Novel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity grid

Optimization of reactive power dispatch (ORPD) problem is a key factor for stable and secure operation of the electric power systems. In this paper, a newly explored nature-inspired optimization through artificial ecosystem optimization (AEO) algorithm is proposed to cope with ORPD problem in large-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 33; číslo 13; s. 7467 - 7490
Hlavní autoři: Mouassa, Souhil, Jurado, Francisco, Bouktir, Tarek, Raja, Muhammad Asif Zahoor
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.07.2021
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimization of reactive power dispatch (ORPD) problem is a key factor for stable and secure operation of the electric power systems. In this paper, a newly explored nature-inspired optimization through artificial ecosystem optimization (AEO) algorithm is proposed to cope with ORPD problem in large-scale and practical power systems. ORPD is a well-known highly complex combinatorial optimization task with nonlinear characteristics, and its complexity increases as a number of decision variables increase, which makes it hard to be solved using conventional optimization techniques. However, it can be efficiently resolved by using nature-inspired optimization algorithms. AEO algorithm is a recently invented optimizer inspired by the energy flocking behavior in a natural ecosystem including non-living elements such as sunlight, water, and air. The main merit of this optimizer is its high flexibility that leads to achieve accurate balance between exploration and exploitation abilities. Another attractive property of AEO is that it does not have specific control parameters to be adjusted. In this work, three-objective version of ORPD problem is considered involving active power losses minimization and voltage deviation and voltage stability index. The proposed optimizer was examined on medium- and large-scale IEEE test systems, including 30 bus, 118 bus, 300 bus and Algerian electricity grid DZA 114 bus (220/60 kV). The results of AEO algorithm are compared with well-known existing optimization techniques. Also, the results of comparison show that the proposed algorithm performs better than other algorithms for all examined power systems. Consequently, we confirm the effectiveness of the introducing AEO algorithm to relieve the over losses problem, enhance power system performance, and meet solutions feasibility. One-way analysis of variance (ANOVA) has been employed to evaluate the performance and consistency of the proposed AEO algorithm in solving ORPD problem.
AbstractList Optimization of reactive power dispatch (ORPD) problem is a key factor for stable and secure operation of the electric power systems. In this paper, a newly explored nature-inspired optimization through artificial ecosystem optimization (AEO) algorithm is proposed to cope with ORPD problem in large-scale and practical power systems. ORPD is a well-known highly complex combinatorial optimization task with nonlinear characteristics, and its complexity increases as a number of decision variables increase, which makes it hard to be solved using conventional optimization techniques. However, it can be efficiently resolved by using nature-inspired optimization algorithms. AEO algorithm is a recently invented optimizer inspired by the energy flocking behavior in a natural ecosystem including non-living elements such as sunlight, water, and air. The main merit of this optimizer is its high flexibility that leads to achieve accurate balance between exploration and exploitation abilities. Another attractive property of AEO is that it does not have specific control parameters to be adjusted. In this work, three-objective version of ORPD problem is considered involving active power losses minimization and voltage deviation and voltage stability index. The proposed optimizer was examined on medium- and large-scale IEEE test systems, including 30 bus, 118 bus, 300 bus and Algerian electricity grid DZA 114 bus (220/60 kV). The results of AEO algorithm are compared with well-known existing optimization techniques. Also, the results of comparison show that the proposed algorithm performs better than other algorithms for all examined power systems. Consequently, we confirm the effectiveness of the introducing AEO algorithm to relieve the over losses problem, enhance power system performance, and meet solutions feasibility. One-way analysis of variance (ANOVA) has been employed to evaluate the performance and consistency of the proposed AEO algorithm in solving ORPD problem.
Optimization of reactive power dispatch (ORPD) problem is a key factor for stable and secure operation of the electric power systems. In this paper, a newly explored nature-inspired optimization through artificial ecosystem optimization (AEO) algorithm is proposed to cope with ORPD problem in large-scale and practical power systems. ORPD is a well-known highly complex combinatorial optimization task with nonlinear characteristics, and its complexity increases as a number of decision variables increase, which makes it hard to be solved using conventional optimization techniques. However, it can be efficiently resolved by using nature-inspired optimization algorithms. AEO algorithm is a recently invented optimizer inspired by the energy flocking behavior in a natural ecosystem including non-living elements such as sunlight, water, and air. The main merit of this optimizer is its high flexibility that leads to achieve accurate balance between exploration and exploitation abilities. Another attractive property of AEO is that it does not have specific control parameters to be adjusted. In this work, three-objective version of ORPD problem is considered involving active power losses minimization and voltage deviation and voltage stability index. The proposed optimizer was examined on medium- and large-scale IEEE test systems, including 30 bus, 118 bus, 300 bus and Algerian electricity grid DZA 114 bus (220/60 kV). The results of AEO algorithm are compared with well-known existing optimization techniques. Also, the results of comparison show that the proposed algorithm performs better than other algorithms for all examined power systems. Consequently, we confirm the effectiveness of the introducing AEO algorithm to relieve the over losses problem, enhance power system performance, and meet solutions feasibility. One-way analysis of variance (ANOVA) has been employed to evaluate the performance and consistency of the proposed AEO algorithm in solving ORPD problem.
Author Jurado, Francisco
Raja, Muhammad Asif Zahoor
Mouassa, Souhil
Bouktir, Tarek
Author_xml – sequence: 1
  givenname: Souhil
  orcidid: 0000-0001-7812-8184
  surname: Mouassa
  fullname: Mouassa, Souhil
  email: souhil.mouassa@univ-bouira.dz
  organization: Department of Electrical Engineering, University of Jaén, Department of Electrical Engineering, University of Bouira, Department of Electrical Engineering, University of Farhat Abbas, Sétif 1
– sequence: 2
  givenname: Francisco
  surname: Jurado
  fullname: Jurado, Francisco
  organization: Department of Electrical Engineering, University of Jaén
– sequence: 3
  givenname: Tarek
  surname: Bouktir
  fullname: Bouktir, Tarek
  organization: Department of Electrical Engineering, University of Bouira
– sequence: 4
  givenname: Muhammad Asif Zahoor
  surname: Raja
  fullname: Raja, Muhammad Asif Zahoor
  organization: Future Technology Research Center, National Yunlin University of Science and Technology, Department of Electrical and Computer Engineering, COMSATS University Islamabad
BookMark eNp9UctOHDEQtCKQshB-gJMlzhPar3kc0SovCSWX5Gx5Pe1dr8x4sL2g5TvywTEMUiQOnPrQVV3VVWfkZIoTEnLJ4DMD6K4zgOKsAQ4NKDm0DXwgKyaFaASo_oSsYJB13UrxkZzlvAcA2fZqRf7-jA8Y6IjZbycaHTWpeOetN4GijfmYC97ROBd_558wURcTDSZtscnWBFw2FZvQ2OIfkM7xscJGn2dT7I7OKW5CvfDoy46aeQ7emuLjREukN2GLyZuJYkBbUhUtR7pNfvxETp0JGS9e5zn58_XL7_X35vbXtx_rm9vGCjaUZsNw7IQ0wnFQholxQGcUoJLdKPlgaxpcSGnlxoETLVjOuFJMmHbT9aYbxTm5Wu5Wl_cHzEXv4yFNVVJzJWtAPYi-ovoFZVPMOaHT1ejLEyUZHzQD_dyBXjrQVVW_dKChUvkb6pxqXOn4PkkspFzBU43ov6t3WP8AiRaecw
CitedBy_id crossref_primary_10_1007_s00521_021_06318_7
crossref_primary_10_1080_17455030_2023_2178827
crossref_primary_10_1007_s11042_023_16919_0
crossref_primary_10_1049_gtd2_13121
crossref_primary_10_1007_s13369_024_08841_w
crossref_primary_10_1007_s00202_024_02789_8
crossref_primary_10_1080_01430750_2024_2304721
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_egyr_2023_03_036
crossref_primary_10_1109_ACCESS_2022_3152557
crossref_primary_10_3233_JCM_247299
crossref_primary_10_1371_journal_pone_0289129
crossref_primary_10_1109_ACCESS_2023_3328958
crossref_primary_10_1016_j_meadig_2025_100004
crossref_primary_10_1007_s11227_022_04367_w
crossref_primary_10_1016_j_compeleceng_2025_110587
crossref_primary_10_1038_s41598_025_02636_1
crossref_primary_10_3390_math11051236
Cites_doi 10.1155/2020/6382507
10.1007/s00521-019-04194-w
10.1155/2019/4670820
10.1016/j.asoc.2016.11.008
10.1016/j.engappai.2017.10.019
10.1016/j.aej.2020.04.051
10.1016/j.ijepes.2013.04.011
10.1016/j.asoc.2018.07.023
10.1016/j.egyr.2020.07.030
10.1016/j.asoc.2017.01.012
10.1007/s00202-019-00895-6
10.1007/s00521-019-04197-7
10.1109/TPWRD.1986.4308013
10.1109/ACCESS.2020.2985763
10.1140/epjp/s13360-019-00059-2
10.1016/j.enconman.2016.12.032
10.1007/s00521-016-2400-y
10.1049/iet-gtd.2011.0681
10.1109/iesm.2015.7380228
10.1016/j.epsr.2010.10.005
10.1016/j.ijepes.2013.08.010
10.1109/MPER.1985.5526580
10.1145/2911451.2911548
10.1109/TPWRS.2010.2051168
10.1145/2939672.2939832
10.24963/ijcai.2019/405
10.1016/j.asoc.2017.10.049
10.1016/j.ijepes.2018.01.024
10.1186/s13662-017-1461-2
10.1016/j.asoc.2017.04.048
10.1016/j.epsr.2019.106031
10.1016/j.asoc.2013.05.005
10.1016/j.ijepes.2014.07.060
10.1016/j.asoc.2020.106252
10.1080/15325008.2015.1112449
10.1016/j.asoc.2018.01.009
10.1016/j.engappai.2014.12.001
10.1109/ISAP.2015.7325566
10.1016/j.asoc.2017.05.057
10.1016/j.matcom.2020.01.005
10.1145/3392717.3392748
10.1016/j.apenergy.2020.115098
10.1016/j.anucene.2019.106982
10.1016/j.asoc.2015.03.041
10.1109/TLA.2016.7530421
10.1016/j.ijepes.2014.10.041
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-020-05496-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central (New)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 7490
ExternalDocumentID 10_1007_s00521_020_05496_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-b1ed734a3f205a13d9efa50e547d429c0202344c4bf0f360c2125513a6b78a7d3
IEDL.DBID P5Z
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590219400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 22:03:50 EST 2025
Sat Nov 29 02:59:18 EST 2025
Tue Nov 18 22:08:47 EST 2025
Fri Feb 21 02:48:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Real power loss
Optimal reactive power dispatch
Voltage deviation
Voltage stability index
Large-scale test system
Artificial ecosystem optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b1ed734a3f205a13d9efa50e547d429c0202344c4bf0f360c2125513a6b78a7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7812-8184
PQID 2544688038
PQPubID 2043988
PageCount 24
ParticipantIDs proquest_journals_2544688038
crossref_citationtrail_10_1007_s00521_020_05496_0
crossref_primary_10_1007_s00521_020_05496_0
springer_journals_10_1007_s00521_020_05496_0
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References El Ela, Abido, Spea (CR24) 2011; 81
Ara, Khan, Razzaq, Hameed, Raja (CR50) 2018; 2018
Attia, El Sehiemy, Hasanien (CR1) 2018; 99
CR39
Shaw, Mukherjee, Ghoshal (CR36) 2014; 55
Ahmad, Faisal, Shoaib, Raja (CR45) 2020; 135
Zhao, Wang (CR26) 2020; 32
Lee, Park, Ortiz (CR31) 1985; 5
Ghasemi, Taghizadeh, Ghavidel, Aghaei, Abbasian (CR8) 2015; 39
Zameer, Muneeb, Mirza, Raja (CR47) 2020; 135
Bhattacharya, Chattopadhyay (CR35) 2010; 4
Ahmad, Raja, Bilal, Ashraf (CR43) 2017; 28
Bukhari, Raja, Sulaiman, Islam, Shoaib, Kumam (CR49) 2020; 8
Saddique, Bhatti, Haroon, Sattar, Amin, Sajjad, ul Haq, Awan, Rasheed (CR17) 2020; 178
Naderi, Narimani, Fathi, Narimani (CR10) 2017; 53
Kessel, Glavitsch (CR25) 1986; 1
Nguyen, Vo, Van Tran, Van Dai (CR6) 2019
Raja, Manzar, Shah, Shah (CR41) 2018; 62
Ng, Mei, Herwan, Mustaffa, Daniyal (CR14) 2017; 59
Zameer, Arshad, Khan, Raja (CR52) 2017; 134
Hinojosa, Araya (CR4) 2013; 13
CR40
El-Sattar, Kamel, El Sehiemy, Jurado, Yu (CR33) 2019; 31
Sabir, Wahab, Umar, Sakar, Raja (CR44) 2020; 172
Yalçın, Çam, Taplamacıoğlu (CR38) 2020; 102
Rajan, Malakar (CR30) 2015; 66
CR19
Mandal, Roy (CR34) 2013; 53
Polprasert, Ongsakul, Dieu (CR37) 2016; 44
Sulaiman, Mustaffa, Mohamed, Aliman (CR15) 2015; 32
CR13
Bukhari, Sulaiman, Raja, Islam, Shoaib, Kumam (CR42) 2020; 59
Mouassa, Bouktir, Salhi (CR11) 2017; 20
Duong, Duong, Phan, Nguyen, Niccolai (CR5) 2020
Amrane, Boudour, Belazzoug (CR29) 2015; 64
Heidari, Abbaspour, Jordehi (CR9) 2017; 57
Sabir, Manzar, Raja, Sheraz, Wazwaz (CR46) 2018; 65
Muhammad, Khan, Asif, Raja, Ullah (CR18) 2020; 6
Mehmood, Zameer, Aslam, Raja (CR48) 2020; 32
CR28
Biswas, Suganthan, Mallipeddi, Amaratunga (CR3) 2018; 68
Chen, Liu, Zhang, Huang (CR7) 2017; 50
Warid (CR2) 2020; 91
CR23
CR22
CR21
CR20
Raja, Mehmood, ur Rehman, Khan, Zameer (CR53) 2018; 71
Duman, Sönmez, Güvenç, Yörükeren (CR32) 2012; 6
Mouassa, Bouktir (CR12) 2018; 38
Gutiérrez, López, Villa (CR16) 2016; 14
Shahid, Zameer, Mehmood, Raja (CR51) 2020; 269
Zimmerman, Murillo Sánchez, Thomas (CR27) 2011; 26
A Rajan (5496_CR30) 2015; 66
PP Biswas (5496_CR3) 2018; 68
MS Saddique (5496_CR17) 2020; 178
P Kessel (5496_CR25) 1986; 1
5496_CR19
R Ng (5496_CR14) 2017; 59
Y Amrane (5496_CR29) 2015; 64
S Mouassa (5496_CR11) 2017; 20
Warid Warid (5496_CR2) 2020; 91
5496_CR13
VH Hinojosa (5496_CR4) 2013; 13
5496_CR40
MAZ Raja (5496_CR41) 2018; 62
A Bhattacharya (5496_CR35) 2010; 4
W Zhao (5496_CR26) 2020; 32
KY Lee (5496_CR31) 1985; 5
B Shaw (5496_CR36) 2014; 55
Z Sabir (5496_CR44) 2020; 172
TL Duong (5496_CR5) 2020
A Zameer (5496_CR52) 2017; 134
E Yalçın (5496_CR38) 2020; 102
AH Bukhari (5496_CR49) 2020; 8
D Gutiérrez (5496_CR16) 2016; 14
RD Zimmerman (5496_CR27) 2011; 26
B Mandal (5496_CR34) 2013; 53
TT Nguyen (5496_CR6) 2019
A Zameer (5496_CR47) 2020; 135
Y Muhammad (5496_CR18) 2020; 6
I Ahmad (5496_CR43) 2017; 28
A Mehmood (5496_CR48) 2020; 32
E Naderi (5496_CR10) 2017; 53
J Polprasert (5496_CR37) 2016; 44
5496_CR39
Z Sabir (5496_CR46) 2018; 65
A Ara (5496_CR50) 2018; 2018
MAZ Raja (5496_CR53) 2018; 71
SA El-Sattar (5496_CR33) 2019; 31
AH Bukhari (5496_CR42) 2020; 59
AF Attia (5496_CR1) 2018; 99
S Mouassa (5496_CR12) 2018; 38
G Chen (5496_CR7) 2017; 50
MH Sulaiman (5496_CR15) 2015; 32
AAA El Ela (5496_CR24) 2011; 81
AA Heidari (5496_CR9) 2017; 57
S Duman (5496_CR32) 2012; 6
M Ghasemi (5496_CR8) 2015; 39
5496_CR28
F Shahid (5496_CR51) 2020; 269
5496_CR23
5496_CR22
SUI Ahmad (5496_CR45) 2020; 135
5496_CR21
5496_CR20
References_xml – ident: CR22
– volume: 26
  start-page: 12
  year: 2011
  end-page: 19
  ident: CR27
  article-title: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: Power Syst IEEE Trans
– year: 2020
  ident: CR5
  article-title: Optimal reactive power flow for large-scale power systems using an effective metaheuristic algorithm
  publication-title: J Electr Comput Eng
  doi: 10.1155/2020/6382507
– volume: 57
  start-page: 657
  year: 2017
  end-page: 671
  ident: CR9
  article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems
  publication-title: Appl Soft Comput J
– ident: CR39
– volume: 39
  start-page: 100
  year: 2015
  end-page: 108
  ident: CR8
  article-title: Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm
  publication-title: Eng Appl Artif Intell
– volume: 50
  start-page: 58
  year: 2017
  end-page: 70
  ident: CR7
  article-title: Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints
  publication-title: Appl Soft Comput J
– volume: 28
  start-page: 929
  year: 2017
  end-page: 944
  ident: CR43
  article-title: Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model
  publication-title: Neural Comput Appl
– volume: 8
  start-page: 71326
  year: 2020
  end-page: 71338
  ident: CR49
  article-title: Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting
  publication-title: IEEE Access
– volume: 14
  start-page: 2253
  year: 2016
  end-page: 2263
  ident: CR16
  article-title: Metaheuristic techniques applied to the optimal reactive power dispatch: a review
  publication-title: IEEE Lat Am Trans
– ident: CR21
– volume: 65
  start-page: 152
  year: 2018
  end-page: 169
  ident: CR46
  article-title: Neuro-heuristics for nonlinear singular Thomas-Fermi systems
  publication-title: Appl Soft Comput J
– volume: 64
  start-page: 551
  year: 2015
  end-page: 561
  ident: CR29
  article-title: A new optimal reactive power planning based on differential search algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 135
  start-page: 1
  year: 2020
  end-page: 29
  ident: CR45
  article-title: A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines
  publication-title: Eur Phys J Plus
– ident: CR19
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR50
  article-title: Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling
  publication-title: Adv Differ Equ
– volume: 59
  start-page: 210
  year: 2017
  end-page: 222
  ident: CR14
  article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique
  publication-title: Appl Soft Comput J
– volume: 31
  start-page: 8787
  year: 2019
  end-page: 8806
  ident: CR33
  article-title: Single- and multi-objective optimal power flow frameworks using Jaya optimization technique
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04194-w
– volume: 6
  start-page: 2211
  year: 2020
  end-page: 2229
  ident: CR18
  article-title: Solution of optimal reactive power dispatch with FACTS devices: a survey
  publication-title: Energy Rep
– volume: 13
  start-page: 3839
  year: 2013
  end-page: 3852
  ident: CR4
  article-title: Modeling a mixed-integer-binary small-population evolutionary particle swarm algorithm for solving the optimal power flow problem in electric power systems
  publication-title: Appl Soft Comput
– volume: 32
  start-page: 1
  issue: 4
  year: 2020
  end-page: 43
  ident: CR26
  article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Comput Appl
– volume: 44
  start-page: 518
  year: 2016
  end-page: 532
  ident: CR37
  article-title: Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization
  publication-title: Electr Power Compon Syst
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: CR3
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng Appl Artif Intell
– volume: 53
  start-page: 123
  year: 2013
  end-page: 134
  ident: CR34
  article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 32
  start-page: 7121
  year: 2020
  end-page: 7137
  ident: CR48
  article-title: Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits
  publication-title: Neural Comput Appl
– volume: 32
  start-page: 286
  year: 2015
  end-page: 292
  ident: CR15
  article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem
  publication-title: Appl Soft Comput J
– volume: 269
  start-page: 115098
  year: 2020
  ident: CR51
  article-title: A novel wavenets long short term memory paradigm for wind power prediction
  publication-title: Appl Energy
– volume: 91
  start-page: 106252
  year: 2020
  ident: CR2
  article-title: Optimal power flow using the AMTPG-Jaya algorithm
  publication-title: Appl Soft Comput J
– volume: 5
  start-page: 42
  year: 1985
  end-page: 43
  ident: CR31
  article-title: A united approach to optimal real and reactive power dispatch
  publication-title: IEEE Power Eng Rev PER-5
– year: 2019
  ident: CR6
  article-title: Optimal dispatch of reactive power using modified stochastic fractal search algorithm
  publication-title: Complexity
  doi: 10.1155/2019/4670820
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  ident: CR1
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 53
  start-page: 441
  year: 2017
  end-page: 456
  ident: CR10
  article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch
  publication-title: Appl Soft Comput J
– volume: 135
  start-page: 106982
  year: 2020
  ident: CR47
  article-title: Fractional-order particle swarm based multi-objective PWR core loading pattern optimization
  publication-title: Ann Nucl Energy
– volume: 178
  start-page: 106031
  year: 2020
  ident: CR17
  article-title: Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques—status and technological review
  publication-title: Electr Power Syst Res
– volume: 55
  start-page: 29
  year: 2014
  end-page: 40
  ident: CR36
  article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 134
  start-page: 361
  year: 2017
  end-page: 372
  ident: CR52
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manag
– ident: CR40
– ident: CR23
– volume: 6
  start-page: 563
  year: 2012
  end-page: 576
  ident: CR32
  article-title: Optimal reactive power dispatch using a gravitational search algorithm
  publication-title: IET Gener Transm Distrib
– volume: 71
  start-page: 622
  year: 2018
  end-page: 648
  ident: CR53
  article-title: Bio-inspired computational heuristics for Sisko fluid flow and heat transfer models
  publication-title: Appl Soft Comput J
– volume: 62
  start-page: 359
  year: 2018
  end-page: 372
  ident: CR41
  article-title: Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models
  publication-title: Appl Soft Comput J
– volume: 38
  start-page: 305
  year: 2018
  end-page: 322
  ident: CR12
  article-title: Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem
  publication-title: COMPEL Int J Comput Math Electr Electron Eng
– volume: 102
  start-page: 573
  year: 2020
  end-page: 590
  ident: CR38
  article-title: A new chaos and global competitive ranking—based symbiotic organisms search algorithm for solving reactive power dispatch problem with discrete and continuous control variable
  publication-title: Electr Eng
– volume: 1
  start-page: 346
  year: 1986
  end-page: 354
  ident: CR25
  article-title: Estimating the voltage stability of a power system
  publication-title: IEEE Trans Power Deliv
– ident: CR13
– volume: 4
  start-page: 568
  year: 2010
  end-page: 576
  ident: CR35
  article-title: Solution of optimal reactive power flow using biogeography-based optimization
  publication-title: Int J Electr Electron Eng
– volume: 172
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR44
  article-title: Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation
  publication-title: Math Comput Simul
– volume: 20
  start-page: 885
  year: 2017
  end-page: 895
  ident: CR11
  article-title: Ant lion optimizer for solving optimal reactive power dispatch problem in power systems
  publication-title: Eng Sci Technol Int J
– ident: CR28
– ident: CR20
– volume: 66
  start-page: 9
  year: 2015
  end-page: 24
  ident: CR30
  article-title: Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 59
  start-page: 3325
  year: 2020
  end-page: 3345
  ident: CR42
  article-title: Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system
  publication-title: Alex Eng J
– volume: 81
  start-page: 458
  year: 2011
  end-page: 464
  ident: CR24
  article-title: Differential evolution algorithm for optimal reactive power dispatch
  publication-title: Electr Power Syst Res
– volume: 20
  start-page: 885
  year: 2017
  ident: 5496_CR11
  publication-title: Eng Sci Technol Int J
– volume: 50
  start-page: 58
  year: 2017
  ident: 5496_CR7
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2016.11.008
– volume: 68
  start-page: 81
  year: 2018
  ident: 5496_CR3
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.10.019
– volume: 59
  start-page: 3325
  year: 2020
  ident: 5496_CR42
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2020.04.051
– volume: 53
  start-page: 123
  year: 2013
  ident: 5496_CR34
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.04.011
– year: 2020
  ident: 5496_CR5
  publication-title: J Electr Comput Eng
  doi: 10.1155/2020/6382507
– volume: 71
  start-page: 622
  year: 2018
  ident: 5496_CR53
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.07.023
– volume: 6
  start-page: 2211
  year: 2020
  ident: 5496_CR18
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.07.030
– ident: 5496_CR40
– volume: 4
  start-page: 568
  year: 2010
  ident: 5496_CR35
  publication-title: Int J Electr Electron Eng
– volume: 53
  start-page: 441
  year: 2017
  ident: 5496_CR10
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.01.012
– volume: 102
  start-page: 573
  year: 2020
  ident: 5496_CR38
  publication-title: Electr Eng
  doi: 10.1007/s00202-019-00895-6
– volume: 32
  start-page: 7121
  year: 2020
  ident: 5496_CR48
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04197-7
– volume: 1
  start-page: 346
  year: 1986
  ident: 5496_CR25
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.1986.4308013
– volume: 8
  start-page: 71326
  year: 2020
  ident: 5496_CR49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985763
– volume: 135
  start-page: 1
  year: 2020
  ident: 5496_CR45
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-019-00059-2
– ident: 5496_CR21
– volume: 134
  start-page: 361
  year: 2017
  ident: 5496_CR52
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.12.032
– volume: 28
  start-page: 929
  year: 2017
  ident: 5496_CR43
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2400-y
– volume: 6
  start-page: 563
  year: 2012
  ident: 5496_CR32
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2011.0681
– ident: 5496_CR13
  doi: 10.1109/iesm.2015.7380228
– volume: 81
  start-page: 458
  year: 2011
  ident: 5496_CR24
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2010.10.005
– volume: 55
  start-page: 29
  year: 2014
  ident: 5496_CR36
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.08.010
– volume: 5
  start-page: 42
  year: 1985
  ident: 5496_CR31
  publication-title: IEEE Power Eng Rev PER-5
  doi: 10.1109/MPER.1985.5526580
– volume: 31
  start-page: 8787
  year: 2019
  ident: 5496_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04194-w
– ident: 5496_CR20
  doi: 10.1145/2911451.2911548
– volume: 26
  start-page: 12
  year: 2011
  ident: 5496_CR27
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2010.2051168
– ident: 5496_CR23
  doi: 10.1145/2939672.2939832
– volume: 38
  start-page: 305
  year: 2018
  ident: 5496_CR12
  publication-title: COMPEL Int J Comput Math Electr Electron Eng
– ident: 5496_CR19
  doi: 10.24963/ijcai.2019/405
– volume: 62
  start-page: 359
  year: 2018
  ident: 5496_CR41
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.10.049
– volume: 99
  start-page: 331
  year: 2018
  ident: 5496_CR1
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.01.024
– volume: 2018
  start-page: 1
  year: 2018
  ident: 5496_CR50
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-017-1461-2
– volume: 57
  start-page: 657
  year: 2017
  ident: 5496_CR9
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.04.048
– volume: 178
  start-page: 106031
  year: 2020
  ident: 5496_CR17
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.106031
– ident: 5496_CR39
– volume: 13
  start-page: 3839
  year: 2013
  ident: 5496_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.05.005
– volume: 64
  start-page: 551
  year: 2015
  ident: 5496_CR29
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.07.060
– volume: 91
  start-page: 106252
  year: 2020
  ident: 5496_CR2
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2020.106252
– volume: 44
  start-page: 518
  year: 2016
  ident: 5496_CR37
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2015.1112449
– volume: 65
  start-page: 152
  year: 2018
  ident: 5496_CR46
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.01.009
– volume: 39
  start-page: 100
  year: 2015
  ident: 5496_CR8
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.12.001
– ident: 5496_CR28
  doi: 10.1109/ISAP.2015.7325566
– year: 2019
  ident: 5496_CR6
  publication-title: Complexity
  doi: 10.1155/2019/4670820
– volume: 32
  start-page: 1
  issue: 4
  year: 2020
  ident: 5496_CR26
  publication-title: Neural Comput Appl
– volume: 59
  start-page: 210
  year: 2017
  ident: 5496_CR14
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.05.057
– volume: 172
  start-page: 1
  year: 2020
  ident: 5496_CR44
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2020.01.005
– ident: 5496_CR22
  doi: 10.1145/3392717.3392748
– volume: 269
  start-page: 115098
  year: 2020
  ident: 5496_CR51
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115098
– volume: 135
  start-page: 106982
  year: 2020
  ident: 5496_CR47
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2019.106982
– volume: 32
  start-page: 286
  year: 2015
  ident: 5496_CR15
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2015.03.041
– volume: 14
  start-page: 2253
  year: 2016
  ident: 5496_CR16
  publication-title: IEEE Lat Am Trans
  doi: 10.1109/TLA.2016.7530421
– volume: 66
  start-page: 9
  year: 2015
  ident: 5496_CR30
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.10.041
SSID ssj0004685
Score 2.3630714
Snippet Optimization of reactive power dispatch (ORPD) problem is a key factor for stable and secure operation of the electric power systems. In this paper, a newly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7467
SubjectTerms Algorithms
Artificial Intelligence
Combinatorial analysis
Complexity
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Design optimization
Electric power grids
Electric power systems
Electricity distribution
Image Processing and Computer Vision
Optimization techniques
Original Article
Performance evaluation
Power dispatch
Probability and Statistics in Computer Science
Reactive power
System effectiveness
Variance analysis
Voltage stability
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yhy8aSDvx7GIxYMU8UVvIdmHBGpTmljQ3-EPdmaTtFVU0Gv2FXZmZ2Z3Hh9jp55SkRdxafipKQ2y0Y1E4bnigjupFYogSnSd2etgMAiHw-imTgormmj3xiWpJfU82Y1eMPHqa5Pz1qXQ2VW2huouJMCG27vHpWxIDcSJ9xaK6XGdOlXm-zk-q6OFjfnFLaq1Tb_9v__cYpu1dQm9ih222Yoc77B2g9wA9UHeZe-DfCZHIHT4BuQKiIGqWhKA99GqvDPkKE6eszcciJYtjChm3CiQprJqwb5ocWp5CRMCWwORoXxCNoAapgbolReWfORQ5tAbPRHXj6FC4MFFy1d4mmZijz30L-8vrowan8HgeHBLI7WkCBw3cZRteonliEiqxDOl5wYC1Rw3CZrddbmbKlM5vslRTRKeTOKnQZgEwtlnrXE-lgcMlK_s1CYnK94HfeVHaRgEpi0EfrQSKTrMasgU87p4OWFojOJ52WW97TGuGettj80OO5uPmVSlO37t3W2oH9fHuIipfpuPEs4JO-y8ofai-efZDv_W_Yht2BQro8OAu6xVTl_kMVvnszIrpieavT8AxiT2Aw
  priority: 102
  providerName: Springer Nature
Title Novel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity grid
URI https://link.springer.com/article/10.1007/s00521-020-05496-0
https://www.proquest.com/docview/2544688038
Volume 33
WOSCitedRecordID wos000590219400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VhAOXpuUhAhTNoTdq4ffjhAAF9VBFEdAK9WLZ-0CRQpwmJhL8Dn4wM-s1oUjl0osP-7Q0j52dmZ0P4GukdRZlQjlx6SqHbXSn0CRXQoqg9FKZZIWpM_sjGQ7Tm5tsZB1uC5tW2epEo6hlJdhHfsyltGJitiA9mf1xGDWKo6sWQmMNulwlgaEbRtHvV-8iDSQn3WA4uycM7KMZ83SO_aHU6nMoOORE3L8PppW1-SZAas6di97__vEn-GgtTjxtWOQzfFDTTei1aA5ohXsLnobVUk1QmpQOrDQyUzX1JZDuqE3JZ6xIxdyNH2kiWbs44TxyZ0F0Vk0PjSUr1OhQnDEAG8ox6SxiDbTQNcieX3wVN8e6wtPJLUvCFBtUHtq0fsDb-Vhuw8-LwfX5d8diNjiChLl2Sk_JJAiLQPtuVHiBzJQuIldFYSLp6BMuw7WHoQhL7eogdgUdnYwxU8RlkhaJDHagM62mahdQx9ovfQ680h0x1nFWpkni-lJSo1co2QevJVgubEFzxtWY5C-lmA2Rc9ozN0TO3T4cvcyZNeU83h190FI2t6K9yFdk7cO3ljdW3f9ebe_91fZhw-d8GZMKfACden6vvsC6WNbjxfwQumeD4ejy0DA4fS-vfj0DEvsDEQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlKe6UGAOcIIIx3FeB4QqoGrVZdVDkSouIfGjWmnZbHfTVu3v4HfwG5lxkm5BorceuNqxLTnfjMeexwfwKnYuj3Ntg6QSNmAbPSgdyZU2OqrCzKR56evMDtPRKDs8zPdX4FefC8Nhlb1O9Ira1JrfyN9xKa2EwBZlH2bHAbNGsXe1p9BoYbFnz8_oyrZ4v_uJ_u9rKbc_H3zcCTpWgUAT3JqgCq1JI1VGToq4DCOTW1fGwsYqNaSctWBCcaW0qpxwUSI0KXdmQSmTKs3K1EQ07y24rZQULEX78bcreZieApRuTBxNpKIuScen6vH7K7VKdj0rDvz98yBcWrd_OWT9Obe9_r_t0H2411nUuNWKwANYsdOHsN6zVWCnvB7Bz1F9aidofMgK1g5ZaNr6GUh38LakNdakQn-ML2ggWfM44Tj5YEE4tm0PfUtWtj8jcMYEc2jGpJMJ-thR8yC_bOOVuABsatyaHLGkT7FlHaJFm3M8mo_NY_h6I3vzBFan9dRuALrEyUqyY5nuwIlL8ipLUyGNocawtGYAYQ-QQncF25k3ZFJclpr2oCpozcKDqhADeHM5ZtaWK7n2680eSUWnuhbFEkYDeNtjcdn979meXj_bS7i7c_BlWAx3R3vPYE1ybJAPe96E1WZ-Yp_DHX3ajBfzF16oEL7fNEZ_AzUXW3I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB5BQKgvBAqIQArzwFux6vt4jIAIRBRF4lDeLHuPyFJqR4kbqf0d_cGdWdtJWhUkxKv3snZnZmd2jg_gQ6B1EiRCWWFuK4t1dCvTxFdCCi93YhklmakzO4mm03g-T2YHWfwm2r1zSTY5DVylqazPVlKf7RLf-DWTzGCXHbk-h9E-hEc-B9Kzvf7j90FmpAHlJBuG43t8r02buX-O21fTXt-84yI1N8-4_____AyetlonjhoyeQ4PVHkM_Q7RAVsGfwHX02qrlihNWAdWGpmwmhoTSHZqU_YZKxIz58UVDSSNF5ccS25t6KxV00J9SRM1chRXDMKGsiC5ReSBLXwN8usvHvjOsa5wtFwwN5TYIPPQovUlLtaFfAm_xl9-fvpqtbgNliCGrq3cUTLy_MzTrh1kjicTpbPAVoEfSbr-hM2Q7b4v_Fzb2gttQdcn48xkYR7FWSS9V9Arq1K9BtShdnOXna9kJ4Y6TPI4imxXSvroZEoOwOmOLBVtUXPG1limu3LMZttTWjM1257aAzjdjVk1JT3-2nvYUULasvcm5bpuIUk-Lx7Ax-7k981_nu3Nv3V_D09mn8fp5Nv0-1s4cjmcxkQKD6FXry_UCTwW27rYrN8Zqr8BJXkB2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+design+of+artificial+ecosystem+optimizer+for+large-scale+optimal+reactive+power+dispatch+problem+with+application+to+Algerian+electricity+grid&rft.jtitle=Neural+computing+%26+applications&rft.au=Mouassa%2C+Souhil&rft.au=Jurado%2C+Francisco&rft.au=Bouktir%2C+Tarek&rft.au=Raja%2C+Muhammad+Asif+Zahoor&rft.date=2021-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=13&rft.spage=7467&rft.epage=7490&rft_id=info:doi/10.1007%2Fs00521-020-05496-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05496_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon