Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena

. To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature....

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus Vol. 133; no. 4; p. 166
Main Authors: Atangana, Abdon, Gómez-Aguilar, J. F.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2018
Springer Nature B.V
Subjects:
ISSN:2190-5444, 2190-5444
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract . To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an excellent description, due to its Mittag-Leffler memory, able to distinguish between dynamical systems taking place at different scales without steady state. The study suggests that the properties of associativity and commutativity or the semi-group principle are just irrelevant in fractional calculus. Properties of classical derivatives were established for the ordinary calculus with no memory effect and it is a failure of mathematical investigation to attempt to describe more complex natural phenomena using the same notions.
AbstractList . To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an excellent description, due to its Mittag-Leffler memory, able to distinguish between dynamical systems taking place at different scales without steady state. The study suggests that the properties of associativity and commutativity or the semi-group principle are just irrelevant in fractional calculus. Properties of classical derivatives were established for the ordinary calculus with no memory effect and it is a failure of mathematical investigation to attempt to describe more complex natural phenomena using the same notions.
To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an excellent description, due to its Mittag-Leffler memory, able to distinguish between dynamical systems taking place at different scales without steady state. The study suggests that the properties of associativity and commutativity or the semi-group principle are just irrelevant in fractional calculus. Properties of classical derivatives were established for the ordinary calculus with no memory effect and it is a failure of mathematical investigation to attempt to describe more complex natural phenomena using the same notions.
ArticleNumber 166
Author Atangana, Abdon
Gómez-Aguilar, J. F.
Author_xml – sequence: 1
  givenname: Abdon
  surname: Atangana
  fullname: Atangana, Abdon
  email: AtanganaA@ufs.ac.za
  organization: Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State
– sequence: 2
  givenname: J. F.
  surname: Gómez-Aguilar
  fullname: Gómez-Aguilar, J. F.
  organization: CONACyT-Tecnológico Nacional de México/CENIDET
BookMark eNp9kEtPxCAYRYkZE8fHH3BF4roKlLHUnY7PZBI3uiZfKShjCxWoxn8vM6PRuJAF3JB7vsDZRRPnnUbokJJjSjk50cNyOLGMUFFQRhgtyi00ZbQmxYxzPvmVd9BBjEuSF68pr_kUvV9q5TvvbIRkvcPeYBNArTJ0WEGnxm6MOIydjmf4Imh4se4JK9_3Y8rIm00fGFyLIUav7PdN8pkd0hg07n3eHOScBw7P2vleO9hH2wa6qA--zj30eH31ML8tFvc3d_PzRaFKWqeiIS0VipmWNQpK1oiqqbhq60YRLojJmYvSMCaAAJCKUQFtTasZzKgyRtNyDx1t5g7Bv446Jrn0Y8h_i5LVjJyyU1GVuSU2LRV8jEEbqWxaC0kBbCcpkSvTcmVark3LtWm5QtkfdAi2h_DxP1RuoJjL7kmHn1f9Q30C6peYzw
CitedBy_id crossref_primary_10_1186_s13662_018_1696_6
crossref_primary_10_1155_2018_6162043
crossref_primary_10_1016_j_nahs_2018_12_001
crossref_primary_10_3390_fractalfract8070399
crossref_primary_10_1140_epjp_i2018_12072_4
crossref_primary_10_1186_s13662_021_03494_7
crossref_primary_10_1016_j_chaos_2018_08_003
crossref_primary_10_1155_2020_4867927
crossref_primary_10_1002_mma_5421
crossref_primary_10_1016_j_physa_2018_05_137
crossref_primary_10_1155_2019_4178073
crossref_primary_10_1016_j_chaos_2019_03_022
crossref_primary_10_1016_j_chaos_2019_109588
crossref_primary_10_1371_journal_pone_0223476
crossref_primary_10_1186_s13662_020_03140_8
crossref_primary_10_1016_j_physa_2019_01_094
crossref_primary_10_1140_epjs_s11734_022_00460_6
crossref_primary_10_1140_epjp_s13360_020_00558_7
crossref_primary_10_1016_j_chaos_2020_110573
crossref_primary_10_1016_j_jfranklin_2018_11_060
crossref_primary_10_1016_j_isatra_2020_11_021
crossref_primary_10_1002_mma_7164
crossref_primary_10_1002_mma_11111
crossref_primary_10_1515_geo_2022_0446
crossref_primary_10_1016_j_chaos_2019_03_038
crossref_primary_10_1140_epjp_i2019_12730_y
crossref_primary_10_1142_S0218348X25401188
crossref_primary_10_1155_2020_1274251
crossref_primary_10_1016_j_chaos_2019_07_057
crossref_primary_10_1155_2021_6662808
crossref_primary_10_1016_j_chaos_2019_07_019
crossref_primary_10_1016_j_cjph_2020_02_003
crossref_primary_10_1016_j_chaos_2019_06_014
crossref_primary_10_1016_j_chaos_2019_06_009
crossref_primary_10_1186_s13662_020_02993_3
crossref_primary_10_3390_math7020200
crossref_primary_10_1140_epjp_i2019_12765_0
crossref_primary_10_1007_s00034_020_01447_1
crossref_primary_10_1002_asjc_3838
crossref_primary_10_1016_j_chaos_2019_07_023
crossref_primary_10_1016_j_amc_2019_124735
crossref_primary_10_1007_s41478_020_00292_4
crossref_primary_10_1186_s13662_020_02709_7
crossref_primary_10_1016_j_chaos_2019_06_005
crossref_primary_10_1371_journal_pone_0218425
