation methods for a nonlinear closed-loop system (i.e., a nonlinear feedback system) with an equation-error model for the open-loop part. By applying negative gradient search, a gradient-based iterative algorithm is constructed. To reduce the computational costs and improve the parameter estimation accuracy, the hierarchical identification principle is employed to derive a hierarchical gradient-based iterative algorithm. A simulation example is provided to test the effectiveness of the proposed algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-023-02477-1 |