A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer’s Disease Using Machine Learning Methods
Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetr...
Uloženo v:
| Vydáno v: | Mobile networks and applications Ročník 26; číslo 6; s. 2341 - 2352 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1383-469X, 1572-8153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetrated various disciplines. In particular, research in the field of AD is developing rapidly and has demonstrated strong vitality. In terms of data, Alzheimer’s Disease Neuroimaging Initiative (ADNI) researchers collect, verify and use a variety of data modalities as predictors of disease, including MRI and PET images, genetics, cognitive testing, cerebrospinal fluid and blood biomarkers, etc. Therefore, this paper uses a multi-task learning algorithm based on the ADNI data set to implement regression tasks and predict the cognitive scores of subjects in the next 3 years. This method can effectively assess the cognitive trends of patients in the future and aims to predict the progression of the disease. In addition, we used four different machine learning classification algorithms to conduct fusion research on AD multi-modal data, including MRI, PET, and cognitive scoring data. This method can determine the current patient’s cognitive stage, to achieve the effect of assisting doctors in diagnosis. Finally, we designed a multi-modal data platform technical architecture to standardize management and sharing of ADNI data and data obtained by offline medical institutions to improve the utilization and value of data. The design of the technical architecture proposed in this article is more easily scalable and compatible with other neurological diseases. Nowadays, the large amount of data being generated by AD can provide valuable solutions for the research of disease progression prediction and auxiliary diagnosis. |
|---|---|
| AbstractList | Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetrated various disciplines. In particular, research in the field of AD is developing rapidly and has demonstrated strong vitality. In terms of data, Alzheimer’s Disease Neuroimaging Initiative (ADNI) researchers collect, verify and use a variety of data modalities as predictors of disease, including MRI and PET images, genetics, cognitive testing, cerebrospinal fluid and blood biomarkers, etc. Therefore, this paper uses a multi-task learning algorithm based on the ADNI data set to implement regression tasks and predict the cognitive scores of subjects in the next 3 years. This method can effectively assess the cognitive trends of patients in the future and aims to predict the progression of the disease. In addition, we used four different machine learning classification algorithms to conduct fusion research on AD multi-modal data, including MRI, PET, and cognitive scoring data. This method can determine the current patient’s cognitive stage, to achieve the effect of assisting doctors in diagnosis. Finally, we designed a multi-modal data platform technical architecture to standardize management and sharing of ADNI data and data obtained by offline medical institutions to improve the utilization and value of data. The design of the technical architecture proposed in this article is more easily scalable and compatible with other neurological diseases. Nowadays, the large amount of data being generated by AD can provide valuable solutions for the research of disease progression prediction and auxiliary diagnosis. Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is also the most common disease of Alzheimer’s disease. With the rapid rise of data mining, machine learning and other fields, they have penetrated various disciplines. In particular, research in the field of AD is developing rapidly and has demonstrated strong vitality. In terms of data, Alzheimer’s Disease Neuroimaging Initiative (ADNI) researchers collect, verify and use a variety of data modalities as predictors of disease, including MRI and PET images, genetics, cognitive testing, cerebrospinal fluid and blood biomarkers, etc. Therefore, this paper uses a multi-task learning algorithm based on the ADNI data set to implement regression tasks and predict the cognitive scores of subjects in the next 3 years. This method can effectively assess the cognitive trends of patients in the future and aims to predict the progression of the disease. In addition, we used four different machine learning classification algorithms to conduct fusion research on AD multi-modal data, including MRI, PET, and cognitive scoring data. This method can determine the current patient’s cognitive stage, to achieve the effect of assisting doctors in diagnosis. Finally, we designed a multi-modal data platform technical architecture to standardize management and sharing of ADNI data and data obtained by offline medical institutions to improve the utilization and value of data. The design of the technical architecture proposed in this article is more easily scalable and compatible with other neurological diseases. Nowadays, the large amount of data being generated by AD can provide valuable solutions for the research of disease progression prediction and auxiliary diagnosis. |
| Author | Gao, Yuan Wang, Xiang Pang, Zhen Yang, Yun Zhao, Zhong Qi, Jun Wang, Xulong Yang, Po |
| Author_xml | – sequence: 1 givenname: Zhen surname: Pang fullname: Pang, Zhen organization: National Pilot School of Software for Yunnan University – sequence: 2 givenname: Xiang surname: Wang fullname: Wang, Xiang organization: National Pilot School of Software for Yunnan University – sequence: 3 givenname: Xulong surname: Wang fullname: Wang, Xulong organization: National Pilot School of Software for Yunnan University – sequence: 4 givenname: Jun orcidid: 0000-0002-8761-8318 surname: Qi fullname: Qi, Jun email: jun.qi@xjtlu.edu.cn organization: Department of Computer Science and Software Engineering, Xi’an JiaoTong-Liverpool University – sequence: 5 givenname: Zhong surname: Zhao fullname: Zhao, Zhong email: wasx-1128new@163.com organization: Department of Neurology, the First People’s Hospital of Yunnan Province – sequence: 6 givenname: Yuan surname: Gao fullname: Gao, Yuan organization: Department of Neurology, the First People’s Hospital of Yunnan Province – sequence: 7 givenname: Yun surname: Yang fullname: Yang, Yun email: yang@ynu.edu.cn organization: National Pilot School of Software for Yunnan University – sequence: 8 givenname: Po surname: Yang fullname: Yang, Po organization: Department of Computer Science Faculty of Engineering, University of Sheffield |
| BookMark | eNp9kLtOXDEQhq0IJK4vQGUptcPYPhe7XAEJSItCESQ6y3vOeNforL2xvQVUeY28Xp4EwyJFoqCZGY3-by7_EdkLMSAhZxy-cYD-PHMOsmMgOAOuZMP4F3LI214wxVu5V2upJGs6_XBAjnJ-BIC2Vc0h2czo7XYqnq3jaCd6aYuld5MtLqY1rYFeersMMftMbRjpXcLRD8XHQKOjs-l5hX6N6d-fv7kqM9qM9D77sKS3dlj5gHSONoW3BpZVHPMJ2Xd2ynj6no_J_ferXxfXbP7zx83FbM4GyXVhC942XLTKgXS97kE7B9gJIRXqBjVX0LROi0F3w6DF2Eu76GEUvcPqgVh08ph83c3dpPh7i7mYx7hNoa40ohOqgQ76tqrUTjWkmHNCZwZf7Ot_JVk_GQ7m1V-z89fU2ebNX8MrKj6gm-TXNj19DskdlKs4LDH9v-oT6gUtnY9f |