crossref_primary_10_1080_02286203_2024_2377898
crossref_primary_10_1140_epjp_i2019_12507_4
crossref_primary_10_1007_s12190_025_02519_8
crossref_primary_10_1016_j_chaos_2019_109491
crossref_primary_10_1016_j_cnsns_2021_106076
crossref_primary_10_1038_s41598_025_88310_y
crossref_primary_10_1002_mma_5754
crossref_primary_10_3390_math8060923
crossref_primary_10_1002_mma_7816
crossref_primary_10_1007_s00366_020_01185_7
crossref_primary_10_1186_s13662_019_2138_9
crossref_primary_10_1007_s10973_020_09700_0
crossref_primary_10_1016_j_chaos_2020_109695
crossref_primary_10_3390_math10173071
crossref_primary_10_1186_s13662_020_2514_5
crossref_primary_10_1140_epjp_i2018_12120_1
crossref_primary_10_1002_num_22577
crossref_primary_10_1016_j_bspc_2019_101584
crossref_primary_10_1016_j_chaos_2018_09_009
crossref_primary_10_1016_j_chaos_2018_10_010
crossref_primary_10_1016_j_chaos_2019_06_037
crossref_primary_10_1016_j_chaos_2022_112285
crossref_primary_10_1155_2020_8890820
crossref_primary_10_1155_2021_2643572
crossref_primary_10_1007_s41478_022_00419_9
crossref_primary_10_1186_s13661_019_1194_0
crossref_primary_10_1002_mma_5981
crossref_primary_10_1016_j_cam_2020_112811
crossref_primary_10_1016_j_amc_2019_05_029
crossref_primary_10_3934_math_2025131
crossref_primary_10_1007_s00034_019_01211_0
crossref_primary_10_1007_s00366_019_00843_9
crossref_primary_10_1016_j_chaos_2018_09_013
crossref_primary_10_1016_j_chaos_2019_109541
crossref_primary_10_33889_IJMEMS_2025_10_4_043
crossref_primary_10_1016_j_physa_2019_04_024
crossref_primary_10_1080_02286203_2021_2015818
crossref_primary_10_1016_j_chaos_2020_110095
crossref_primary_10_1016_j_chaos_2018_10_007
crossref_primary_10_1002_mma_8325
crossref_primary_10_1016_j_matcom_2020_11_017
crossref_primary_10_3390_fractalfract2040024
crossref_primary_10_1016_j_chaos_2019_109557
crossref_primary_10_1016_j_chaos_2018_09_021
crossref_primary_10_32604_cmes_2022_023694
crossref_primary_10_1002_cta_3230
crossref_primary_10_1016_j_chaos_2020_110418
crossref_primary_10_1016_j_chaos_2018_09_026
crossref_primary_10_1186_s13662_018_1903_5
crossref_primary_10_1140_epjs_s11734_022_00456_2
crossref_primary_10_1007_s10973_019_08992_1
crossref_primary_10_1038_s41598_025_92195_2
crossref_primary_10_1016_j_chaos_2018_08_021
crossref_primary_10_1140_epjp_i2019_12861_1
crossref_primary_10_1016_j_chaos_2019_05_013
crossref_primary_10_1186_s13662_018_1855_9
crossref_primary_10_1002_mma_7228
crossref_primary_10_1186_s13662_019_2336_5
crossref_primary_10_1016_j_chaos_2018_09_033
crossref_primary_10_2298_TSCI23S1287P
crossref_primary_10_1016_j_chaos_2018_09_038
crossref_primary_10_1016_j_chaos_2018_09_039
crossref_primary_10_1177_1077546320908412
crossref_primary_10_1016_j_chaos_2018_10_025
crossref_primary_10_1186_s13662_020_03042_9
crossref_primary_10_1016_j_chaos_2018_10_020
crossref_primary_10_1016_j_matcom_2021_02_002
crossref_primary_10_3233_ASY_221811
crossref_primary_10_1007_s00034_022_02213_1
crossref_primary_10_1016_j_chaos_2019_05_008
crossref_primary_10_1140_epjp_i2018_12315_4
crossref_primary_10_1140_epjp_i2018_12160_5
crossref_primary_10_1016_j_chaos_2020_109774
crossref_primary_10_1016_j_chaos_2018_09_043
crossref_primary_10_1155_2021_6636882
crossref_primary_10_1016_j_chaos_2018_09_047
crossref_primary_10_1016_j_heliyon_2024_e34160
crossref_primary_10_1038_s41598_022_21372_4
crossref_primary_10_1016_j_chaos_2023_114266
crossref_primary_10_1088_1402_4896_ac0c58
crossref_primary_10_1002_mma_6483
crossref_primary_10_1016_j_chaos_2020_110062
crossref_primary_10_3233_JCM_190029
crossref_primary_10_1007_s00366_021_01367_x
crossref_primary_10_1016_j_chaos_2018_11_025
crossref_primary_10_1002_mma_6477
crossref_primary_10_1016_j_cjph_2020_08_019
crossref_primary_10_1016_j_chaos_2020_109867
crossref_primary_10_1155_2020_8709393
crossref_primary_10_3390_e22080824
crossref_primary_10_1088_1402_4896_abf67c
crossref_primary_10_1016_j_physa_2019_03_085
crossref_primary_10_1002_asjc_2231
crossref_primary_10_1002_asjc_3680
crossref_primary_10_1186_s13662_020_02729_3
crossref_primary_10_3390_fractalfract4020015
crossref_primary_10_1140_epjp_i2018_12186_7
crossref_primary_10_1016_j_jksus_2020_101246
crossref_primary_10_1016_j_chaos_2020_110171
crossref_primary_10_1016_j_chaos_2018_11_035
crossref_primary_10_1007_s00366_019_00852_8
crossref_primary_10_1016_j_chaos_2018_07_033
crossref_primary_10_2298_TSCI2406169A
crossref_primary_10_1016_j_camwa_2019_03_043
crossref_primary_10_1016_j_chaos_2020_109991
crossref_primary_10_1016_j_chaos_2018_07_036
crossref_primary_10_1016_j_chaos_2022_112269
crossref_primary_10_1016_j_cjph_2019_08_014
crossref_primary_10_1016_j_chaos_2022_112822
crossref_primary_10_3390_e23050610
crossref_primary_10_1016_j_physa_2019_01_102
crossref_primary_10_1155_cmm4_9946126
crossref_primary_10_1016_j_egyr_2018_09_009
crossref_primary_10_1016_j_physa_2019_01_105
crossref_primary_10_1002_mma_7430
crossref_primary_10_1186_s13662_018_1785_6
crossref_primary_10_1002_mma_6459
crossref_primary_10_1002_mma_7305
crossref_primary_10_1016_j_chaos_2018_11_009
crossref_primary_10_1016_j_physa_2019_03_069
crossref_primary_10_1016_j_chaos_2018_07_022
crossref_primary_10_1016_j_chaos_2019_109401
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119592
crossref_primary_10_3389_fphy_2023_1178154
crossref_primary_10_1002_asjc_3661
crossref_primary_10_1016_j_chaos_2019_109405
crossref_primary_10_1140_epjp_i2019_12878_4
crossref_primary_10_1140_epjp_i2019_13009_1
crossref_primary_10_1016_j_comcom_2020_11_014
crossref_primary_10_1016_j_dsp_2021_103305
crossref_primary_10_1140_epjp_i2019_12939_8
crossref_primary_10_1186_s13662_019_2024_5
crossref_primary_10_1155_2023_5322092
crossref_primary_10_3390_fractalfract6070348
crossref_primary_10_1088_1402_4896_ad20ba
crossref_primary_10_1002_mma_6568
crossref_primary_10_1088_1402_4896_acb591
crossref_primary_10_1016_j_physa_2019_02_018
crossref_primary_10_1016_j_chaos_2020_109970
crossref_primary_10_1016_j_physa_2019_121085
crossref_primary_10_1016_j_chaos_2018_09_001
crossref_primary_10_1016_j_chaos_2018_11_017
crossref_primary_10_1016_j_chaos_2022_112812
crossref_primary_10_1016_j_chaos_2022_112204
crossref_primary_10_3390_axioms9030095
crossref_primary_10_1007_s00419_024_02676_5
crossref_primary_10_1186_s13662_021_03262_7
crossref_primary_10_1109_ACCESS_2021_3077561
crossref_primary_10_1016_j_chaos_2019_04_029
crossref_primary_10_1016_j_ijmecsci_2020_105902
crossref_primary_10_3390_math13030536
crossref_primary_10_1016_j_chaos_2018_06_032
crossref_primary_10_1016_j_physa_2018_08_033
crossref_primary_10_3390_axioms12040321
crossref_primary_10_1002_mma_7766
crossref_primary_10_1515_fca_2019_0017
crossref_primary_10_1016_j_chaos_2019_07_003
crossref_primary_10_1016_j_chaos_2022_111915
crossref_primary_10_1186_s13662_020_2527_0
crossref_primary_10_1016_j_ijmecsci_2019_105204
crossref_primary_10_1002_num_22983
crossref_primary_10_1016_j_chaos_2019_07_002
crossref_primary_10_1038_s41598_024_56944_z
crossref_primary_10_3390_en13215768
crossref_primary_10_1016_j_chaos_2020_110373
crossref_primary_10_1038_s41598_023_45773_1
crossref_primary_10_3390_axioms13020133
crossref_primary_10_1002_mma_9264
crossref_primary_10_1016_j_apnum_2020_11_020
crossref_primary_10_1140_epjp_i2019_12777_8
crossref_primary_10_1002_mma_6423
crossref_primary_10_3390_fractalfract7060473
crossref_primary_10_1002_num_22518
crossref_primary_10_1016_j_chaos_2019_07_015
crossref_primary_10_1016_j_chaos_2019_07_014
crossref_primary_10_1016_j_chaos_2019_07_017
crossref_primary_10_1016_j_chaos_2019_07_010
crossref_primary_10_1016_j_chaos_2019_07_013
crossref_primary_10_1155_2022_1899130
crossref_primary_10_1088_1402_4896_ad7f98
crossref_primary_10_1016_j_chaos_2023_113399
crossref_primary_10_1002_mma_7192
crossref_primary_10_1007_s12043_021_02224_8
crossref_primary_10_1016_j_chaos_2019_08_018
crossref_primary_10_1177_1687814019866540
crossref_primary_10_1177_10775463221135912
crossref_primary_10_1016_j_chaos_2019_03_006
crossref_primary_10_1007_s11868_025_00708_4
crossref_primary_10_1016_j_fss_2021_04_012
crossref_primary_10_1007_s11044_020_09752_y
crossref_primary_10_1140_epjp_i2019_12499_y
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1016_j_jafrearsci_2022_104753
crossref_primary_10_1016_j_physa_2019_122896
crossref_primary_10_1016_j_physa_2019_123864
crossref_primary_10_3390_e20090649
crossref_primary_10_1016_j_chaos_2018_12_015
crossref_primary_10_1088_1402_4896_acd27d
crossref_primary_10_1140_epjp_i2019_13003_7
crossref_primary_10_1007_s00034_021_01942_z
crossref_primary_10_1016_j_chaos_2018_12_019
crossref_primary_10_1016_j_cjph_2019_09_005
crossref_primary_10_1002_cta_2640
crossref_primary_10_1088_1402_4896_ac1218
Cites_doi 10.1515/fca-2015-0026
10.1007/BF00642162
10.1016/j.jcp.2014.07.019
10.1007/s00022-005-0009-x
10.1142/S0129055X03001886
10.1017/S1446788700036636
10.1016/j.chaos.2005.02.023
10.1101/lm.033118.113
10.1103/PhysRevLett.30.1343
10.1016/j.aml.2006.08.013
10.1080/04353684.1986.11879523
10.1103/PhysRevLett.94.151602
10.1007/978-3-319-63949-9_16
10.1002/num.22195
10.1080/0022250X.2017.1356828
10.1016/j.camwa.2009.07.050
10.1023/B:NUMA.0000027736.85078.be
10.1103/RevModPhys.73.977
10.1007/s00220-009-0951-9
10.1007/BF01397280
10.3389/fphy.2017.00052
10.2298/TSCI160111018A
10.1017/CBO9780511524479
10.1007/BF02104515
10.1002/num.22219
10.2298/TSCI160229115H
10.2174/9781681085999118010013
10.18576/pfda/020101
10.1016/j.chaos.2016.03.020
10.1016/j.gmod.2004.01.003
10.1007/s12597-013-0169-7
10.1142/1407
10.1016/j.cnsns.2013.04.001
10.1007/BF00050786
10.1016/B978-1-4832-5663-4.50009-0
10.12785/jsap/010102
10.1103/PhysRevLett.109.100404
10.2298/TSCI15S1S31A
10.1016/0168-9274(92)90017-8
10.1037/11183-000
10.1016/j.chaos.2016.02.012
10.1140/epjp/i2017-11798-7
10.1007/s004410051245
10.1111/j.1365-246X.1967.tb02303.x
10.1016/j.chaos.2016.12.025
ContentType Journal Article
Copyright Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/i2018-12021-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_i2018_12021_3
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADQRH
AEBTG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
O9-
PHGZM
PHGZT
PQGLB
S1Z
8FE
8FG
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-b0d18c2fd2bca32b87b74cd9bc0480f74c483f228a0aa07218ad9175a51cffe13
IEDL.DBID BENPR
ISICitedReferencesCount 347
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431462500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-5444
IngestDate Wed Nov 05 09:05:34 EST 2025
Tue Nov 18 22:26:13 EST 2025
Sat Nov 29 03:58:10 EST 2025
Fri Feb 21 02:31:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b0d18c2fd2bca32b87b74cd9bc0480f74c483f228a0aa07218ad9175a51cffe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2920626873
PQPubID 2044220
ParticipantIDs proquest_journals_2920626873
crossref_citationtrail_10_1140_epjp_i2018_12021_3
crossref_primary_10_1140_epjp_i2018_12021_3
springer_journals_10_1140_epjp_i2018_12021_3
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, in Frontiers in Fractional Calculus (Bentham Science Publishers, 2017) pp. 235--295
BrouckeR.Astrophys. Space Sci.198072331980Ap&SS..72...33B58866210.1007/BF00642162
PillaiR.N.Ann. Inst. Stat. Math.19904215710.1007/BF00050786
CantrijnF.IbortA.De-LeonM.J. Aust. Math. Soc. A19996630310.1017/S1446788700036636
CaputoM.FabrizioM.Progr. Fract. Differ. Appl.20162110.18576/pfda/020101
El-SayedA.M.A.El-MesiryA.E.M.El-SakaH.A.A.Appl. Math. Lett.200720817231471510.1016/j.aml.2006.08.013
J. Filonik, Athenian Impiety Trials: A Reappraisal (Dike, 2013)
Morales-DelgadoV.F.Gómez-AguilarJ.F.Taneco-HernándezM.A.Eur. Phys. J. Plus201713252710.1140/epjp/i2017-11798-7
Gómez-AguilarJ.F.J. Math. Sociol.201741172370496510.1080/0022250X.2017.1356828
TarasovV.E.Nonlinear Sci. Numer. Simul.201318294510.1016/j.cnsns.2013.04.001
BiswasA.ShapiroV.Graph. Models20046613310.1016/j.gmod.2004.01.003
DouglasM.R.NekrasovN.A.Rev. Mod. Phys.2001739772001RvMP...73..977D10.1103/RevModPhys.73.977
TateishiA.A.RibeiroH.V.LenziE.K.Front. Phys.201755210.3389/fphy.2017.00052
CaputoM.Geophys. J. Int.1967135291967GeoJI..13..529C10.1111/j.1365-246X.1967.tb02303.x
DiethelmK.FordN.J.FreedA.D.Numer. Algorithms200436312004NuAlg..36...31D206357210.1023/B:NUMA.0000027736.85078.be
J.R. Kantor, The Scientific Evolution of Psychology (Principia Press, Chicago, 1963)
KnightR.D.J. Geom.200583137219323210.1007/s00022-005-0009-x
G.B. Folland, Advanced Calculus (Prentice Hall, 2002)
PitkänenM.Prespacetime J.2016766
KumarC.S.NairB.U.OPSEARCH20155286332037610.1007/s12597-013-0169-7
AtanganaA.DumitruB.Therm. Sci.20162076310.2298/TSCI160111018A
KumarC.S.NairB.U.J. Stat. Appl.2011623
S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics (Cambridge University Press, 1995)
AlkahtaniB.S.T.Chaos, Solitons Fractals2016895472016CSF....89..547A350706310.1016/j.chaos.2016.03.020
Gómez-AguilarJ.F.Chaos, Solitons Fractals2017951792017CSF....95..179G359751010.1016/j.chaos.2016.12.025
AtanganaA.KocaI.Chaos, Solitons Fractals2016894472016CSF....89..447A350705210.1016/j.chaos.2016.02.012
CaputoM.FabricioM.Progr. Fract. Differ. Appl.2015173
T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore/New Jersey, 1992)
R. Sorabji (Editor), Aristotle Transformed (Bloomsburg Academic, London, 1990)
W. Blaschke, Differentialgeometrie der Kreise und Kugeln, in Vorlesungen über Differentialgeometrie, Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 1929)
E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies, 4th ed. (Dover Publications, New York, 1937)
A. Atangana, J.F. Gómez-Aguilar, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22195
P. Green, Alexander of Macedon (University of California Press Ltd., Oxford, 1991)
R.D. Schafer, An Introduction to Nonassociative Algebras, Vol. 22 (Academic Press, 1966)
H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester, 1990)
CouclelisH.GaleN.Geogr. Ann. Ser. B Human Geogr.198668110.1080/04353684.1986.11879523
WilléD.R.BakerC.T.Appl. Numer. Math.1992922310.1016/0168-9274(92)90017-8
I. Yaglom, Complex Numbers in Geometry (Academic Press, N.Y., 1968) pp. 195-219, translated by E. Primrose from 1963 Russian original, appendix: Non-Euclidean geometries in the plane and complex numbers
AtanganaA.NietoJ.J.Adv. Mech. Eng.201571
LuJ.G.Chaos, Solitons Fractals20052611252005CSF....26.1125L10.1016/j.chaos.2005.02.023
HeisenbergW.Z. Phys.1927431721927ZPhy...43..172H10.1007/BF01397280
GrossD.J.WilczekF.Phys. Rev. Lett.19733013431973PhRvL..30.1343G10.1103/PhysRevLett.30.1343
GaliziaC.G.McIlwrathS.L.MenzelR.Cell Tissue Res.199929538310.1007/s004410051245
GorenfloR.LoutchkoJ.LuchkoY.Fract. Calc. Appl. Anal.200254911967847
I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1998)
Daftardar-GejjiV.SukaleY.BhalekarS.Fract. Calc. Appl. Anal.201518400332390910.1515/fca-2015-0026
K.C. Louden, Compiler Construction: Principles and Practice (1997)
J. Briggs, Fractals: The Patterns of Chaos (Thames and Hudson, London, 1992)
DoplicherS.FredenhagenK.RobertsJ.E.Commun. Math. Phys.19951721871995CMaPh.172..187D10.1007/BF02104515
ChangpinL.ChunxingT.Comput. Math. Appl.2009581573256240510.1016/j.camwa.2009.07.050
HristovJ.Therm. Sci.20162182710.2298/TSCI160229115H
KuroshA.G.Mat. Sbornik.19472023720986
J. Hristov, Electrical Circuits of Non-integer Order: Introduction to an Emerging Interdisciplinary Area with Examples, in Analysis and Simulation of Electrical and Computer Systems (Springer, 2018) pp. 251--273
OrtigueiraM.D.MachadoJ.A.T.J. Comput. Phys.201529342015JCoPh.293....4O334245210.1016/j.jcp.2014.07.019
RozemaL.A.DarabiA.MahlerD.H.HayatA.SoudagarY.SteinbergA.M.Phys. Rev. Lett.20121091004042012PhRvL.109j0404R10.1103/PhysRevLett.109.100404
AtanganaA.Doungmo-GoufoE.F.Therm. Sci.20151923110.2298/TSCI15S1S31A
EisenhardtD.Learn Mem.20142153410.1101/lm.033118.113
J.F. Gómez-Aguilar, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22219
BaezJ.HoffnungA.RogersC.Commun. Math. Phys.20102937012010CMaPh.293..701B10.1007/s00220-009-0951-9
ChaichianM.PresnajderP.TureanuA.Phys. Rev. Lett.2005941516022005PhRvL..94o1602C10.1103/PhysRevLett.94.151602
MorettiV.Rev. Math. Phys.2003151171203806810.1142/S0129055X03001886
MathaiA.M.MoschopoulosP.J. Stat. Appl. Prob.201211510.12785/jsap/010102
J. Baez (12021_CR26) 2010; 293
D. Eisenhardt (12021_CR6) 2014; 21
M. Caputo (12021_CR18) 2016; 2
12021_CR42
12021_CR43
K. Diethelm (12021_CR53) 2004; 36
A. Biswas (12021_CR24) 2004; 66
R. Broucke (12021_CR23) 1980; 72
M. Chaichian (12021_CR30) 2005; 94
H. Couclelis (12021_CR29) 1986; 68
M.D. Ortigueira (12021_CR13) 2015; 293
L. Changpin (12021_CR52) 2009; 58
D.R. Willé (12021_CR59) 1992; 9
R.D. Knight (12021_CR11) 2005; 83
V.E. Tarasov (12021_CR14) 2013; 18
W. Heisenberg (12021_CR34) 1927; 43
12021_CR51
C.G. Galizia (12021_CR19) 1999; 295
A.M. Mathai (12021_CR41) 2012; 1
12021_CR10
R.N. Pillai (12021_CR38) 1990; 42
R. Gorenflo (12021_CR37) 2002; 5
J.F. Gómez-Aguilar (12021_CR48) 2017; 41
M. Caputo (12021_CR54) 2015; 1
A. Atangana (12021_CR55) 2015; 7
J.F. Gómez-Aguilar (12021_CR49) 2017; 95
F. Cantrijn (12021_CR25) 1999; 66
12021_CR20
12021_CR21
12021_CR61
12021_CR15
12021_CR12
L.A. Rozema (12021_CR35) 2012; 109
D.J. Gross (12021_CR36) 1973; 30
12021_CR56
V. Moretti (12021_CR33) 2003; 15
A. Atangana (12021_CR62) 2015; 19
C.S. Kumar (12021_CR39) 2011; 6
A. Atangana (12021_CR44) 2016; 89
A.A. Tateishi (12021_CR50) 2017; 5
12021_CR1
12021_CR2
12021_CR3
V.F. Morales-Delgado (12021_CR47) 2017; 132
12021_CR4
A.G. Kurosh (12021_CR5) 1947; 20
12021_CR7
12021_CR8
C.S. Kumar (12021_CR40) 2015; 52
12021_CR9
A. Atangana (12021_CR17) 2016; 20
M. Pitkänen (12021_CR28) 2016; 7
12021_CR27
12021_CR22
S. Doplicher (12021_CR31) 1995; 172
V. Daftardar-Gejji (12021_CR60) 2015; 18
M. Caputo (12021_CR16) 1967; 13
M.R. Douglas (12021_CR32) 2001; 73
B.S.T. Alkahtani (12021_CR46) 2016; 89
A.M.A. El-Sayed (12021_CR57) 2007; 20
J. Hristov (12021_CR45) 2016; 21
J.G. Lu (12021_CR58) 2005; 26
References_xml – reference: R.D. Schafer, An Introduction to Nonassociative Algebras, Vol. 22 (Academic Press, 1966)
– reference: E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies, 4th ed. (Dover Publications, New York, 1937)
– reference: GrossD.J.WilczekF.Phys. Rev. Lett.19733013431973PhRvL..30.1343G10.1103/PhysRevLett.30.1343
– reference: I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1998)
– reference: AtanganaA.Doungmo-GoufoE.F.Therm. Sci.20151923110.2298/TSCI15S1S31A
– reference: J.R. Kantor, The Scientific Evolution of Psychology (Principia Press, Chicago, 1963)
– reference: CaputoM.Geophys. J. Int.1967135291967GeoJI..13..529C10.1111/j.1365-246X.1967.tb02303.x
– reference: ChangpinL.ChunxingT.Comput. Math. Appl.2009581573256240510.1016/j.camwa.2009.07.050
– reference: W. Blaschke, Differentialgeometrie der Kreise und Kugeln, in Vorlesungen über Differentialgeometrie, Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 1929)
– reference: El-SayedA.M.A.El-MesiryA.E.M.El-SakaH.A.A.Appl. Math. Lett.200720817231471510.1016/j.aml.2006.08.013
– reference: BrouckeR.Astrophys. Space Sci.198072331980Ap&SS..72...33B58866210.1007/BF00642162
– reference: KumarC.S.NairB.U.OPSEARCH20155286332037610.1007/s12597-013-0169-7
– reference: R. Sorabji (Editor), Aristotle Transformed (Bloomsburg Academic, London, 1990)
– reference: PitkänenM.Prespacetime J.2016766
– reference: Morales-DelgadoV.F.Gómez-AguilarJ.F.Taneco-HernándezM.A.Eur. Phys. J. Plus201713252710.1140/epjp/i2017-11798-7
– reference: RozemaL.A.DarabiA.MahlerD.H.HayatA.SoudagarY.SteinbergA.M.Phys. Rev. Lett.20121091004042012PhRvL.109j0404R10.1103/PhysRevLett.109.100404
– reference: G.B. Folland, Advanced Calculus (Prentice Hall, 2002)
– reference: CaputoM.FabricioM.Progr. Fract. Differ. Appl.2015173
– reference: TarasovV.E.Nonlinear Sci. Numer. Simul.201318294510.1016/j.cnsns.2013.04.001
– reference: GorenfloR.LoutchkoJ.LuchkoY.Fract. Calc. Appl. Anal.200254911967847
– reference: DoplicherS.FredenhagenK.RobertsJ.E.Commun. Math. Phys.19951721871995CMaPh.172..187D10.1007/BF02104515
– reference: J. Hristov, Electrical Circuits of Non-integer Order: Introduction to an Emerging Interdisciplinary Area with Examples, in Analysis and Simulation of Electrical and Computer Systems (Springer, 2018) pp. 251--273
– reference: CouclelisH.GaleN.Geogr. Ann. Ser. B Human Geogr.198668110.1080/04353684.1986.11879523
– reference: AtanganaA.KocaI.Chaos, Solitons Fractals2016894472016CSF....89..447A350705210.1016/j.chaos.2016.02.012
– reference: ChaichianM.PresnajderP.TureanuA.Phys. Rev. Lett.2005941516022005PhRvL..94o1602C10.1103/PhysRevLett.94.151602
– reference: KnightR.D.J. Geom.200583137219323210.1007/s00022-005-0009-x
– reference: EisenhardtD.Learn Mem.20142153410.1101/lm.033118.113
– reference: Gómez-AguilarJ.F.Chaos, Solitons Fractals2017951792017CSF....95..179G359751010.1016/j.chaos.2016.12.025
– reference: LuJ.G.Chaos, Solitons Fractals20052611252005CSF....26.1125L10.1016/j.chaos.2005.02.023
– reference: CantrijnF.IbortA.De-LeonM.J. Aust. Math. Soc. A19996630310.1017/S1446788700036636
– reference: HeisenbergW.Z. Phys.1927431721927ZPhy...43..172H10.1007/BF01397280
– reference: BiswasA.ShapiroV.Graph. Models20046613310.1016/j.gmod.2004.01.003
– reference: TateishiA.A.RibeiroH.V.LenziE.K.Front. Phys.201755210.3389/fphy.2017.00052
– reference: H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester, 1990)
– reference: J. Briggs, Fractals: The Patterns of Chaos (Thames and Hudson, London, 1992)
– reference: WilléD.R.BakerC.T.Appl. Numer. Math.1992922310.1016/0168-9274(92)90017-8
– reference: S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics (Cambridge University Press, 1995)
– reference: BaezJ.HoffnungA.RogersC.Commun. Math. Phys.20102937012010CMaPh.293..701B10.1007/s00220-009-0951-9
– reference: Gómez-AguilarJ.F.J. Math. Sociol.201741172370496510.1080/0022250X.2017.1356828
– reference: KuroshA.G.Mat. Sbornik.19472023720986
– reference: GaliziaC.G.McIlwrathS.L.MenzelR.Cell Tissue Res.199929538310.1007/s004410051245
– reference: AlkahtaniB.S.T.Chaos, Solitons Fractals2016895472016CSF....89..547A350706310.1016/j.chaos.2016.03.020
– reference: MorettiV.Rev. Math. Phys.2003151171203806810.1142/S0129055X03001886
– reference: AtanganaA.DumitruB.Therm. Sci.20162076310.2298/TSCI160111018A
– reference: Daftardar-GejjiV.SukaleY.BhalekarS.Fract. Calc. Appl. Anal.201518400332390910.1515/fca-2015-0026
– reference: CaputoM.FabrizioM.Progr. Fract. Differ. Appl.20162110.18576/pfda/020101
– reference: AtanganaA.NietoJ.J.Adv. Mech. Eng.201571
– reference: HristovJ.Therm. Sci.20162182710.2298/TSCI160229115H
– reference: J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, in Frontiers in Fractional Calculus (Bentham Science Publishers, 2017) pp. 235--295
– reference: K.C. Louden, Compiler Construction: Principles and Practice (1997)
– reference: DouglasM.R.NekrasovN.A.Rev. Mod. Phys.2001739772001RvMP...73..977D10.1103/RevModPhys.73.977
– reference: PillaiR.N.Ann. Inst. Stat. Math.19904215710.1007/BF00050786
– reference: T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore/New Jersey, 1992)
– reference: A. Atangana, J.F. Gómez-Aguilar, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22195
– reference: J.F. Gómez-Aguilar, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22219
– reference: KumarC.S.NairB.U.J. Stat. Appl.2011623
– reference: OrtigueiraM.D.MachadoJ.A.T.J. Comput. Phys.201529342015JCoPh.293....4O334245210.1016/j.jcp.2014.07.019
– reference: P. Green, Alexander of Macedon (University of California Press Ltd., Oxford, 1991)
– reference: MathaiA.M.MoschopoulosP.J. Stat. Appl. Prob.201211510.12785/jsap/010102
– reference: DiethelmK.FordN.J.FreedA.D.Numer. Algorithms200436312004NuAlg..36...31D206357210.1023/B:NUMA.0000027736.85078.be
– reference: J. Filonik, Athenian Impiety Trials: A Reappraisal (Dike, 2013)
– reference: I. Yaglom, Complex Numbers in Geometry (Academic Press, N.Y., 1968) pp. 195-219, translated by E. Primrose from 1963 Russian original, appendix: Non-Euclidean geometries in the plane and complex numbers
– ident: 12021_CR22
– volume: 18
  start-page: 400
  year: 2015
  ident: 12021_CR60
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2015-0026
– volume: 72
  start-page: 33
  year: 1980
  ident: 12021_CR23
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/BF00642162
– ident: 12021_CR51
– volume: 293
  start-page: 4
  year: 2015
  ident: 12021_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.07.019
– ident: 12021_CR8
– volume: 83
  start-page: 137
  year: 2005
  ident: 12021_CR11
  publication-title: J. Geom.
  doi: 10.1007/s00022-005-0009-x
– volume: 15
  start-page: 1171
  year: 2003
  ident: 12021_CR33
  publication-title: Rev. Math. Phys.
  doi: 10.1142/S0129055X03001886
– volume: 66
  start-page: 303
  year: 1999
  ident: 12021_CR25
  publication-title: J. Aust. Math. Soc. A
  doi: 10.1017/S1446788700036636
– volume: 26
  start-page: 1125
  year: 2005
  ident: 12021_CR58
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2005.02.023
– volume: 7
  start-page: 1
  year: 2015
  ident: 12021_CR55
  publication-title: Adv. Mech. Eng.
– volume: 21
  start-page: 534
  year: 2014
  ident: 12021_CR6
  publication-title: Learn Mem.
  doi: 10.1101/lm.033118.113
– volume: 30
  start-page: 1343
  year: 1973
  ident: 12021_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.30.1343
– volume: 20
  start-page: 817
  year: 2007
  ident: 12021_CR57
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.08.013
– ident: 12021_CR15
– ident: 12021_CR4
– volume: 68
  start-page: 1
  year: 1986
  ident: 12021_CR29
  publication-title: Geogr. Ann. Ser. B Human Geogr.
  doi: 10.1080/04353684.1986.11879523
– volume: 94
  start-page: 151602
  year: 2005
  ident: 12021_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.151602
– ident: 12021_CR43
  doi: 10.1007/978-3-319-63949-9_16
– volume: 20
  start-page: 237
  year: 1947
  ident: 12021_CR5
  publication-title: Mat. Sbornik.
– ident: 12021_CR10
– ident: 12021_CR61
  doi: 10.1002/num.22195
– volume: 6
  start-page: 23
  year: 2011
  ident: 12021_CR39
  publication-title: J. Stat. Appl.
– volume: 41
  start-page: 172
  year: 2017
  ident: 12021_CR48
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.2017.1356828
– volume: 58
  start-page: 1573
  year: 2009
  ident: 12021_CR52
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.07.050
– volume: 36
  start-page: 31
  year: 2004
  ident: 12021_CR53
  publication-title: Numer. Algorithms
  doi: 10.1023/B:NUMA.0000027736.85078.be
– volume: 73
  start-page: 977
  year: 2001
  ident: 12021_CR32
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.977
– volume: 293
  start-page: 701
  year: 2010
  ident: 12021_CR26
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0951-9
– ident: 12021_CR20
– volume: 43
  start-page: 172
  year: 1927
  ident: 12021_CR34
  publication-title: Z. Phys.
  doi: 10.1007/BF01397280
– volume: 5
  start-page: 52
  year: 2017
  ident: 12021_CR50
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2017.00052
– volume: 20
  start-page: 763
  year: 2016
  ident: 12021_CR17
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– ident: 12021_CR21
  doi: 10.1017/CBO9780511524479
– ident: 12021_CR3
– volume: 172
  start-page: 187
  year: 1995
  ident: 12021_CR31
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02104515
– ident: 12021_CR56
  doi: 10.1002/num.22219
– volume: 21
  start-page: 827
  year: 2016
  ident: 12021_CR45
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160229115H
– ident: 12021_CR42
  doi: 10.2174/9781681085999118010013
– volume: 2
  start-page: 1
  year: 2016
  ident: 12021_CR18
  publication-title: Progr. Fract. Differ. Appl.
  doi: 10.18576/pfda/020101
– volume: 89
  start-page: 547
  year: 2016
  ident: 12021_CR46
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2016.03.020
– volume: 66
  start-page: 133
  year: 2004
  ident: 12021_CR24
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2004.01.003
– volume: 52
  start-page: 86
  year: 2015
  ident: 12021_CR40
  publication-title: OPSEARCH
  doi: 10.1007/s12597-013-0169-7
– volume: 1
  start-page: 73
  year: 2015
  ident: 12021_CR54
  publication-title: Progr. Fract. Differ. Appl.
– ident: 12021_CR9
  doi: 10.1142/1407
– volume: 18
  start-page: 2945
  year: 2013
  ident: 12021_CR14
  publication-title: Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.04.001
– volume: 42
  start-page: 157
  year: 1990
  ident: 12021_CR38
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF00050786
– ident: 12021_CR7
  doi: 10.1016/B978-1-4832-5663-4.50009-0
– ident: 12021_CR27
– volume: 1
  start-page: 15
  year: 2012
  ident: 12021_CR41
  publication-title: J. Stat. Appl. Prob.
  doi: 10.12785/jsap/010102
– volume: 7
  start-page: 66
  year: 2016
  ident: 12021_CR28
  publication-title: Prespacetime J.
– volume: 109
  start-page: 100404
  year: 2012
  ident: 12021_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.100404
– volume: 19
  start-page: 231
  year: 2015
  ident: 12021_CR62
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI15S1S31A
– volume: 9
  start-page: 223
  year: 1992
  ident: 12021_CR59
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(92)90017-8
– ident: 12021_CR2
– ident: 12021_CR1
  doi: 10.1037/11183-000
– volume: 89
  start-page: 447
  year: 2016
  ident: 12021_CR44
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2016.02.012
– volume: 132
  start-page: 527
  year: 2017
  ident: 12021_CR47
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11798-7
– ident: 12021_CR12
– volume: 295
  start-page: 383
  year: 1999
  ident: 12021_CR19
  publication-title: Cell Tissue Res.
  doi: 10.1007/s004410051245
– volume: 5
  start-page: 491
  year: 2002
  ident: 12021_CR37
  publication-title: Fract. Calc. Appl. Anal.
– volume: 13
  start-page: 529
  year: 1967
  ident: 12021_CR16
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– volume: 95
  start-page: 179
  year: 2017
  ident: 12021_CR49
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2016.12.025
SSID ssj0000491494
Score 2.583676
Snippet . To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in...
To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Applied and Technical Physics
Associativity
Atomic
Calculus
Commutativity
Complex Systems
Condensed Matter Physics
Derivatives
Differential equations
Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation
Fractional calculus
Group theory
Mathematical analysis
Mathematical and Computational Physics
Mathematical models
Molecular
Operators (mathematics)
Optical and Plasma Physics
Physics
Physics and Astronomy
Power law
Principles
Regular Article
Statistical analysis
Steady state
Theoretical
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86FXzxW5xOyYNvWtYl6Zr65tfwQYbgB3srSZrAZHSl7fTf95K2G4oK-laaXCi5pHeX_O53CJ0SKQhNYANyiDU8RhnxoqQvvcjIiAthNKmqltyHwyEfjaKHOimsaNDuzZWk-1NXfLZ-V2evWXcM9gqiHmKBBXQZrQSWbcbG6I8v85MV8HnB7WdNhsy3op-t0MK1_HIb6ozMYPN_n7eFNmqnEl9Wq2AbLel0B605cKcqdtH7jbbc1GmN3MFTg01eJTSAFCjJHgEWOJ9NdHGBr8CNtOfnWNnckbIuL4FFmmDR6NK9Kacgm9kbCGzRuthxhMKAFjVmeR3EHnoe3D5d33l1wQVPwU4sPeknPa6ISYhUghLJQxkylURS2cxzA8-MU0MIF74QlliNiwTCvUAEPWWM7tF91EqnqT5AmIeCyZAYHUYRAxdTGh4oKfqGGgH2kLVRr1FArGo2clsUYxJXmdJ-bCc0dhMauwmNaRudzWWyiovj196dRq9xvS-L2NbmghCOh9B83uhx0fzzaId_636E1t1ScBCfDmqV-Uwfo1X1Vo6L_MSt1w8QWO1p
  priority: 102
  providerName: Springer Nature
Title Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena
URI https://link.springer.com/article/10.1140/epjp/i2018-12021-3
https://www.proquest.com/docview/2920626873
Volume 133
WOSCitedRecordID wos000431462500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: P5Z
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: PCBAR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yaCGXJH2RzQsdekvN7kraWM4lZPMgh7AseZTQi5FkCVKC11077d_vjCxnaaC55GbZljB8I89DM98AfOVGc1HgBlToayRSSJ5kxaFJMm8ypbV3vO1acpVOJur-PpvGgFsd0yq7f2L4URczSzHyPnVVQuNbpeK4-pVQ1yg6XY0tNJZhlZjKUM5Xx-eT6fVzlAXtX3QBZFctIwd9V_2s-g-o9tB54pSfIP7VSAsz88XJaFA4Fxtv_dRNWI-mJjtpZeMDLLnyI7wPKZ-2_gR_zhwxVpcxn4fNPPPztswBZyF0FBis2fzp0dVHbIzGJUXVmaWKkiY2nWC6LJjuEA53mhnOrehcglEOLwvMobgg5ZIR24P-DHcX57enl0lsw5BY3J9NYgbFUFnuC26sFtyo1KTSFpmxVI_u8Voq4TlXeqA10a0pXaATONKjofXeDcUXWClnpdsCplItTcq9S7NMouFpvBpZow-98Bq1pOzBsIMit5GjnFplPOZt_fQgJ_jyAF8e4MtFDw6e51QtQ8erb-92mOVxt9b5ArAefOtQXzz-_2rbr6-2A2tB0EKizy6sNPMntwfv7O_moZ7vR1ndh-Xp6AeOpqfjExpd33z_C1YZ-gY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceFddKOADnCDaXdu7cSohRGmrVl1WFSpSb8Z2bKlVlQ2blIo_xW_sjJN0BRK99cAtSuKRbH-2ZzyPD-ANt4aLHBegQlsjkULyJMsnNsmCzZQxwfOGtWSazmbq5CQ7WoHfXS4MhVV2e2LcqPO5ozvyAbEqofKtUvGx_JEQaxR5VzsKjQYWh_7XJZps1YeDHZzft5zv7R5_3k9aVoHEIdzqxA7zkXI85Nw6I7hVqU2lyzPrKL064LNUInCuzNAYqh6mTI42zdiMRy4EPxIo9w6sYrcm4x6sbu_Ojr5e3-qgvo0mh-yyc-Rw4MuzcnCKxywaa5ziIcSfJ-BSrf3LExsPuL2H_9vQPIIHrSrNPjXYfwwrvngC92JIq6uewuWOp4rcRRuvxOaBhUWTxoGtEJp08VmxxcW5r7bYNirP5DVgjjJm6pZUg5kiZ6ZDcHxTz7FtSX4XRjHKLFZGRYEUK0fVLMwz-HYrvV6HXjEv_AYwlRppUx58mmUSFWsb1NhZMwkiGNQCZB9G3dRr19ZgJyqQc93khw81wUVHuOgIFy368O66TdlUILnx780OI7rdjSq9BEgf3ncoW37-t7TnN0t7DWv7x1-menowO3wB9yPIY1DTJvTqxYV_CXfdz_q0Wrxq1wmD77eNvysSpVRy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA7e-OItrmcefNOybZq1qW9ei6Is4oVvIUkTWFm6pe3q33eStl6oIL6VJBNKJmFmkm--QWiXSEHCBA4gg1jDoyElXpwcSC82MmZCGE2qqiVXUa_HHh_j6w9Z_A7t3jxJVjkNlqUpLdtZYmpuW7-ts6es3QfbBREQsSCDcBxNUohkLKjr5vbh7ZYF_F8IAWiTLfOt6GeL9O5mfnkZdQanO___X11Ac7WziY-q3bGIxnS6hKYd6FMVy-jlVFvO6rRG9OChwSavEh1ACpRnrwYLnI8GujjEx-Be2nt1rGxOSVmXncAiTbBodOxayiHIZvZlAlsUL3bcoTChRZNZvgexgu67Z3cn515diMFTcEJLT_pJwBQxCZFKhESySEZUJbFUNiPdwDdloSGECV8IS7jGRAJhYEd0AmWMDsJVNJEOU72GMIsElRExOopjCq6nNKyjpDgwoRFgJ2kLBY0yuKpZym2xjAGvMqh9bheUuwXlbkF52EJ7bzJZxdHx6-jNRse8Pq8FtzW7ILRjEXTvNzp97_55tvW_Dd9BM9enXX510bvcQLNuVzgU0CaaKPOR3kJT6rnsF_m228avgEL5MQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decolonisation+of+fractional+calculus+rules%3A+Breaking+commutativity+and+associativity+to+capture+more+natural+phenomena&rft.jtitle=European+physical+journal+plus&rft.au=Atangana%2C+Abdon&rft.au=G%C3%B3mez-Aguilar%2C+J.+F.&rft.date=2018-04-01&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=133&rft.issue=4&rft_id=info:doi/10.1140%2Fepjp%2Fi2018-12021-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_i2018_12021_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon