Hierarchical Gradient-Based Iterative Parameter Estimation Algorithms for a Nonlinear Feedback System Based on the Hierarchical Identification Principle

This paper focuses on iterative parameter estimation methods for a nonlinear closed-loop system (i.e., a nonlinear feedback system) with an equation-error model for the open-loop part. By applying negative gradient search, a gradient-based iterative algorithm is constructed. To reduce the computatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing Jg. 43; H. 1; S. 124 - 151
Hauptverfasser: Yang, Dan, Liu, Yanjun, Ding, Feng, Yang, Erfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2024
Springer Nature B.V
Schlagworte:
ISSN:0278-081X, 1531-5878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on iterative parameter estimation methods for a nonlinear closed-loop system (i.e., a nonlinear feedback system) with an equation-error model for the open-loop part. By applying negative gradient search, a gradient-based iterative algorithm is constructed. To reduce the computational costs and improve the parameter estimation accuracy, the hierarchical identification principle is employed to derive a hierarchical gradient-based iterative algorithm. A simulation example is provided to test the effectiveness of the proposed algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-023-02477-1