| CitedBy_id | crossref_primary_10_1051_epjconf_202532801059 crossref_primary_10_3390_s22124609 crossref_primary_10_3389_fphys_2025_1515881 crossref_primary_10_3389_fpsyt_2022_1016807 crossref_primary_10_1007_s11831_025_10246_3 crossref_primary_10_3390_diagnostics13050887 |
| Cites_doi | 10.1212/01.wnl.0000295996.54210.69 10.1016/j.cpet.2007.09.003 10.1109/ACCESS.2018.2888816 10.1109/JBHI.2019.2933046 10.1016/j.jbi.2018.09.002 10.1212/WNL.42.1.183 10.1007/s11042-018-6463-x 10.1212/WNL.64.12_suppl_3.S34 10.1001/archneur.56.3.303 10.26599/TST.2019.9010055 10.1016/j.jalz.2010.03.018 10.1109/TIPTEKNO50054.2020.9299255 10.1016/j.neuroimage.2010.03.051 10.1176/ajp.141.11.1356 10.1016/j.compmedimag.2017.11.001 10.1016/j.media.2019.01.007 10.1016/j.patcog.2017.07.018 10.1212/WNL.0b013e3181cb3e25 10.1001/archneur.1985.04060100083029 10.1016/j.inffus.2019.09.002 10.1109/EMES.2015.7158433 10.1109/WCSE.2012.33 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00196 10.2139/ssrn.1031158 10.1109/ICMO49322.2019.9026007 10.1145/2939672.2939785 10.1109/AQTR.2008.4588923 10.1109/JTEHM.2017.2688458 10.1016/j.jalz.2019.01.010 10.1145/2020408.2020549 10.1109/IAEAC47372.2019.8997690 10.1145/2339530.2339672 10.1109/CITS.2018.8440193 10.1145/2339530.2339702 10.1109/EMBC44109.2020.9176458 10.1109/BigData.2018.8621924 10.1109/CIT/IUCC/DASC/PICOM.2015.342 10.1109/ITME.2015.86 10.1109/SECON.2016.7506730 10.1109/JAC-ECC51597.2020.9355925 10.21236/ADA597638 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11036-021-01834-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8153 |
| EndPage | 2352 |
| ExternalDocumentID | 10_1007_s11036_021_01834_1 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 85S 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-b1541258f03f79709ff0e62238e94e918045f92c96cc92d73ab70d27fe0212b63 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728773600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-469X |
| IngestDate | Wed Nov 05 04:03:09 EST 2025 Tue Nov 18 22:24:57 EST 2025 Sat Nov 29 03:18:15 EST 2025 Fri Feb 21 02:47:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Multi-modal data Technical architecture Auxiliary diagnosis Disease progression prediction Multi-task learning Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b1541258f03f79709ff0e62238e94e918045f92c96cc92d73ab70d27fe0212b63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8761-8318 |
| PQID | 2628406075 |
| PQPubID | 26070 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2628406075 crossref_citationtrail_10_1007_s11036_021_01834_1 crossref_primary_10_1007_s11036_021_01834_1 springer_journals_10_1007_s11036_021_01834_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20211200 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing |
| PublicationTitle | Mobile networks and applications |
| PublicationTitleAbbrev | Mobile Netw Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Desai, Grossberg (CR1) 2005; 64 Khachaturian (CR2) 1985; 42 Ito, Corrigan, Zhao (CR25) 2011; 7 Zhang, Guo, Yang, Chen, Lo (CR36) 2020; 24 CR19 CR18 Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga, Trojanowski, Weiner (CR7) 2010; 74 CR16 CR38 CR37 Coleman (CR9) 2007; 2 CR14 Thung, Wee (CR15) 2018; 77 CR13 CR35 CR12 Qi, Yang, Newcombe, Peng, Yang, Zhao (CR17) 2020; 55 Wang, Zhang, Shen, Liu (CR24) 2019; 53 CR34 CR11 Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (CR26) 2010; 51 CR33 CR32 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (CR4) 1999; 56 CR31 CR30 Rosen, Mohs, Davis (CR3) 1984; 141 Liu, Goncalves, Cao, Zhao, Banerjee (CR23) 2018; 66 Holtzman (CR10) 2011; 32 Xin, Zhang, Shao (CR39) 2020; 25 CR5 CR29 Qi, Yang, Waraich, Deng, Zhao, Yang (CR43) 2018 Cinel, Tarim, Tekin (CR41) 2020; 2020 CR27 CR21 CR20 CR42 CR40 Nan, Yang, Meng, Xie, Zhang, Muhammad (CR28) 2019; 7 Cummings, Doody, Clark (CR6) 2007; 69 Cao, Shan, Zhao, Huang, Zaiane (CR22) 2017; 72 Jack, Petersen, O’Brien, Tangalos (CR8) 1992; 42 RC Petersen (1834_CR7) 2010; 74 CR Jack (1834_CR8) 1992; 42 KH Thung (1834_CR15) 2018; 77 1834_CR29 1834_CR27 RC Petersen (1834_CR4) 1999; 56 1834_CR21 RE Coleman (1834_CR9) 2007; 2 1834_CR20 1834_CR42 DM Holtzman (1834_CR10) 2011; 32 1834_CR40 K Ito (1834_CR25) 2011; 7 WG Rosen (1834_CR3) 1984; 141 G Cinel (1834_CR41) 2020; 2020 CM Stonnington (1834_CR26) 2010; 51 P Cao (1834_CR22) 2017; 72 JL Cummings (1834_CR6) 2007; 69 X Liu (1834_CR23) 2018; 66 Y Zhang (1834_CR36) 2020; 24 R Xin (1834_CR39) 2020; 25 1834_CR19 1834_CR18 1834_CR16 1834_CR38 1834_CR37 1834_CR14 1834_CR13 1834_CR35 1834_CR12 1834_CR34 1834_CR5 1834_CR11 1834_CR33 1834_CR32 1834_CR31 1834_CR30 AK Desai (1834_CR1) 2005; 64 ZS Khachaturian (1834_CR2) 1985; 42 F Nan (1834_CR28) 2019; 7 J Qi (1834_CR43) 2018 M Wang (1834_CR24) 2019; 53 J Qi (1834_CR17) 2020; 55 |
| References_xml | – ident: CR18 – volume: 69 start-page: 1622 issue: 16 year: 2007 end-page: 1634 ident: CR6 article-title: Disease-modifying therapies for Alzheimer disease challenges to early intervention publication-title: Neurology doi: 10.1212/01.wnl.0000295996.54210.69 – volume: 2 start-page: 25 issue: 1 year: 2007 end-page: 34 ident: CR9 article-title: Positron emission tomography diagnosis of Alzheimer’s disease publication-title: PET Clin doi: 10.1016/j.cpet.2007.09.003 – volume: 7 start-page: 8048 year: 2019 end-page: 8057 ident: CR28 article-title: GAN-based semi-supervised learning approach for clinical decision support in health-IoT platform publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888816 – volume: 24 start-page: 465 issue: 2 year: 2020 end-page: 474 ident: CR36 article-title: Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2933046 – year: 2018 ident: CR43 article-title: Examining sensor-based physical activity recognition and monitoring for healthcare using internet of things: a systematic review publication-title: J Biomed Informatics doi: 10.1016/j.jbi.2018.09.002 – volume: 42 start-page: 183 issue: 1 year: 1992 end-page: 188 ident: CR8 article-title: MRI-based hippocampal volumetry in the diagnosis of Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.42.1.183 – ident: CR14 – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – volume: 77 start-page: 29705 issue: 22 year: 2018 end-page: 29725 ident: CR15 article-title: A brief review on multi-task learning publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6463-x – ident: CR33 – volume: 64 start-page: S34 issue: 12 suppl 3 year: 2005 end-page: S39 ident: CR1 article-title: Diagnosis and treatment of Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.64.12_suppl_3.S34 – ident: CR35 – volume: 56 start-page: 303 issue: 3 year: 1999 end-page: 308 ident: CR4 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch Neurol doi: 10.1001/archneur.56.3.303 – ident: CR29 – volume: 25 start-page: 447 issue: 4 year: 2020 end-page: 457 ident: CR39 article-title: Complex network classification with convolutional neural network publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2019.9010055 – ident: CR40 – ident: CR27 – ident: CR42 – ident: CR21 – ident: CR19 – volume: 32 start-page: 1 issue: Supplement year: 2011 ident: CR10 article-title: CSF biomarkers for Alzheimer’s disease: current utility and potential future use publication-title: Neurobiol Aging – volume: 7 start-page: 151 issue: 2 year: 2011 end-page: 160 ident: CR25 article-title: Disease progression model for cognitive deterioration from Alzheimer’s disease neuroimaging initiative database publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2010.03.018 – ident: CR38 – volume: 2020 start-page: 1 year: 2020 end-page: 4 ident: CR41 article-title: Wearable respiratory rate sensor technology for diagnosis of sleep apnea publication-title: Med Technol Congress (TIPTEKNO) doi: 10.1109/TIPTEKNO50054.2020.9299255 – volume: 51 start-page: 1405 issue: 4 year: 2010 end-page: 1413 ident: CR26 article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.051 – ident: CR31 – ident: CR13 – ident: CR11 – volume: 141 start-page: 1356 issue: 11 year: 1984 end-page: 1364 ident: CR3 article-title: A new rating scale for Alzheimer’s disease publication-title: Am J Psychiatry doi: 10.1176/ajp.141.11.1356 – volume: 66 start-page: 100 year: 2018 end-page: 114 ident: CR23 article-title: Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2017.11.001 – volume: 53 start-page: 111 year: 2019 end-page: 122 ident: CR24 article-title: Multi-task exclusive relationship learning for alzheimer’s disease progression prediction with longitudinal data publication-title: Med Image Anal doi: 10.1016/j.media.2019.01.007 – ident: CR32 – ident: CR34 – volume: 72 start-page: 219 year: 2017 end-page: 235 ident: CR22 article-title: Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of Alzheimer’s disease publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.07.018 – ident: CR5 – volume: 74 start-page: 201 issue: 3 year: 2010 end-page: 209 ident: CR7 article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI) clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 42 start-page: 1097 issue: 11 year: 1985 end-page: 1105 ident: CR2 article-title: Diagnosis of Alzheimer’s disease publication-title: Arch Neurol doi: 10.1001/archneur.1985.04060100083029 – volume: 55 start-page: 269 year: 2020 end-page: 280 ident: CR17 article-title: An overview of data fusion techniques for internet of things enabled physical activity recognition and measure publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.09.002 – ident: CR20 – ident: 1834_CR29 doi: 10.1109/EMES.2015.7158433 – volume: 77 start-page: 29705 issue: 22 year: 2018 ident: 1834_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6463-x – ident: 1834_CR31 doi: 10.1109/WCSE.2012.33 – volume: 69 start-page: 1622 issue: 16 year: 2007 ident: 1834_CR6 publication-title: Neurology doi: 10.1212/01.wnl.0000295996.54210.69 – ident: 1834_CR14 doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00196 – volume: 72 start-page: 219 year: 2017 ident: 1834_CR22 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.07.018 – ident: 1834_CR20 doi: 10.2139/ssrn.1031158 – volume: 2 start-page: 25 issue: 1 year: 2007 ident: 1834_CR9 publication-title: PET Clin doi: 10.1016/j.cpet.2007.09.003 – volume: 51 start-page: 1405 issue: 4 year: 2010 ident: 1834_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.051 – volume: 25 start-page: 447 issue: 4 year: 2020 ident: 1834_CR39 publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2019.9010055 – ident: 1834_CR33 doi: 10.1109/ICMO49322.2019.9026007 – ident: 1834_CR27 doi: 10.1145/2939672.2939785 – ident: 1834_CR11 doi: 10.1109/AQTR.2008.4588923 – ident: 1834_CR38 doi: 10.1109/JTEHM.2017.2688458 – ident: 1834_CR5 doi: 10.1016/j.jalz.2019.01.010 – volume: 24 start-page: 465 issue: 2 year: 2020 ident: 1834_CR36 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2933046 – volume: 141 start-page: 1356 issue: 11 year: 1984 ident: 1834_CR3 publication-title: Am J Psychiatry doi: 10.1176/ajp.141.11.1356 – ident: 1834_CR16 doi: 10.1145/2020408.2020549 – ident: 1834_CR34 doi: 10.1109/IAEAC47372.2019.8997690 – volume: 7 start-page: 8048 year: 2019 ident: 1834_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888816 – ident: 1834_CR18 doi: 10.1145/2339530.2339672 – ident: 1834_CR32 doi: 10.1109/CITS.2018.8440193 – volume: 55 start-page: 269 year: 2020 ident: 1834_CR17 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.09.002 – ident: 1834_CR21 doi: 10.1145/2339530.2339702 – volume: 42 start-page: 1097 issue: 11 year: 1985 ident: 1834_CR2 publication-title: Arch Neurol doi: 10.1001/archneur.1985.04060100083029 – year: 2018 ident: 1834_CR43 publication-title: J Biomed Informatics doi: 10.1016/j.jbi.2018.09.002 – ident: 1834_CR37 doi: 10.1109/EMBC44109.2020.9176458 – volume: 64 start-page: S34 issue: 12 suppl 3 year: 2005 ident: 1834_CR1 publication-title: Neurology doi: 10.1212/WNL.64.12_suppl_3.S34 – volume: 56 start-page: 303 issue: 3 year: 1999 ident: 1834_CR4 publication-title: Arch Neurol doi: 10.1001/archneur.56.3.303 – volume: 53 start-page: 111 year: 2019 ident: 1834_CR24 publication-title: Med Image Anal doi: 10.1016/j.media.2019.01.007 – ident: 1834_CR35 doi: 10.1109/BigData.2018.8621924 – volume: 32 start-page: 1 issue: Supplement year: 2011 ident: 1834_CR10 publication-title: Neurobiol Aging – ident: 1834_CR40 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.342 – volume: 42 start-page: 183 issue: 1 year: 1992 ident: 1834_CR8 publication-title: Neurology doi: 10.1212/WNL.42.1.183 – volume: 2020 start-page: 1 year: 2020 ident: 1834_CR41 publication-title: Med Technol Congress (TIPTEKNO) doi: 10.1109/TIPTEKNO50054.2020.9299255 – ident: 1834_CR12 doi: 10.1109/ITME.2015.86 – volume: 66 start-page: 100 year: 2018 ident: 1834_CR23 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2017.11.001 – ident: 1834_CR13 doi: 10.1109/SECON.2016.7506730 – volume: 7 start-page: 151 issue: 2 year: 2011 ident: 1834_CR25 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2010.03.018 – volume: 74 start-page: 201 issue: 3 year: 2010 ident: 1834_CR7 publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – ident: 1834_CR19 doi: 10.2139/ssrn.1031158 – ident: 1834_CR42 doi: 10.1109/JAC-ECC51597.2020.9355925 – ident: 1834_CR30 doi: 10.21236/ADA597638 |
| SSID | ssj0005584 |
| Score | 2.3601835 |
| Snippet | Alzheimer’s an irreversible neurodegenerative disease with the most far-reaching impact, the most extensive, and the most difficult to cure in the world. It is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2341 |
| SubjectTerms | Algorithms Alzheimer's disease Biomarkers Cerebrospinal fluid Cognitive tasks Communications Engineering Computer Communication Networks Data mining Diagnosis Disease Electrical Engineering Engineering Health care facilities IT in Business Machine learning Magnetic resonance imaging Medical imaging Modal data Networks Neurological diseases Physicians Positron emission Tomography |
| SummonAdditionalLinks | – databaseName: SpringerLINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQMMDAG1Fe8sAGlpykdeyxAioWqko81C3yU1QqbdUEBib-Bn-PX8LZTQggQIIlQ3K2It_Z_k539x1CR8pIJSmzxCrJSFNTTZTRMWGUO-1bSceRDM0m0m6X9_uiVxaF5VW2exWSDCd1XewWefJcn1JAwQ6bBHyehZZnm_E--tVtndjR4rNWtjwh4Pz1y1KZ7-f4fB3VGPNLWDTcNp3V__3nGlop0SVuz8xhHc3Z0QZa_sA5uIkmbRyKbsn92IDomSwk7g1l4cErhgc-myXfDXIsRwb3pj6S47WHxw63h093dnBvp6_PLzlIhuAODmkH-DKkZVpcMrbCi9CcOt9CN53z69MLUrZdIBr2Y0EUoCqAPdzRxKUipcI5ahnACG5F04qIAwp0ItaCaS1ikyZSpdTEqbNetYol22h-NB7ZHYStcoybxIDLy5rWWNHSvCWli4VKFBwVDRRVq5_pkpPct8YYZjWbsl_NDGbOwmpmUQMdv4-ZzBg5fpXer5Salbszz2IGlzJlgJYa6KRSYv3559l2_ya-h5Zibwch-2UfzRfTB3uAFvVjMcinh8Fq3wAn_OYL priority: 102 providerName: Springer Nature |
| Title | A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer’s Disease Using Machine Learning Methods |
| URI | https://link.springer.com/article/10.1007/s11036-021-01834-1 https://www.proquest.com/docview/2628406075 |
| Volume | 26 |
| WOSCitedRecordID | wos000728773600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1572-8153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48F5RWFY-cAMLJ2kc-4TKPoSEtoqWV-ES-SkqddvSBA6c-Bv8PX4JY8clgMReuIyUxLGifOPx2DOeD-CRtkorxh11WnE6NsxQbU1OORPeBCrpPFORbKKaTsVsJuu04damtMqtTYyG2q5M2CN_mnM0pIzjDPds_YkG1qgQXU0UGpdhFyfqMjAYVO_eDykepehJbUVBcRk4S4dm-qNzWSjFGxIUGGr1mGZ_TkyDt_lXgDTOOyc3_veLb8L15HGSSa8it-CSW96Ga7_VIbwD6wmJB3Hp-cpi0yPVKVIvVBccWoKCHPUJefOWqKUl9SZEdwKiZOXJZPH1o5ufu82Pb99bbBkDPiSmIpDTmKrpSKriijciYXV7F96cHL8-fEETFQM1OEY7qtHTwj8sPCt8JSsmvWeOo2shnBw7mQn0DL3MjeTGyNxWhdIVs3nlXYBb82IPdparpbsHxGnPhS0sLoP52FknSyNKpXwudaHRfIwg2-LQmFSnPNBlLJqhwnLArsGem4hdk43g8a931n2Vjgtb728Ba9KIbZsBrRE82UI-PP53b_cv7u0BXM2DlsUMmH3Y6Taf3UO4Yr5083ZzEPX1AHafH0_rM7x6WVGUp-wQZV1-QHn26u1PeCX1wA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VggQc-EcNFNgDnGBVe-2sdw8IRYSqVdoohyLlZvZXREqTNDYgOPEavAQPxZMwu7YJINFbD1x8sNcj2_vNz3pn5gN4qq3SKuGOOq04zU1iqLaGUZ4IbwKVNEtVJJsoxmMxncrJFnzvamFCWmVnE6OhtksT_pHvMY6GNOHo4V6tzmhgjQq7qx2FRgOLkfv8CZds1cvDIc7vM8b235y8PqAtqwA1CLeaagwa0KsLn2S-kEUivU8cRy8pnMydTAUGOV4yI7kxktkiU7pILCu8C0-ueYZyL8HlPBM8aNSooJuUkr5oSHRFRnHZOW2LdJpSvTS0_g0JEQlqUU7TPx3hJrr9a0M2-rn9m__bF7oFN9qImgwaFbgNW25xB67_1mfxLqwGJBYa09OlxaFDVSsymas6BOwED2TYJBzOKqIWlkzWYfcqIJYsPRnMv7x3s1O3_vH1W4Uj44YWiakW5DimojrSdqnFE5GQu7oHby_kle_D9mK5cDtAnPZc2MziMp_nzjrZN6KvlGdSZxrNYw_Sbt5L0_ZhD3Qg83LTQTpgpUTJZcRKmfbg-a97Vk0XknNH73YAKVuLVJUbdPTgRQexzeV_S3twvrQncPXg5PioPDocjx7CNRYQHrN9dmG7Xn9wj-CK-VjPqvXjqCsE3l009H4CQsBJ_Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCE48I8IFNgDnGDV9TqxvYcKBdKIqhBZCKTczP6KSGkSYgOip75GX4XH4UmYXdsYkOitBy4-2OuVbH87M-v5Zj6Ax8pIJVliqVUyoQPNNFVGc5qwzGkvJc0jGcQm0uk0m81EvgXf21oYT6tsbWIw1Gal_T_yXZ6gIWUJerhd19Ai8vHk-foT9QpSPtPaymnUEDm0377i9q3cOxjjt37C-WT_3ctXtFEYoBqhV1GFAQR6-Myx2KUiZcI5ZhP0mJkVAyuiDAMeJ7gWidaCmzSWKmWGp876p1BJjPNegO00xk1PD7Zf7E_ztx3BZJjVkrpZTHETOmtKdurCvcg3Avb0CIZrakCjP91iF-v-lZ4NXm9y7X9-X9fhahNrk1G9OG7All3ehCu_dWC8BesRCSXI9GhlcOhYVpLkC1n5UJ7ggYxrKuK8JHJpSL7xeS2PZbJyZLQ4_mjnR3bz4-S0xJEh1UUCCYO8CSRVS5r-tXgiSHWXt-H9uTzyHegtV0t7F4hVLslMbCIMmQfWWDHU2VBKx4WKFRrOPkQtBgrddGj3QiGLoust7XFT4MxFwE0R9eHpr3vWdX-SM0fvtGApGltVFh1S-vCshVt3-d-z3Tt7tkdwCRFXvD6YHt6Hy9yDPdCAdqBXbT7bB3BRf6nm5eZhs3AIfDhv7P0EN2xUTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-modal+Data+Platform+for+Diagnosis+and+Prediction+of+Alzheimer%E2%80%99s+Disease+Using+Machine+Learning+Methods&rft.jtitle=Mobile+networks+and+applications&rft.au=Pang+Zhen&rft.au=Wang%2C+Xiang&rft.au=Wang+Xulong&rft.au=Qi%2C+Jun&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=26&rft.issue=6&rft.spage=2341&rft.epage=2352&rft_id=info:doi/10.1007%2Fs11036-021-01834-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon |