Adversarial attack algorithm for traffic sign recognition

Deep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 84; no. 29; pp. 35137 - 35149
Main Authors: Wang, Juan, Shi, Lei, Zhao, Yang, Zhang, Haoxi, Szczerbicki, Edward
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2025
Springer Nature B.V
Subjects:
ISSN:1573-7721, 1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial attack, this paper takes the traffic sign recognition as a typical object, for it is the core function of intelligent driving. Considering that the black box attack does not need to know the internal characteristics of the model, it can have more practical value. However, the existing black box attack algorithm has high visit time and low efficiency in attacking sample generation. In this regard, the SimBA algorithm with high efficiency is selected and improved according to the characteristics of traffic signs, named the L-SimBA algorithm. According to the graphic characteristics of traffic signs that are already known, L-SimBA algorithm limits the search subspace consciously and specifies the set of search directions, and that is the core idea of it. By this way, L-SimBA algorithm can generate adversarial samples faster. Experimental comparison shows that in the field of traffic sign recognition, L-SimBA algorithm is better than SimBA algorithm. On the premise of obtaining similar quality adversarial attack samples, the success rate of adversarial measures gets higher, and the number of model visits reduces considerably, thus the attack efficiency of the algorithm improves greatly.
AbstractList Deep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial attack, this paper takes the traffic sign recognition as a typical object, for it is the core function of intelligent driving. Considering that the black box attack does not need to know the internal characteristics of the model, it can have more practical value. However, the existing black box attack algorithm has high visit time and low efficiency in attacking sample generation. In this regard, the SimBA algorithm with high efficiency is selected and improved according to the characteristics of traffic signs, named the L-SimBA algorithm. According to the graphic characteristics of traffic signs that are already known, L-SimBA algorithm limits the search subspace consciously and specifies the set of search directions, and that is the core idea of it. By this way, L-SimBA algorithm can generate adversarial samples faster. Experimental comparison shows that in the field of traffic sign recognition, L-SimBA algorithm is better than SimBA algorithm. On the premise of obtaining similar quality adversarial attack samples, the success rate of adversarial measures gets higher, and the number of model visits reduces considerably, thus the attack efficiency of the algorithm improves greatly.
Author Shi, Lei
Zhang, Haoxi
Wang, Juan
Zhao, Yang
Szczerbicki, Edward
Author_xml – sequence: 1
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: School of Cyberspace Security, Chengdu University of Information Technology, Advanced Cryptography and System Security Key Laboratory of Sichuan Province
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-3787-8103
  surname: Shi
  fullname: Shi, Lei
  email: sl@cuit.edu.cn
  organization: School of Cyberspace Security, Chengdu University of Information Technology
– sequence: 3
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: School of Cyberspace Security, Chengdu University of Information Technology
– sequence: 4
  givenname: Haoxi
  surname: Zhang
  fullname: Zhang, Haoxi
  organization: School of Cyberspace Security, Chengdu University of Information Technology, Advanced Cryptography and System Security Key Laboratory of Sichuan Province
– sequence: 5
  givenname: Edward
  surname: Szczerbicki
  fullname: Szczerbicki, Edward
  organization: Faculty of Management and Economics, Department of management, the Gdansk University of Technology
BookMark eNp9kM1OwzAQhC1UJNrCC3CKxDmwazuJc6wq_qRKXOBs2akdXNK42C4Sb09KkEAceto9zLezMzMy6X1vCLlEuEaA6iYiAqc5UJojh7LKixMyxaJieVVRnPzZz8gsxg0AlgXlU1Iv1h8mRBWc6jKVkmreMtW1Prj0us2sD1kKylrXZNG1fRZM49veJef7c3JqVRfNxc-ck5e72-flQ756un9cLlZ5w7BOuUagBTBl-FrT0nKhtVC1FkYrKIralIpWWoBlYg1GIRpjS2s0FyBKXlrG5uRqvLsL_n1vYpIbvw_9YCkZ5aLCGsVBRUdVE3yMwVi5C26rwqdEkIeK5FiRHCqS3xXJYoDEP6hxSR3CDaFddxxlIxoHn7414ferI9QXlUF8zw
CitedBy_id crossref_primary_10_1007_s11042_023_15883_z
crossref_primary_10_3390_electronics14122382
Cites_doi 10.1109/TIP.2021.3092822
10.1109/TPAMI.2020.3031625
10.1109/ACCESS.2020.3024149
10.1109/TIFS.2022.3175603
10.1109/TCSII.2020.2980022
10.1109/ACCESS.2021.3124050
10.1109/ACCESS.2022.3174963
10.1109/ACCESS.2021.3092646
10.1109/ACCESS.2021.3138338
10.1109/TIFS.2020.3036801
10.1109/LSP.2021.3106239
10.1109/TIP.2021.3137648
10.1109/LGRS.2022.3184311
10.1109/TR.2022.3161138
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-022-14067-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35149
ExternalDocumentID 10_1007_s11042_022_14067_5
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2021YFH0076
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
AFFHD
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-b102503ae4db26f48bb8a9b8eba0559e6a27b80f38d0ea11eef6feb4808646f33
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873458400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 06:30:08 EST 2025
Sat Nov 29 07:27:38 EST 2025
Tue Nov 18 22:13:01 EST 2025
Thu Sep 11 01:10:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Black box
Traffic sign recognition
Adversarial attack
Algorithm security
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b102503ae4db26f48bb8a9b8eba0559e6a27b80f38d0ea11eef6feb4808646f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3787-8103
PQID 3248719183
PQPubID 54626
PageCount 13
ParticipantIDs proquest_journals_3248719183
crossref_primary_10_1007_s11042_022_14067_5
crossref_citationtrail_10_1007_s11042_022_14067_5
springer_journals_10_1007_s11042_022_14067_5
PublicationCentury 2000
PublicationDate 20250900
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References P Qi (14067_CR12) 2022; 71
S-Y Lo (14067_CR9) 2022; 31
B Peng (14067_CR11) 2022; 19
H Heo (14067_CR6) 2021; 9
Y Kim (14067_CR7) 2020; 67
Y Zheng (14067_CR15) 2020; 8
M Esmaeilpour (14067_CR4) 2022; 17
14067_CR5
F Vakhshiteh (14067_CR14) 2021; 9
14067_CR13
S Bai (14067_CR1) 2021; 43
N Li (14067_CR8) 2021; 30
K Cai (14067_CR2) 2022; 10
M Esmaeilpour (14067_CR3) 2021; 28
K Mahmood (14067_CR10) 2022; 10
Y Zhong (14067_CR16) 2021; 16
References_xml – volume: 30
  start-page: 6156
  year: 2021
  ident: 14067_CR8
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3092822
– volume: 43
  start-page: 2119
  issue: 6
  year: 2021
  ident: 14067_CR1
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3031625
– ident: 14067_CR13
– volume: 8
  start-page: 91
  year: 2020
  ident: 14067_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024149
– ident: 14067_CR5
– volume: 17
  start-page: 2044
  year: 2022
  ident: 14067_CR4
  publication-title: IEEE Trans Inf Forensics and Secur
  doi: 10.1109/TIFS.2022.3175603
– volume: 67
  start-page: 846
  issue: 5
  year: 2020
  ident: 14067_CR7
  publication-title: IEEE Trans Circ Syst II Express Briefs
  doi: 10.1109/TCSII.2020.2980022
– volume: 9
  start-page: 38
  year: 2021
  ident: 14067_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3124050
– volume: 10
  start-page: 51548
  year: 2022
  ident: 14067_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3174963
– volume: 9
  start-page: 92735
  year: 2021
  ident: 14067_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092646
– volume: 10
  start-page: 998
  issue: 21693536
  year: 2022
  ident: 14067_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3138338
– volume: 16
  start-page: 1452
  year: 2021
  ident: 14067_CR16
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2020.3036801
– volume: 28
  start-page: 1769
  year: 2021
  ident: 14067_CR3
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2021.3106239
– volume: 31
  start-page: 962
  year: 2022
  ident: 14067_CR9
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3137648
– volume: 19
  start-page: 1
  year: 2022
  ident: 14067_CR11
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2022.3184311
– volume: 71
  start-page: 674
  issue: 2
  year: 2022
  ident: 14067_CR12
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2022.3161138
SSID ssj0016524
Score 2.4100251
Snippet Deep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35137
SubjectTerms 1231: IoT-driven Computer Vision Technology for Smart Transportation Applications
Algorithms
Artificial intelligence
Black boxes
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Efficiency
Multimedia Information Systems
Neural networks
Object recognition
Signs
Speaking
Special Purpose and Application-Based Systems
Street signs
Traffic control
Traffic signs
Voice recognition
Title Adversarial attack algorithm for traffic sign recognition
URI https://link.springer.com/article/10.1007/s11042-022-14067-5
https://www.proquest.com/docview/3248719183
Volume 84
WOSCitedRecordID wos000873458400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRXvLABpHqxHGcESEqBlQhXuoW2a4NFSVFSeD3c06TBhAgwRzbis53vu90jw_gCCEqRcetvEAp7rFIW08p32LMw5nQIx75shziehkNBmI4jK-qprC8rnavU5LlS900u1HXSuKqzzEoQPMOF2EJ3Z1whA3XN_fz3AEPfVa1x3y_77MLanDll1Ro6WH67f_92zqsVYiSnM5UYAMWTNqBds3WQCrj7cDqh9GDmxCXTMy5dPpHZFFI_UTk5GGajYvHZ4JIlhSZdOMliKvwIPM6o2m6BXf989uzC6-iUfA02lfhKepwTiANGymfWyaUEjJWwijZw3jCcOlHSvRsIEY9Iyk1xnJrFBMY7TBug2AbWuk0NTtAhDKxUEzSCE_jEZU6jC1idKOp1b6VXaC1ZBNdzRh3VBeTpJmO7CSVoKSSUlJJ2IXj-Z6X2YSNX1fv1xeWVNaWJwgKMe6L8XXqwkl9Qc3nn0_b_dvyPVjxHf1vWWK2D60iezUHsKzfinGeHZZa-A4uG9c1
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD8ydOp-bBNy0sbZqmjyKOiXOITtlbSbJEh7OTtvr3m3TtqqKCPjcJ5XKX-467-w7gyEBUbBy3cDwhqEMCqR0hXG1iHkqYHNLA5TmJazfo9dhgEF4XTWFpWe1epiTzl7pqdsO2lcRWn5ugwJi3Pw8LxHgsy5h_c3s_yx1Q3yVFe8z3-z67oApXfkmF5h6mXf_fv63BaoEo0elUBdZhTsUbUC-nNaDCeDdg5QP14CaE-STmlFv9QzzLuHxCfPwwSUbZ4zMySBZlCbf0EshWeKBZndEk3oK79nn_rOMUYxQcaewrcwS2OMfjigyFSzVhQjAeCqYEb5l4QlHuBoK1tMeGLcUxVkpTrQRhJtohVHveNtTiSax2ADGhQiYIx4E5jQaYSz_UBqMribV0NW8ALiUbyYJj3I66GEcVO7KVVGQkFeWSivwGHM_2vEwZNn5d3SwvLCqsLY0MKDRxX2hepwaclBdUff75tN2_LT-EpU7_qht1L3qXe7Ds2lHAeblZE2pZ8qr2YVG-ZaM0Ocg18h1NmtoZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiD06k4nZoH37S4tGmaPoo6FMcY-IO9lSRLdDi70VX_fpOuXaeoID43CeVyl_uOu_sO4NhAVGwct3A8IahDAqkdIVxtYh5KmOzTwOUZiWs76HRYrxd257r4s2r3IiU57WmwLE1xejbu67Oy8Q3bthJbiW4CBGPq_iIsEVtIb-P1u8dZHoH6LslbZb7f99kdlRjzS1o08zat6v__cwPWc6SJzqeqsQkLKq5BtZjigHKjrsHaHCXhFoTZhOYJt3qJeJpy-YL48GmUDNLnV2QQLkoTbmknkK38QLP6o1G8DQ-tq_uLaycfr-BIY3epI7DFPx5XpC9cqgkTgvFQMCV408QZinI3EKypPdZvKo6xUppqJQgzURCh2vN2oBKPYrULiAkVMkE4DsxpNMBc-qE22F1JrKWreR1wIeVI5tzjdgTGMCpZk62kIiOpKJNU5NfhZLZnPGXe-HV1o7i8KLfCSWTAookHQ_Nq1eG0uKzy88-n7f1t-RGsdC9bUfumc7sPq66dEJxVoTWgkiZv6gCW5Xs6mCSHmXJ-ABeT4v0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+attack+algorithm+for+traffic+sign+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Wang%2C+Juan&rft.au=Shi%2C+Lei&rft.au=Zhao%2C+Yang&rft.au=Zhang%2C+Haoxi&rft.date=2025-09-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=29&rft.spage=35137&rft.epage=35149&rft_id=info:doi/10.1007%2Fs11042-022-14067-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_14067_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon