A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer’s Disease Using Machine Learning Methods

Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mobile networks and applications Ročník 26; číslo 6; s. 2341 - 2352
Hlavní autoři: Pang, Zhen, Wang, Xiang, Wang, Xulong, Qi, Jun, Zhao, Zhong, Gao, Yuan, Yang, Yun, Yang, Po
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2021
Springer Nature B.V
Témata:
ISSN:1383-469X, 1572-8153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetrated various disciplines. In particular, research in the field of AD is developing rapidly and has demonstrated strong vitality. In terms of data, Alzheimer’s Disease Neuroimaging Initiative (ADNI) researchers collect, verify and use a variety of data modalities as predictors of disease, including MRI and PET images, genetics, cognitive testing, cerebrospinal fluid and blood biomarkers, etc. Therefore, this paper uses a multi-task learning algorithm based on the ADNI data set to implement regression tasks and predict the cognitive scores of subjects in the next 3 years. This method can effectively assess the cognitive trends of patients in the future and aims to predict the progression of the disease. In addition, we used four different machine learning classification algorithms to conduct fusion research on AD multi-modal data, including MRI, PET, and cognitive scoring data. This method can determine the current patient’s cognitive stage, to achieve the effect of assisting doctors in diagnosis. Finally, we designed a multi-modal data platform technical architecture to standardize management and sharing of ADNI data and data obtained by offline medical institutions to improve the utilization and value of data. The design of the technical architecture proposed in this article is more easily scalable and compatible with other neurological diseases. Nowadays, the large amount of data being generated by AD can provide valuable solutions for the research of disease progression prediction and auxiliary diagnosis.
AbstractList Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetrated various disciplines. In particular, research in the field of AD is developing rapidly and has demonstrated strong vitality. In terms of data, Alzheimer’s Disease Neuroimaging Initiative (ADNI) researchers collect, verify and use a variety of data modalities as predictors of disease, including MRI and PET images, genetics, cognitive testing, cerebrospinal fluid and blood biomarkers, etc. Therefore, this paper uses a multi-task learning algorithm based on the ADNI data set to implement regression tasks and predict the cognitive scores of subjects in the next 3 years. This method can effectively assess the cognitive trends of patients in the future and aims to predict the progression of the disease. In addition, we used four different machine learning classification algorithms to conduct fusion research on AD multi-modal data, including MRI, PET, and cognitive scoring data. This method can determine the current patient’s cognitive stage, to achieve the effect of assisting doctors in diagnosis. Finally, we designed a multi-modal data platform technical architecture to standardize management and sharing of ADNI data and data obtained by offline medical institutions to improve the utilization and value of data. The design of the technical architecture proposed in this article is more easily scalable and compatible with other neurological diseases. Nowadays, the large amount of data being generated by AD can provide valuable solutions for the research of disease progression prediction and auxiliary diagnosis.
Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetrated various disciplines. In particular, research in the field of AD is developing rapidly and has demonstrated strong vitality. In terms of data, Alzheimer’s Disease Neuroimaging Initiative (ADNI) researchers collect, verify and use a variety of data modalities as predictors of disease, including MRI and PET images, genetics, cognitive testing, cerebrospinal fluid and blood biomarkers, etc. Therefore, this paper uses a multi-task learning algorithm based on the ADNI data set to implement regression tasks and predict the cognitive scores of subjects in the next 3 years. This method can effectively assess the cognitive trends of patients in the future and aims to predict the progression of the disease. In addition, we used four different machine learning classification algorithms to conduct fusion research on AD multi-modal data, including MRI, PET, and cognitive scoring data. This method can determine the current patient’s cognitive stage, to achieve the effect of assisting doctors in diagnosis. Finally, we designed a multi-modal data platform technical architecture to standardize management and sharing of ADNI data and data obtained by offline medical institutions to improve the utilization and value of data. The design of the technical architecture proposed in this article is more easily scalable and compatible with other neurological diseases. Nowadays, the large amount of data being generated by AD can provide valuable solutions for the research of disease progression prediction and auxiliary diagnosis.
Author Gao, Yuan
Wang, Xiang
Pang, Zhen
Yang, Yun
Zhao, Zhong
Qi, Jun
Wang, Xulong
Yang, Po
Author_xml – sequence: 1
  givenname: Zhen
  surname: Pang
  fullname: Pang, Zhen
  organization: National Pilot School of Software for Yunnan University
– sequence: 2
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
  organization: National Pilot School of Software for Yunnan University
– sequence: 3
  givenname: Xulong
  surname: Wang
  fullname: Wang, Xulong
  organization: National Pilot School of Software for Yunnan University
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-8761-8318
  surname: Qi
  fullname: Qi, Jun
  email: jun.qi@xjtlu.edu.cn
  organization: Department of Computer Science and Software Engineering, Xi’an JiaoTong-Liverpool University
– sequence: 5
  givenname: Zhong
  surname: Zhao
  fullname: Zhao, Zhong
  email: wasx-1128new@163.com
  organization: Department of Neurology, the First People’s Hospital of Yunnan Province
– sequence: 6
  givenname: Yuan
  surname: Gao
  fullname: Gao, Yuan
  organization: Department of Neurology, the First People’s Hospital of Yunnan Province
– sequence: 7
  givenname: Yun
  surname: Yang
  fullname: Yang, Yun
  email: yang@ynu.edu.cn
  organization: National Pilot School of Software for Yunnan University
– sequence: 8
  givenname: Po
  surname: Yang
  fullname: Yang, Po
  organization: Department of Computer Science Faculty of Engineering, University of Sheffield
BookMark eNp9kLtOXDEQhq0IJK4vQGUptcPYPhe7XAEJSItCESQ6y3vOeNforL2xvQVUeY28Xp4EwyJFoqCZGY3-by7_EdkLMSAhZxy-cYD-PHMOsmMgOAOuZMP4F3LI214wxVu5V2upJGs6_XBAjnJ-BIC2Vc0h2czo7XYqnq3jaCd6aYuld5MtLqY1rYFeersMMftMbRjpXcLRD8XHQKOjs-l5hX6N6d-fv7kqM9qM9D77sKS3dlj5gHSONoW3BpZVHPMJ2Xd2ynj6no_J_ferXxfXbP7zx83FbM4GyXVhC942XLTKgXS97kE7B9gJIRXqBjVX0LROi0F3w6DF2Eu76GEUvcPqgVh08ph83c3dpPh7i7mYx7hNoa40ohOqgQ76tqrUTjWkmHNCZwZf7Ot_JVk_GQ7m1V-z89fU2ebNX8MrKj6gm-TXNj19DskdlKs4LDH9v-oT6gUtnY9f
CitedBy_id crossref_primary_10_1051_epjconf_202532801059
crossref_primary_10_3390_s22124609
crossref_primary_10_3389_fphys_2025_1515881
crossref_primary_10_3389_fpsyt_2022_1016807
crossref_primary_10_1007_s11831_025_10246_3
crossref_primary_10_3390_diagnostics13050887
Cites_doi 10.1212/01.wnl.0000295996.54210.69
10.1016/j.cpet.2007.09.003
10.1109/ACCESS.2018.2888816
10.1109/JBHI.2019.2933046
10.1016/j.jbi.2018.09.002
10.1212/WNL.42.1.183
10.1007/s11042-018-6463-x
10.1212/WNL.64.12_suppl_3.S34
10.1001/archneur.56.3.303
10.26599/TST.2019.9010055
10.1016/j.jalz.2010.03.018
10.1109/TIPTEKNO50054.2020.9299255
10.1016/j.neuroimage.2010.03.051
10.1176/ajp.141.11.1356
10.1016/j.compmedimag.2017.11.001
10.1016/j.media.2019.01.007
10.1016/j.patcog.2017.07.018
10.1212/WNL.0b013e3181cb3e25
10.1001/archneur.1985.04060100083029
10.1016/j.inffus.2019.09.002
10.1109/EMES.2015.7158433
10.1109/WCSE.2012.33
10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00196
10.2139/ssrn.1031158
10.1109/ICMO49322.2019.9026007
10.1145/2939672.2939785
10.1109/AQTR.2008.4588923
10.1109/JTEHM.2017.2688458
10.1016/j.jalz.2019.01.010
10.1145/2020408.2020549
10.1109/IAEAC47372.2019.8997690
10.1145/2339530.2339672
10.1109/CITS.2018.8440193
10.1145/2339530.2339702
10.1109/EMBC44109.2020.9176458
10.1109/BigData.2018.8621924
10.1109/CIT/IUCC/DASC/PICOM.2015.342
10.1109/ITME.2015.86
10.1109/SECON.2016.7506730
10.1109/JAC-ECC51597.2020.9355925
10.21236/ADA597638
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11036-021-01834-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8153
EndPage 2352
ExternalDocumentID 10_1007_s11036_021_01834_1
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-b1541258f03f79709ff0e62238e94e918045f92c96cc92d73ab70d27fe0212b63
IEDL.DBID 7WY
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728773600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-469X
IngestDate Wed Nov 05 04:03:09 EST 2025
Tue Nov 18 22:24:57 EST 2025
Sat Nov 29 03:18:15 EST 2025
Fri Feb 21 02:47:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Multi-modal data
Technical architecture
Auxiliary diagnosis
Disease progression prediction
Multi-task learning
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b1541258f03f79709ff0e62238e94e918045f92c96cc92d73ab70d27fe0212b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8761-8318
PQID 2628406075
PQPubID 26070
PageCount 12
ParticipantIDs proquest_journals_2628406075
crossref_citationtrail_10_1007_s11036_021_01834_1
crossref_primary_10_1007_s11036_021_01834_1
springer_journals_10_1007_s11036_021_01834_1
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing
PublicationTitle Mobile networks and applications
PublicationTitleAbbrev Mobile Netw Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Desai, Grossberg (CR1) 2005; 64
Khachaturian (CR2) 1985; 42
Ito, Corrigan, Zhao (CR25) 2011; 7
Zhang, Guo, Yang, Chen, Lo (CR36) 2020; 24
CR19
CR18
Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga, Trojanowski, Weiner (CR7) 2010; 74
CR16
CR38
CR37
Coleman (CR9) 2007; 2
CR14
Thung, Wee (CR15) 2018; 77
CR13
CR35
CR12
Qi, Yang, Newcombe, Peng, Yang, Zhao (CR17) 2020; 55
Wang, Zhang, Shen, Liu (CR24) 2019; 53
CR34
CR11
Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (CR26) 2010; 51
CR33
CR32
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (CR4) 1999; 56
CR31
CR30
Rosen, Mohs, Davis (CR3) 1984; 141
Liu, Goncalves, Cao, Zhao, Banerjee (CR23) 2018; 66
Holtzman (CR10) 2011; 32
Xin, Zhang, Shao (CR39) 2020; 25
CR5
CR29
Qi, Yang, Waraich, Deng, Zhao, Yang (CR43) 2018
Cinel, Tarim, Tekin (CR41) 2020; 2020
CR27
CR21
CR20
CR42
CR40
Nan, Yang, Meng, Xie, Zhang, Muhammad (CR28) 2019; 7
Cummings, Doody, Clark (CR6) 2007; 69
Cao, Shan, Zhao, Huang, Zaiane (CR22) 2017; 72
Jack, Petersen, O’Brien, Tangalos (CR8) 1992; 42
RC Petersen (1834_CR7) 2010; 74
CR Jack (1834_CR8) 1992; 42
KH Thung (1834_CR15) 2018; 77
1834_CR29
1834_CR27
RC Petersen (1834_CR4) 1999; 56
1834_CR21
RE Coleman (1834_CR9) 2007; 2
1834_CR20
1834_CR42
DM Holtzman (1834_CR10) 2011; 32
1834_CR40
K Ito (1834_CR25) 2011; 7
WG Rosen (1834_CR3) 1984; 141
G Cinel (1834_CR41) 2020; 2020
CM Stonnington (1834_CR26) 2010; 51
P Cao (1834_CR22) 2017; 72
JL Cummings (1834_CR6) 2007; 69
X Liu (1834_CR23) 2018; 66
Y Zhang (1834_CR36) 2020; 24
R Xin (1834_CR39) 2020; 25
1834_CR19
1834_CR18
1834_CR16
1834_CR38
1834_CR37
1834_CR14
1834_CR13
1834_CR35
1834_CR12
1834_CR34
1834_CR5
1834_CR11
1834_CR33
1834_CR32
1834_CR31
1834_CR30
AK Desai (1834_CR1) 2005; 64
ZS Khachaturian (1834_CR2) 1985; 42
F Nan (1834_CR28) 2019; 7
J Qi (1834_CR43) 2018
M Wang (1834_CR24) 2019; 53
J Qi (1834_CR17) 2020; 55
References_xml – ident: CR18
– volume: 69
  start-page: 1622
  issue: 16
  year: 2007
  end-page: 1634
  ident: CR6
  article-title: Disease-modifying therapies for Alzheimer disease challenges to early intervention
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000295996.54210.69
– volume: 2
  start-page: 25
  issue: 1
  year: 2007
  end-page: 34
  ident: CR9
  article-title: Positron emission tomography diagnosis of Alzheimer’s disease
  publication-title: PET Clin
  doi: 10.1016/j.cpet.2007.09.003
– volume: 7
  start-page: 8048
  year: 2019
  end-page: 8057
  ident: CR28
  article-title: GAN-based semi-supervised learning approach for clinical decision support in health-IoT platform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888816
– volume: 24
  start-page: 465
  issue: 2
  year: 2020
  end-page: 474
  ident: CR36
  article-title: Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2933046
– year: 2018
  ident: CR43
  article-title: Examining sensor-based physical activity recognition and monitoring for healthcare using internet of things: a systematic review
  publication-title: J Biomed Informatics
  doi: 10.1016/j.jbi.2018.09.002
– volume: 42
  start-page: 183
  issue: 1
  year: 1992
  end-page: 188
  ident: CR8
  article-title: MRI-based hippocampal volumetry in the diagnosis of Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.42.1.183
– ident: CR14
– ident: CR16
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 77
  start-page: 29705
  issue: 22
  year: 2018
  end-page: 29725
  ident: CR15
  article-title: A brief review on multi-task learning
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6463-x
– ident: CR33
– volume: 64
  start-page: S34
  issue: 12 suppl 3
  year: 2005
  end-page: S39
  ident: CR1
  article-title: Diagnosis and treatment of Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.64.12_suppl_3.S34
– ident: CR35
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  end-page: 308
  ident: CR4
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch Neurol
  doi: 10.1001/archneur.56.3.303
– ident: CR29
– volume: 25
  start-page: 447
  issue: 4
  year: 2020
  end-page: 457
  ident: CR39
  article-title: Complex network classification with convolutional neural network
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2019.9010055
– ident: CR40
– ident: CR27
– ident: CR42
– ident: CR21
– ident: CR19
– volume: 32
  start-page: 1
  issue: Supplement
  year: 2011
  ident: CR10
  article-title: CSF biomarkers for Alzheimer’s disease: current utility and potential future use
  publication-title: Neurobiol Aging
– volume: 7
  start-page: 151
  issue: 2
  year: 2011
  end-page: 160
  ident: CR25
  article-title: Disease progression model for cognitive deterioration from Alzheimer’s disease neuroimaging initiative database
  publication-title: Alzheimer’s Dement
  doi: 10.1016/j.jalz.2010.03.018
– ident: CR38
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 4
  ident: CR41
  article-title: Wearable respiratory rate sensor technology for diagnosis of sleep apnea
  publication-title: Med Technol Congress (TIPTEKNO)
  doi: 10.1109/TIPTEKNO50054.2020.9299255
– volume: 51
  start-page: 1405
  issue: 4
  year: 2010
  end-page: 1413
  ident: CR26
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.051
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 141
  start-page: 1356
  issue: 11
  year: 1984
  end-page: 1364
  ident: CR3
  article-title: A new rating scale for Alzheimer’s disease
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.141.11.1356
– volume: 66
  start-page: 100
  year: 2018
  end-page: 114
  ident: CR23
  article-title: Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2017.11.001
– volume: 53
  start-page: 111
  year: 2019
  end-page: 122
  ident: CR24
  article-title: Multi-task exclusive relationship learning for alzheimer’s disease progression prediction with longitudinal data
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.01.007
– ident: CR32
– ident: CR34
– volume: 72
  start-page: 219
  year: 2017
  end-page: 235
  ident: CR22
  article-title: Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of Alzheimer’s disease
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.07.018
– ident: CR5
– volume: 74
  start-page: 201
  issue: 3
  year: 2010
  end-page: 209
  ident: CR7
  article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI) clinical characterization
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– volume: 42
  start-page: 1097
  issue: 11
  year: 1985
  end-page: 1105
  ident: CR2
  article-title: Diagnosis of Alzheimer’s disease
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1985.04060100083029
– volume: 55
  start-page: 269
  year: 2020
  end-page: 280
  ident: CR17
  article-title: An overview of data fusion techniques for internet of things enabled physical activity recognition and measure
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.09.002
– ident: CR20
– ident: 1834_CR29
  doi: 10.1109/EMES.2015.7158433
– volume: 77
  start-page: 29705
  issue: 22
  year: 2018
  ident: 1834_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6463-x
– ident: 1834_CR31
  doi: 10.1109/WCSE.2012.33
– volume: 69
  start-page: 1622
  issue: 16
  year: 2007
  ident: 1834_CR6
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000295996.54210.69
– ident: 1834_CR14
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00196
– volume: 72
  start-page: 219
  year: 2017
  ident: 1834_CR22
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.07.018
– ident: 1834_CR20
  doi: 10.2139/ssrn.1031158
– volume: 2
  start-page: 25
  issue: 1
  year: 2007
  ident: 1834_CR9
  publication-title: PET Clin
  doi: 10.1016/j.cpet.2007.09.003
– volume: 51
  start-page: 1405
  issue: 4
  year: 2010
  ident: 1834_CR26
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.051
– volume: 25
  start-page: 447
  issue: 4
  year: 2020
  ident: 1834_CR39
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2019.9010055
– ident: 1834_CR33
  doi: 10.1109/ICMO49322.2019.9026007
– ident: 1834_CR27
  doi: 10.1145/2939672.2939785
– ident: 1834_CR11
  doi: 10.1109/AQTR.2008.4588923
– ident: 1834_CR38
  doi: 10.1109/JTEHM.2017.2688458
– ident: 1834_CR5
  doi: 10.1016/j.jalz.2019.01.010
– volume: 24
  start-page: 465
  issue: 2
  year: 2020
  ident: 1834_CR36
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2933046
– volume: 141
  start-page: 1356
  issue: 11
  year: 1984
  ident: 1834_CR3
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.141.11.1356
– ident: 1834_CR16
  doi: 10.1145/2020408.2020549
– ident: 1834_CR34
  doi: 10.1109/IAEAC47372.2019.8997690
– volume: 7
  start-page: 8048
  year: 2019
  ident: 1834_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888816
– ident: 1834_CR18
  doi: 10.1145/2339530.2339672
– ident: 1834_CR32
  doi: 10.1109/CITS.2018.8440193
– volume: 55
  start-page: 269
  year: 2020
  ident: 1834_CR17
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.09.002
– ident: 1834_CR21
  doi: 10.1145/2339530.2339702
– volume: 42
  start-page: 1097
  issue: 11
  year: 1985
  ident: 1834_CR2
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1985.04060100083029
– year: 2018
  ident: 1834_CR43
  publication-title: J Biomed Informatics
  doi: 10.1016/j.jbi.2018.09.002
– ident: 1834_CR37
  doi: 10.1109/EMBC44109.2020.9176458
– volume: 64
  start-page: S34
  issue: 12 suppl 3
  year: 2005
  ident: 1834_CR1
  publication-title: Neurology
  doi: 10.1212/WNL.64.12_suppl_3.S34
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  ident: 1834_CR4
  publication-title: Arch Neurol
  doi: 10.1001/archneur.56.3.303
– volume: 53
  start-page: 111
  year: 2019
  ident: 1834_CR24
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.01.007
– ident: 1834_CR35
  doi: 10.1109/BigData.2018.8621924
– volume: 32
  start-page: 1
  issue: Supplement
  year: 2011
  ident: 1834_CR10
  publication-title: Neurobiol Aging
– ident: 1834_CR40
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.342
– volume: 42
  start-page: 183
  issue: 1
  year: 1992
  ident: 1834_CR8
  publication-title: Neurology
  doi: 10.1212/WNL.42.1.183
– volume: 2020
  start-page: 1
  year: 2020
  ident: 1834_CR41
  publication-title: Med Technol Congress (TIPTEKNO)
  doi: 10.1109/TIPTEKNO50054.2020.9299255
– ident: 1834_CR12
  doi: 10.1109/ITME.2015.86
– volume: 66
  start-page: 100
  year: 2018
  ident: 1834_CR23
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2017.11.001
– ident: 1834_CR13
  doi: 10.1109/SECON.2016.7506730
– volume: 7
  start-page: 151
  issue: 2
  year: 2011
  ident: 1834_CR25
  publication-title: Alzheimer’s Dement
  doi: 10.1016/j.jalz.2010.03.018
– volume: 74
  start-page: 201
  issue: 3
  year: 2010
  ident: 1834_CR7
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– ident: 1834_CR19
  doi: 10.2139/ssrn.1031158
– ident: 1834_CR42
  doi: 10.1109/JAC-ECC51597.2020.9355925
– ident: 1834_CR30
  doi: 10.21236/ADA597638
SSID ssj0005584
Score 2.3601835
Snippet Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2341
SubjectTerms Algorithms
Alzheimer's disease
Biomarkers
Cerebrospinal fluid
Cognitive tasks
Communications Engineering
Computer Communication Networks
Data mining
Diagnosis
Disease
Electrical Engineering
Engineering
Health care facilities
IT in Business
Machine learning
Magnetic resonance imaging
Medical imaging
Modal data
Networks
Neurological diseases
Physicians
Positron emission
Tomography
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQMMDAG1Fe8sAGlpykdeyxAioWqko81C3yU1QqbdUEBib-Bn-PX8LZTQggQIIlQ3K2It_Z_k539x1CR8pIJSmzxCrJSFNTTZTRMWGUO-1bSceRDM0m0m6X9_uiVxaF5VW2exWSDCd1XewWefJcn1JAwQ6bBHyehZZnm_E--tVtndjR4rNWtjwh4Pz1y1KZ7-f4fB3VGPNLWDTcNp3V__3nGlop0SVuz8xhHc3Z0QZa_sA5uIkmbRyKbsn92IDomSwk7g1l4cErhgc-myXfDXIsRwb3pj6S47WHxw63h093dnBvp6_PLzlIhuAODmkH-DKkZVpcMrbCi9CcOt9CN53z69MLUrZdIBr2Y0EUoCqAPdzRxKUipcI5ahnACG5F04qIAwp0ItaCaS1ikyZSpdTEqbNetYol22h-NB7ZHYStcoybxIDLy5rWWNHSvCWli4VKFBwVDRRVq5_pkpPct8YYZjWbsl_NDGbOwmpmUQMdv4-ZzBg5fpXer5Salbszz2IGlzJlgJYa6KRSYv3559l2_ya-h5Zibwch-2UfzRfTB3uAFvVjMcinh8Fq3wAn_OYL
  priority: 102
  providerName: Springer Nature
Title A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer’s Disease Using Machine Learning Methods
URI https://link.springer.com/article/10.1007/s11036-021-01834-1
https://www.proquest.com/docview/2628406075
Volume 26
WOSCitedRecordID wos000728773600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1572-8153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005584
  issn: 1383-469X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48F5RWFY-cAMLJ2kc-4TKPoSEtoqWV-ES-SkqddvSBA6c-Bv8PX4JY8clgMReuIyUxLGifOPx2DOeD-CRtkorxh11WnE6NsxQbU1OORPeBCrpPFORbKKaTsVsJuu04damtMqtTYyG2q5M2CN_mnM0pIzjDPds_YkG1qgQXU0UGpdhFyfqMjAYVO_eDykepehJbUVBcRk4S4dm-qNzWSjFGxIUGGr1mGZ_TkyDt_lXgDTOOyc3_veLb8L15HGSSa8it-CSW96Ga7_VIbwD6wmJB3Hp-cpi0yPVKVIvVBccWoKCHPUJefOWqKUl9SZEdwKiZOXJZPH1o5ufu82Pb99bbBkDPiSmIpDTmKrpSKriijciYXV7F96cHL8-fEETFQM1OEY7qtHTwj8sPCt8JSsmvWeOo2shnBw7mQn0DL3MjeTGyNxWhdIVs3nlXYBb82IPdparpbsHxGnPhS0sLoP52FknSyNKpXwudaHRfIwg2-LQmFSnPNBlLJqhwnLArsGem4hdk43g8a931n2Vjgtb728Ba9KIbZsBrRE82UI-PP53b_cv7u0BXM2DlsUMmH3Y6Taf3UO4Yr5083ZzEPX1AHafH0_rM7x6WVGUp-wQZV1-QHn26u1PeCX1wA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VggQc-EcNFNgDnGBVe-2sdw8IRYSqVdoohyLlZvZXREqTNDYgOPEavAQPxZMwu7YJINFbD1x8sNcj2_vNz3pn5gN4qq3SKuGOOq04zU1iqLaGUZ4IbwKVNEtVJJsoxmMxncrJFnzvamFCWmVnE6OhtksT_pHvMY6GNOHo4V6tzmhgjQq7qx2FRgOLkfv8CZds1cvDIc7vM8b235y8PqAtqwA1CLeaagwa0KsLn2S-kEUivU8cRy8pnMydTAUGOV4yI7kxktkiU7pILCu8C0-ueYZyL8HlPBM8aNSooJuUkr5oSHRFRnHZOW2LdJpSvTS0_g0JEQlqUU7TPx3hJrr9a0M2-rn9m__bF7oFN9qImgwaFbgNW25xB67_1mfxLqwGJBYa09OlxaFDVSsymas6BOwED2TYJBzOKqIWlkzWYfcqIJYsPRnMv7x3s1O3_vH1W4Uj44YWiakW5DimojrSdqnFE5GQu7oHby_kle_D9mK5cDtAnPZc2MziMp_nzjrZN6KvlGdSZxrNYw_Sbt5L0_ZhD3Qg83LTQTpgpUTJZcRKmfbg-a97Vk0XknNH73YAKVuLVJUbdPTgRQexzeV_S3twvrQncPXg5PioPDocjx7CNRYQHrN9dmG7Xn9wj-CK-VjPqvXjqCsE3l009H4CQsBJ_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCE48I8IFNgDnGDV9TqxvYcKBdKIqhBZCKTczP6KSGkSYgOip75GX4XH4UmYXdsYkOitBy4-2OuVbH87M-v5Zj6Ax8pIJVliqVUyoQPNNFVGc5qwzGkvJc0jGcQm0uk0m81EvgXf21oYT6tsbWIw1Gal_T_yXZ6gIWUJerhd19Ai8vHk-foT9QpSPtPaymnUEDm0377i9q3cOxjjt37C-WT_3ctXtFEYoBqhV1GFAQR6-Myx2KUiZcI5ZhP0mJkVAyuiDAMeJ7gWidaCmzSWKmWGp876p1BJjPNegO00xk1PD7Zf7E_ztx3BZJjVkrpZTHETOmtKdurCvcg3Avb0CIZrakCjP91iF-v-lZ4NXm9y7X9-X9fhahNrk1G9OG7All3ehCu_dWC8BesRCSXI9GhlcOhYVpLkC1n5UJ7ggYxrKuK8JHJpSL7xeS2PZbJyZLQ4_mjnR3bz4-S0xJEh1UUCCYO8CSRVS5r-tXgiSHWXt-H9uTzyHegtV0t7F4hVLslMbCIMmQfWWDHU2VBKx4WKFRrOPkQtBgrddGj3QiGLoust7XFT4MxFwE0R9eHpr3vWdX-SM0fvtGApGltVFh1S-vCshVt3-d-z3Tt7tkdwCRFXvD6YHt6Hy9yDPdCAdqBXbT7bB3BRf6nm5eZhs3AIfDhv7P0EN2xUTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-modal+Data+Platform+for+Diagnosis+and+Prediction+of+Alzheimer%E2%80%99s+Disease+Using+Machine+Learning+Methods&rft.jtitle=Mobile+networks+and+applications&rft.au=Pang+Zhen&rft.au=Wang%2C+Xiang&rft.au=Wang+Xulong&rft.au=Qi%2C+Jun&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=26&rft.issue=6&rft.spage=2341&rft.epage=2352&rft_id=info:doi/10.1007%2Fs11036-021-01834-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon