An Oscillation-Free Bound-Preserving Discontinuous Galerkin Method for Multi-component Chemically Reacting Flows

This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing equations are considered: reactive Euler equations and Navier–Stokes equations. Based on our recently developed high-order bound-preserving dis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 95; číslo 3; s. 90
Hlavní autoři: Du, Jie, Liu, Yong, Yang, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2023
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing equations are considered: reactive Euler equations and Navier–Stokes equations. Based on our recently developed high-order bound-preserving discontinuous Galerkin method in Du and Yang (J Comput Phys 469:111548, 2022), we add an extra damping term into this scheme to control the spurious oscillations. With the careful construction of the damping term, the proposed method not only achieves non-oscillatory property without sacrificing any order of accuracy but also preserves the conservative property which is the key ingredient of the bound-preserving technique developed in Du and Yang (2022). Therefore, the proposed OFDG method is well-compatible with the bound-preserving limiter in Du and Yang (2022). Similar to Liu et al. (SIAM J Sci Comput 44:A230–A259, 2022), the conservative modified exponential Runge–Kutta method is used to relax the restriction of time step sizes and preserve the conservative property of the fully discrete schemes. Numerical experiments, including one- and two-dimensional space, demonstrate the proposed method has desired properties.
AbstractList This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing equations are considered: reactive Euler equations and Navier–Stokes equations. Based on our recently developed high-order bound-preserving discontinuous Galerkin method in Du and Yang (J Comput Phys 469:111548, 2022), we add an extra damping term into this scheme to control the spurious oscillations. With the careful construction of the damping term, the proposed method not only achieves non-oscillatory property without sacrificing any order of accuracy but also preserves the conservative property which is the key ingredient of the bound-preserving technique developed in Du and Yang (2022). Therefore, the proposed OFDG method is well-compatible with the bound-preserving limiter in Du and Yang (2022). Similar to Liu et al. (SIAM J Sci Comput 44:A230–A259, 2022), the conservative modified exponential Runge–Kutta method is used to relax the restriction of time step sizes and preserve the conservative property of the fully discrete schemes. Numerical experiments, including one- and two-dimensional space, demonstrate the proposed method has desired properties.
ArticleNumber 90
Author Liu, Yong
Yang, Yang
Du, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Du
  fullname: Du, Jie
  organization: Yau Mathematical Sciences Center, Tsinghua University, Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  email: yongliu@lsec.cc.ac.cn
  organization: LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Department of Mathematical Sciences, Michigan Technological University
BookMark eNp9kEtLZDEQRsPggG3P_AFXAdfRPO4jWWprq6Aow8w6xNy6GiedtEmu4r83bQuCCxdFbb5Tj7OHdkIMgNA-o4eM0v4oM6pYSygXtTjrCf-BZqztBek7xXbQjErZkr7pm120l_MjpVRJxWdofRzwTbbOe1NcDGSZAPBJnMJAbhNkSM8u3ONTl20MxYUpThmfGw_pvwv4GspDHPAYE76efHHExtW6HhYKXjzAylnj_Sv-A8aWzZSljy_5F_o5Gp_h90efo3_Ls7-LC3J1c365OL4iVjBVyB3vGiMFHwwfjeVcNt0gO9MOIEbDTX2t6WQHXDGrhO2G1jAFkt8BdHJsGBVzdLCdu07xaYJc9GOcUqgrdYWkYD1VTU3JbcqmmHOCUVtX3k2UZJzXjOqNX731q6tf_e5X84ryL-g6uZVJr99DYgvlGg73kD6v-oZ6A6ElkKU
CitedBy_id crossref_primary_10_1016_j_jcp_2025_113795
crossref_primary_10_1007_s10915_024_02470_z
crossref_primary_10_1016_j_jcp_2025_114071
crossref_primary_10_1016_j_jcp_2024_112906
crossref_primary_10_1016_j_jcp_2024_113716
crossref_primary_10_1016_j_jcp_2025_113769
crossref_primary_10_1016_j_jcp_2024_113348
crossref_primary_10_1016_j_jcp_2025_113911
Cites_doi 10.1006/jcph.1998.5892
10.1016/j.jcp.2012.09.022
10.1007/s10915-018-0852-1
10.1016/j.jcp.2016.06.052
10.1016/j.jcp.2019.06.040
10.1016/0010-2180(81)90027-4
10.1016/0021-9991(89)90183-6
10.1016/j.jcp.2022.111548
10.1016/0010-2180(82)90015-3
10.1137/20M1354192
10.1016/j.jcp.2007.05.011
10.1002/fld.1134
10.1016/j.jcp.2017.03.022
10.1016/j.jcp.2020.109826
10.1080/00268976700100731
10.1007/s42967-020-00117-y
10.1137/18M122265X
10.1007/s10409-017-0664-9
10.1016/j.jcp.2011.07.031
10.1016/j.jcp.2018.01.051
10.1007/s00211-013-0558-0
10.1016/j.jcp.2010.08.016
10.1002/0471461296
10.1016/j.jcp.2014.03.029
10.1016/j.jcp.2013.04.012
10.1051/m2an/1991250303371
10.1016/j.jcp.2012.04.048
10.1137/21M140835X
10.1063/1.1747673
10.1007/s10915-018-0881-9
10.6028/NBS.NSRDS.37
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-023-02217-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_023_02217_2
GrantInformation_xml – fundername: National Key R &D Program of China
  grantid: 2021YFA0719200
– fundername: National Natural Science Foundation of China
  grantid: 12201621
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Simons Foundation
  grantid: 961585
  funderid: http://dx.doi.org/10.13039/100000893
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-b264a832da2fac22846d86a5de3fa2a1574686e291c93c6d5a19e82bee68f4103
IEDL.DBID P5Z
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986941900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 04:18:41 EST 2025
Sat Nov 29 01:56:31 EST 2025
Tue Nov 18 22:22:55 EST 2025
Fri Feb 21 02:41:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Conservative time integration
92E20
65M60
Oscillation-free discontinuous Galerkin method
Multi-component chemically reacting flows
Bound-preserving
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b264a832da2fac22846d86a5de3fa2a1574686e291c93c6d5a19e82bee68f4103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918317094
PQPubID 2043771
ParticipantIDs proquest_journals_2918317094
crossref_citationtrail_10_1007_s10915_023_02217_2
crossref_primary_10_1007_s10915_023_02217_2
springer_journals_10_1007_s10915_023_02217_2
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LvYIhmeMDiscontinuous Galerkin method for multicomponent chemically reacting flows and combustionJ. Comput. Phys.20142701051372014JCoPh.270..105L32093781:CAS:528:DC%2BC2cXoslyjsrY%3D10.1016/j.jcp.2014.03.029
HuangJShuC-WPositivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flowsJ. Sci. Comput.20197818111839393468810.1007/s10915-018-0852-1
WestbrookCKChemical kinetics of hydrocarbon oxidation in gaseous detonationsCombust. Flame19824610.1016/0010-2180(82)90015-3
ZhuJZhongXShuC-WQiuJ-XRunge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshesJ. Comput. Phys.20132482002202013JCoPh.248..200Z306614910.1016/j.jcp.2013.04.012
WilkeCRA viscosity equation for gas mixturesJ. Chem. Phys.1950185175221950JChPh..18..517W1:CAS:528:DyaG3cXkvVCgtw%3D%3D10.1063/1.1747673
McBrideBJZeheMJGordonSNASA Glenn Coefficients for Valculating Thermodynamic Properties of Individual Species, NASA/TP-2002-2115562002ClevelandNASA Glenn Research Center
HartmannRAdaptive discontinuous Galerkin methods with shock capturing for the compressible Navier Stokes equationsInt. J. Numer. Methods Fluids200651113111562006IJNMF..51.1131H224238210.1002/fld.1134
ZhangXShuC-WOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshesJ. Comput. Phys.2010229891889342010JCoPh.229.8918Z27253801:CAS:528:DC%2BC3cXht1Sqtr%2FL10.1016/j.jcp.2010.08.016
Stall, D.R., Prophet, H.: JANAF thermochemical tables. National Standard Reference Data Series (1971)
Reed, W.H., Hill, T.R.: Triangular mesh methods for the Neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM (1973)
LvYSeeYCIhmeMAn entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methodsJ. Comput. Phys.20163224484722016JCoPh.322..448L353487310.1016/j.jcp.2016.06.052
HiltebrandAMishraSEntropy stable shock capturing space time discontinuous Galerkin schemes for systems of conservation lawsNumer. Math.2014126103151314907410.1007/s00211-013-0558-0
HuangJShuC-WBound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source termsJ. Comput. Phys.20183611111352018JCoPh.361..111H377117810.1016/j.jcp.2018.01.051
DuJWangCQianCYangYHigh-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonationSIAM J. Sci. Comput.201941B250B273392835410.1137/18M122265X
KrivodonovaLLimiters for high-order discontinuous Galerkin methodsJ. Comput. Phys.20072268798962007JCoPh.226..879K235686210.1016/j.jcp.2007.05.011
AndersonJDHypersonic and High Temperature Gas Dynamics1989New YorkMcGraw-Hill
LvYIhmeMHigh-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flowsActa Mech. Sin.2017334864992017AcMSn..33..486L36680701:CAS:528:DC%2BC2sXnt1GisbY%3D10.1007/s10409-017-0664-9
CockburnBShuC-WThe Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systemsJ. Comput. Phys.19981411992241998JCoPh.141..199C161965210.1006/jcph.1998.5892
DuJYangYHigh-order bound-preserving finite difference methods for multispecies and multireaction detonationsCommun. Appl. Math. Comput.202110.1007/s42967-020-00117-y
JohnsenEHamFPreventing numerical errors generated by interface-capturing schemes in compressible multi-material flowsJ. Comput. Phys.2012231570557172012JCoPh.231.5705J294799010.1016/j.jcp.2012.04.048
JohnsonRKercherAA conservative discontinuous Galerkin discretization for the chemically reacting Navier–Stokes equationsJ. Comput. Phys.202042341569461:CAS:528:DC%2BB3cXhvVaisr7E10.1016/j.jcp.2020.109826
MathurSTondonKSaxenaSCThermal conductivity of binary, ternary and quaternary mixtures of rare gasesMol. Phys.1967125695791967MolPh..12..569M1:CAS:528:DyaF2sXkvFClsrk%3D10.1080/00268976700100731
DuJYangYHigh-order bound-preserving discontinuous Galerkin methods for multicomponent chemically reacting flowsJ. Comput. Phys.202246944759971:CAS:528:DC%2BB38XisVCkurvO10.1016/j.jcp.2022.111548
MaPLvYIhmeMAn entropy-stable hybrid scheme for simulations of transcritical real-fluid flowsJ. Comput. Phys.20173403303572017JCoPh.340..330M36358411:CAS:528:DC%2BC2sXltlajtrs%3D10.1016/j.jcp.2017.03.022
DuJYangYThird-order conservative sign-preserving and steady-state preserving time integrations and applications in stiff multispecies and multireaction detonationsJ. Comput. Phys.20193954895102019JCoPh.395..489D397572010.1016/j.jcp.2019.06.040
HouimRWKuoKKA ghost fluid method for compressible reacting flows with phase changeJ. Comput. Phys.20132358659002013JCoPh.235..865H30176261:CAS:528:DC%2BC38XhslCku7bL10.1016/j.jcp.2012.09.022
CockburnBShuC-WTVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general frameworkMath. Comput.198952411435
Fedkiw, R.P., Merriman, B., Osher, S.: Numerical methods for a mixture of thermally perfect and/or calorically perfect gaseous species with chemical reactions, Lecture Notes in Physics (1997)
LuJLiuYShuC-WAn oscillation-free discontinuous Galerkin method for scalar hyperbolic conservation lawsSIAM J. Numer. Anal.20215912991324425787510.1137/20M1354192
HouimRWKuoKKA low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratiosJ. Comput. Phys.2011230852785532011JCoPh.230.8527H284372710.1016/j.jcp.2011.07.031
CoffeeTPHeimerlJMTransport algorithms for premixed, laminar steady state flamesCombust. Flame1981432732891981CoFl...43..273C1:CAS:528:DyaL38XntFegsA%3D%3D10.1016/0010-2180(81)90027-4
LiuYLuJShuC-WAn essentially oscillation-free discontinuous Galerkin method for hyperbolic systemsSIAM J. Sci. Comput.202244A230A259437264910.1137/21M140835X
HuangJZhaoWShuC-WA third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flowsJ. Sci. Comput.20197910151056396900010.1007/s10915-018-0881-9
CockburnBShuC-WThe Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation lawsESAIM Math. Model. Numer. Anal ESAIM: M2AN19912533736110.1051/m2an/1991250303371
KeeRJColtrinMEGlarborgPChemically Reacting Flow: Theory and Practice2003HobokenWiley10.1002/0471461296
CockburnBLinS-YShuC-WTVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systemsJ. Comput. Phys.198984901131989JCoPh..84...90C101535510.1016/0021-9991(89)90183-6
J Du (2217_CR7) 2019; 41
P Ma (2217_CR28) 2017; 340
X Zhang (2217_CR35) 2010; 229
Y Liu (2217_CR23) 2022; 44
R Hartmann (2217_CR12) 2006; 51
Y Lv (2217_CR27) 2017; 33
B Cockburn (2217_CR5) 1998; 141
J Du (2217_CR10) 2022; 469
S Mathur (2217_CR29) 1967; 12
J Du (2217_CR9) 2021
L Krivodonova (2217_CR22) 2007; 226
RW Houim (2217_CR15) 2013; 235
B Cockburn (2217_CR3) 1991; 25
2217_CR11
E Johnsen (2217_CR19) 2012; 231
2217_CR31
2217_CR32
Y Lv (2217_CR25) 2016; 322
Y Lv (2217_CR26) 2014; 270
J Huang (2217_CR18) 2019; 79
J Du (2217_CR8) 2019; 395
BJ McBride (2217_CR30) 2002
R Johnson (2217_CR20) 2020; 423
B Cockburn (2217_CR2) 1989; 84
RW Houim (2217_CR14) 2011; 230
J Zhu (2217_CR36) 2013; 248
B Cockburn (2217_CR4) 1989; 52
J Huang (2217_CR17) 2019; 78
J Huang (2217_CR16) 2018; 361
J Lu (2217_CR24) 2021; 59
JD Anderson (2217_CR1) 1989
TP Coffee (2217_CR6) 1981; 43
CR Wilke (2217_CR34) 1950; 18
A Hiltebrand (2217_CR13) 2014; 126
RJ Kee (2217_CR21) 2003
CK Westbrook (2217_CR33) 1982; 46
References_xml – reference: HouimRWKuoKKA ghost fluid method for compressible reacting flows with phase changeJ. Comput. Phys.20132358659002013JCoPh.235..865H30176261:CAS:528:DC%2BC38XhslCku7bL10.1016/j.jcp.2012.09.022
– reference: LvYIhmeMDiscontinuous Galerkin method for multicomponent chemically reacting flows and combustionJ. Comput. Phys.20142701051372014JCoPh.270..105L32093781:CAS:528:DC%2BC2cXoslyjsrY%3D10.1016/j.jcp.2014.03.029
– reference: MaPLvYIhmeMAn entropy-stable hybrid scheme for simulations of transcritical real-fluid flowsJ. Comput. Phys.20173403303572017JCoPh.340..330M36358411:CAS:528:DC%2BC2sXltlajtrs%3D10.1016/j.jcp.2017.03.022
– reference: CockburnBShuC-WThe Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systemsJ. Comput. Phys.19981411992241998JCoPh.141..199C161965210.1006/jcph.1998.5892
– reference: WilkeCRA viscosity equation for gas mixturesJ. Chem. Phys.1950185175221950JChPh..18..517W1:CAS:528:DyaG3cXkvVCgtw%3D%3D10.1063/1.1747673
– reference: HuangJShuC-WBound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source termsJ. Comput. Phys.20183611111352018JCoPh.361..111H377117810.1016/j.jcp.2018.01.051
– reference: MathurSTondonKSaxenaSCThermal conductivity of binary, ternary and quaternary mixtures of rare gasesMol. Phys.1967125695791967MolPh..12..569M1:CAS:528:DyaF2sXkvFClsrk%3D10.1080/00268976700100731
– reference: Stall, D.R., Prophet, H.: JANAF thermochemical tables. National Standard Reference Data Series (1971)
– reference: CoffeeTPHeimerlJMTransport algorithms for premixed, laminar steady state flamesCombust. Flame1981432732891981CoFl...43..273C1:CAS:528:DyaL38XntFegsA%3D%3D10.1016/0010-2180(81)90027-4
– reference: HartmannRAdaptive discontinuous Galerkin methods with shock capturing for the compressible Navier Stokes equationsInt. J. Numer. Methods Fluids200651113111562006IJNMF..51.1131H224238210.1002/fld.1134
– reference: LiuYLuJShuC-WAn essentially oscillation-free discontinuous Galerkin method for hyperbolic systemsSIAM J. Sci. Comput.202244A230A259437264910.1137/21M140835X
– reference: AndersonJDHypersonic and High Temperature Gas Dynamics1989New YorkMcGraw-Hill
– reference: LvYSeeYCIhmeMAn entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methodsJ. Comput. Phys.20163224484722016JCoPh.322..448L353487310.1016/j.jcp.2016.06.052
– reference: DuJWangCQianCYangYHigh-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonationSIAM J. Sci. Comput.201941B250B273392835410.1137/18M122265X
– reference: HuangJZhaoWShuC-WA third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flowsJ. Sci. Comput.20197910151056396900010.1007/s10915-018-0881-9
– reference: DuJYangYHigh-order bound-preserving finite difference methods for multispecies and multireaction detonationsCommun. Appl. Math. Comput.202110.1007/s42967-020-00117-y
– reference: Fedkiw, R.P., Merriman, B., Osher, S.: Numerical methods for a mixture of thermally perfect and/or calorically perfect gaseous species with chemical reactions, Lecture Notes in Physics (1997)
– reference: LuJLiuYShuC-WAn oscillation-free discontinuous Galerkin method for scalar hyperbolic conservation lawsSIAM J. Numer. Anal.20215912991324425787510.1137/20M1354192
– reference: McBrideBJZeheMJGordonSNASA Glenn Coefficients for Valculating Thermodynamic Properties of Individual Species, NASA/TP-2002-2115562002ClevelandNASA Glenn Research Center
– reference: ZhangXShuC-WOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshesJ. Comput. Phys.2010229891889342010JCoPh.229.8918Z27253801:CAS:528:DC%2BC3cXht1Sqtr%2FL10.1016/j.jcp.2010.08.016
– reference: CockburnBShuC-WThe Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation lawsESAIM Math. Model. Numer. Anal ESAIM: M2AN19912533736110.1051/m2an/1991250303371
– reference: JohnsenEHamFPreventing numerical errors generated by interface-capturing schemes in compressible multi-material flowsJ. Comput. Phys.2012231570557172012JCoPh.231.5705J294799010.1016/j.jcp.2012.04.048
– reference: WestbrookCKChemical kinetics of hydrocarbon oxidation in gaseous detonationsCombust. Flame19824610.1016/0010-2180(82)90015-3
– reference: ZhuJZhongXShuC-WQiuJ-XRunge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshesJ. Comput. Phys.20132482002202013JCoPh.248..200Z306614910.1016/j.jcp.2013.04.012
– reference: CockburnBLinS-YShuC-WTVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systemsJ. Comput. Phys.198984901131989JCoPh..84...90C101535510.1016/0021-9991(89)90183-6
– reference: DuJYangYThird-order conservative sign-preserving and steady-state preserving time integrations and applications in stiff multispecies and multireaction detonationsJ. Comput. Phys.20193954895102019JCoPh.395..489D397572010.1016/j.jcp.2019.06.040
– reference: HouimRWKuoKKA low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratiosJ. Comput. Phys.2011230852785532011JCoPh.230.8527H284372710.1016/j.jcp.2011.07.031
– reference: KeeRJColtrinMEGlarborgPChemically Reacting Flow: Theory and Practice2003HobokenWiley10.1002/0471461296
– reference: JohnsonRKercherAA conservative discontinuous Galerkin discretization for the chemically reacting Navier–Stokes equationsJ. Comput. Phys.202042341569461:CAS:528:DC%2BB3cXhvVaisr7E10.1016/j.jcp.2020.109826
– reference: DuJYangYHigh-order bound-preserving discontinuous Galerkin methods for multicomponent chemically reacting flowsJ. Comput. Phys.202246944759971:CAS:528:DC%2BB38XisVCkurvO10.1016/j.jcp.2022.111548
– reference: HuangJShuC-WPositivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flowsJ. Sci. Comput.20197818111839393468810.1007/s10915-018-0852-1
– reference: CockburnBShuC-WTVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general frameworkMath. Comput.198952411435
– reference: LvYIhmeMHigh-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flowsActa Mech. Sin.2017334864992017AcMSn..33..486L36680701:CAS:528:DC%2BC2sXnt1GisbY%3D10.1007/s10409-017-0664-9
– reference: Reed, W.H., Hill, T.R.: Triangular mesh methods for the Neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM (1973)
– reference: KrivodonovaLLimiters for high-order discontinuous Galerkin methodsJ. Comput. Phys.20072268798962007JCoPh.226..879K235686210.1016/j.jcp.2007.05.011
– reference: HiltebrandAMishraSEntropy stable shock capturing space time discontinuous Galerkin schemes for systems of conservation lawsNumer. Math.2014126103151314907410.1007/s00211-013-0558-0
– volume: 141
  start-page: 199
  year: 1998
  ident: 2217_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5892
– ident: 2217_CR11
– volume: 235
  start-page: 865
  year: 2013
  ident: 2217_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.09.022
– volume: 78
  start-page: 1811
  year: 2019
  ident: 2217_CR17
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0852-1
– volume: 322
  start-page: 448
  year: 2016
  ident: 2217_CR25
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.06.052
– volume: 395
  start-page: 489
  year: 2019
  ident: 2217_CR8
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.040
– volume: 43
  start-page: 273
  year: 1981
  ident: 2217_CR6
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(81)90027-4
– volume: 84
  start-page: 90
  year: 1989
  ident: 2217_CR2
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90183-6
– volume: 469
  year: 2022
  ident: 2217_CR10
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111548
– volume: 46
  year: 1982
  ident: 2217_CR33
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(82)90015-3
– volume: 59
  start-page: 1299
  year: 2021
  ident: 2217_CR24
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/20M1354192
– volume: 226
  start-page: 879
  year: 2007
  ident: 2217_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.05.011
– volume-title: Hypersonic and High Temperature Gas Dynamics
  year: 1989
  ident: 2217_CR1
– volume: 51
  start-page: 1131
  year: 2006
  ident: 2217_CR12
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1134
– volume: 340
  start-page: 330
  year: 2017
  ident: 2217_CR28
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.03.022
– volume: 423
  year: 2020
  ident: 2217_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109826
– volume: 12
  start-page: 569
  year: 1967
  ident: 2217_CR29
  publication-title: Mol. Phys.
  doi: 10.1080/00268976700100731
– year: 2021
  ident: 2217_CR9
  publication-title: Commun. Appl. Math. Comput.
  doi: 10.1007/s42967-020-00117-y
– volume: 41
  start-page: B250
  year: 2019
  ident: 2217_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M122265X
– volume: 33
  start-page: 486
  year: 2017
  ident: 2217_CR27
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-017-0664-9
– volume: 230
  start-page: 8527
  year: 2011
  ident: 2217_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.07.031
– ident: 2217_CR31
– volume: 361
  start-page: 111
  year: 2018
  ident: 2217_CR16
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.01.051
– volume: 126
  start-page: 103
  year: 2014
  ident: 2217_CR13
  publication-title: Numer. Math.
  doi: 10.1007/s00211-013-0558-0
– volume-title: NASA Glenn Coefficients for Valculating Thermodynamic Properties of Individual Species, NASA/TP-2002-211556
  year: 2002
  ident: 2217_CR30
– volume: 229
  start-page: 8918
  year: 2010
  ident: 2217_CR35
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.08.016
– volume: 52
  start-page: 411
  year: 1989
  ident: 2217_CR4
  publication-title: Math. Comput.
– volume-title: Chemically Reacting Flow: Theory and Practice
  year: 2003
  ident: 2217_CR21
  doi: 10.1002/0471461296
– volume: 270
  start-page: 105
  year: 2014
  ident: 2217_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.03.029
– volume: 248
  start-page: 200
  year: 2013
  ident: 2217_CR36
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.012
– volume: 25
  start-page: 337
  year: 1991
  ident: 2217_CR3
  publication-title: ESAIM Math. Model. Numer. Anal ESAIM: M2AN
  doi: 10.1051/m2an/1991250303371
– volume: 231
  start-page: 5705
  year: 2012
  ident: 2217_CR19
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.048
– volume: 44
  start-page: A230
  year: 2022
  ident: 2217_CR23
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21M140835X
– volume: 18
  start-page: 517
  year: 1950
  ident: 2217_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747673
– volume: 79
  start-page: 1015
  year: 2019
  ident: 2217_CR18
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0881-9
– ident: 2217_CR32
  doi: 10.6028/NBS.NSRDS.37
SSID ssj0009892
Score 2.4163022
Snippet This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Algorithms
Approximation
Chemical reactions
Computational Mathematics and Numerical Analysis
Damping
Euler-Lagrange equation
Galerkin method
Heat
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Partial differential equations
Reacting flow
Runge-Kutta method
Theoretical
Viscosity
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QcIADsAFiMFAOHEAQaemaNj2OR-HABhoP7VZlaYomVd20biD-PU6WroAACc5N0yi28zm1_RmhQ5nQRpP5PmGJ7BM3bigd31WkD5cRuA8BYEoj6Ru_0-G9XnBni8LyItu9CEmak_pDsVtAdTWxjjuCI03g4F0CuOO6YUP3_qmk2uWmFTKYDyPgLLu2VOb7OT7DUeljfgmLGrQJ1_-3zg20Zr1L3JqpQwUtqKyKVttzata8iirWmnN8ZCmnjzfRqJXhWwDDdJYZR8KxUvhMd1wiOkdDnyfZM74Y5DqzfZBNh9McXwG06B_tuG2aUGPwfrEp5yU6TX2YAZrhgo4gfcNdpUsoYJYwHb7mW-gxvHw4vya2FwORYKQTkJ3nCrD-WDiJkA6AmhdzT7BYNRPhCMp81-OecgIqAxBvzAQNFHf6Snk8cUEfttFiBp_eQRh8PM26Jz1NVacUD1xKk4Qx4cPtyxGshmghkkhaonLdLyONSoplvcURbHFktjhyauhk_s5oRtPx6-h6IenImmwewdI5OFNw3a2h00Ky5eOfZ9v92_A9tOIY5dB_cupocTKeqn20LF8mg3x8YFT5HW7J620
  priority: 102
  providerName: Springer Nature
Title An Oscillation-Free Bound-Preserving Discontinuous Galerkin Method for Multi-component Chemically Reacting Flows
URI https://link.springer.com/article/10.1007/s10915-023-02217-2
https://www.proquest.com/docview/2918317094
Volume 95
WOSCitedRecordID wos000986941900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6RhEMvtOGhhqbRHnoAwarxxuvHCSWlAakQogBVxMXarNcokuWEOKHi3zOzWWOBRC695OJ4beubndfOfANwoTOvP5BhyGWmF9xP-4bOdw1fYDCC8RAaTG2R_hBOJtF8Hk9dwq10ZZWVTrSKOl1pypFfihiFzwsxGnmz_sFpahSdrroRGg1oEUsCjW6Yym816W5khyLjRpIc3WbfNc241rnYo95kOsVEt5yLvw1T7W3-c0Bq7c74-L5vfAKPnMfJhnsRacMDUzyGttvTJXvhiKdfPoH1sGCf0CTm-_o4Pt4Yw0Y0d4lTpQZpleI7e7ssqb59WexWu5K9QwND6Xb20Y6iZugDM9vUy6lYfVWgTWMVKUH-i80MNVLgKuN8dVc-ha_j6y9X77mbyMA1btUtIhj4CnVAqkSmtEDTFqRRoGRqBpkSypOhH0SBwS_XMYKcSuXFJhILY4Io81EqnkGzwEefAkNPj7j3dECEdcZEse95WSalCjEGE0p2wKvgSLSjK6epGXlSEy0ThAlCmFgIE9GBV3_uWe_JOg7-u1vhlriNWyY1aB14XSFfX_7_as8Pr3YGR8IKG-VvutDcbnbmHB7qn9tluelBa3Q9mc560LgJec8KMf7OPt_-Bg2y9J8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7qBtL2MhhsWtlgfgBpiFk0bpzLA0KDLrTqZQgNqW_BdZypUpWWpmXan-I3co6TEIHE3vrAc5JjO_58Lj43gJc6dVpt6ftcpnrC3aRlyL9r-ASNEbSHUGBqu9MDfzQKxuPwcwN-VrkwFFZZ8UTLqJO5pjvytyJE8Dk-WiPvF985dY0i72rVQqOARd_c3aLJlr_rdXB_XwkRXV5_7PKyqwDXCLcVzsJzFeI4USJVWiB79pLAUzIx7VQJ5Ujf9QLP4Hg6xIkmUjmhCcTEGC9IXVwZ0t2CB2478Olc9X1eF_kNbBNmPLiSo5rulkk6Zape6FAuNHlN0Qzg4k9BWGu3fzlkrZyLHv1vf-gx7JUaNbsojsA-NEz2BPZLnpWzs7Kw9uunsLjI2BWK_FkR_8ejpTHsA_WV4hSJQlwzu2GdaU7x-9NsPV_n7BMKUHInsKFttc1Qx2c2aZlTMP48Q5nNqqILszv2xVCiCFKJZvPb_AC-bmTlh7Cd4dBHwFCTpdqC2qOCfMYEoes4aSql8tHGFEo2wam2P9ZlOXbqCjKL60LSBJkYIRNbyMSiCW9-f7MoipHc-_ZJhZO4ZEx5XIOkCecV0urH_6b27H5qp7DTvR4O4kFv1D-GXWGBTndVJ7C9Wq7Nc3iof6ym-fKFPTIMvm0agb8AZ3JNeg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQIAQHYAPEeObAAQQRtGv6OPIqIGBMvLRblaUpmjR107qB-PfYWcsAARLi3DSx4ji2Y_szwJZKrIOq8DwuEtXkTnygKb6reROdEfSHUGEqw-krr1bzG42g_qGK32S7FyHJYU0DoTSl_f1unOx_KHwLLKosphgkGtUcL-EJhxLpyV-_exzB7vqmLTKKkuBoODt52cz3c3xWTSN780uI1GiecO7_NM_DbG51ssPhMSnBmE7LMHP9DtmalaGUS3nGtnMo6p0F6B6m7AaVZHuYMcfDntbsiDoxccrdoHsmfWInrYxIaaWDziBjZ6hy6AGeXZvm1AytYmbKfDmlr3dSpJgVMAXtV3arqbQCZwnbnZdsER7C0_vjc573aOAKhbePPHUdibdCLO1EKhuVnRv7rhSxribSlpbwHNd3tR1YKkC2x0JagfbtptaunyDHqkswnuLSy8DQ9iM0PuUShJ3WfuBYVpIIIT30ymwpKmAV7IlUDmBOfTTa0Qh6mbY4wi2OzBZHdgV23__pDuE7fh29VnA9ykU5i5B0H40sdIMrsFdwefT559lW_jZ8E6bqJ2F0dVG7XIVp25wTeuxZg_F-b6DXYVI991tZb8Oc8DeO1_c1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oscillation-Free+Bound-Preserving+Discontinuous+Galerkin+Method+for+Multi-component+Chemically+Reacting+Flows&rft.jtitle=Journal+of+scientific+computing&rft.au=Du%2C+Jie&rft.au=Liu%2C+Yong&rft.au=Yang%2C+Yang&rft.date=2023-06-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=95&rft.issue=3&rft_id=info:doi/10.1007%2Fs10915-023-02217-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_023_02217_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon