RACMF: robust attention convolutional matrix factorization for rating prediction
Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existi...
Saved in:
| Published in: | Pattern analysis and applications : PAA Vol. 22; no. 4; pp. 1655 - 1666 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.11.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1433-7541, 1433-755X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existing works do not perform well enough for they are not effectively use the side information. For example, using bag-of-words model, topic model to gain the latent representation of words or merely utilizing items or users’ side information, leads to the result that the performance deteriorates, especially when rating dataset is extremely large and sparse. To overcome the data sparsity problem, we present a hybrid model named robust attention convolutional matrix factorization (RACMF) model, which is composed of attention convolutional neural network (ACNN) and additional stacked denoising autoencoder (aSDAE); ACNN and aSDAE are used to extract the items’ and users’ latent factors, respectively. The experimental results show that our RACMF model has good prediction ability, even when the rating data are sparse or the scale of rating data is large. What’s more, compared with the state-of-the-art model PHD, the present model RACMF increased the accuracy rate on ML-100k, ML-1m, ML-10m and AIV-6 datasets by 4.80%, 0.57%, 1.98% and 3.67%, respectively. |
|---|---|
| AbstractList | Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existing works do not perform well enough for they are not effectively use the side information. For example, using bag-of-words model, topic model to gain the latent representation of words or merely utilizing items or users’ side information, leads to the result that the performance deteriorates, especially when rating dataset is extremely large and sparse. To overcome the data sparsity problem, we present a hybrid model named robust attention convolutional matrix factorization (RACMF) model, which is composed of attention convolutional neural network (ACNN) and additional stacked denoising autoencoder (aSDAE); ACNN and aSDAE are used to extract the items’ and users’ latent factors, respectively. The experimental results show that our RACMF model has good prediction ability, even when the rating data are sparse or the scale of rating data is large. What’s more, compared with the state-of-the-art model PHD, the present model RACMF increased the accuracy rate on ML-100k, ML-1m, ML-10m and AIV-6 datasets by 4.80%, 0.57%, 1.98% and 3.67%, respectively. |
| Author | Shang, Qi Han, Xuli Zeng, Biqing Zeng, Feng Zhang, Min |
| Author_xml | – sequence: 1 givenname: Biqing orcidid: 0000-0001-9088-4759 surname: Zeng fullname: Zeng, Biqing email: zengbiqing0528@163.com organization: School of Computer, South China Normal University – sequence: 2 givenname: Qi surname: Shang fullname: Shang, Qi organization: School of Computer, South China Normal University – sequence: 3 givenname: Xuli surname: Han fullname: Han, Xuli organization: School of Computer, South China Normal University – sequence: 4 givenname: Feng surname: Zeng fullname: Zeng, Feng organization: School of Computer, South China Normal University – sequence: 5 givenname: Min surname: Zhang fullname: Zhang, Min organization: School of Computer, South China Normal University |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKuA69GbPztxV4pVoaKIgruQySRlynRSk4yoT--0IwouukkOl_PlnpwRGjS-sQidEjgnAJOL2J2cZ0BkBpATntEDNCScsWwixOvgV3NyhEYxrgAYYzQfosen6ex-foWDL9qYsE7JNqnyDTa-efd1u9W6xmudQvWBnTbJh-pL7yzOBxw62SzxJtiyMtvpMTp0uo725Oceo5f59fPsNls83NzNpovMMCJTpp0tSltaI3UuDWHghDCFE4YKIyx1lnKTCyc5tcyAJcAcIUAmpZalhIKwMTrr390E_9bamNTKt6HLGhWlkgNcEsY7F-1dJvgYg3VqE6q1Dp-KgNo2p_rmVNec2jWnaAfl_yBTpd2XU9BVvR9lPRq7Pc3Shr9Ue6hvnv2GSQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3192427 crossref_primary_10_1016_j_ins_2020_07_038 crossref_primary_10_1016_j_eswa_2022_117305 crossref_primary_10_1109_ACCESS_2022_3186719 crossref_primary_10_3389_fphy_2021_766540 |
| Cites_doi | 10.1145/2507157.2507163 10.18653/v1/D16-1058 10.1145/3178876.3186070 10.1145/2806416.2806527 10.1145/2645710.2645728 10.1609/aaai.v31i1.10747 10.1109/5.726791 10.1145/2959100.2959165 10.24963/ijcai.2017/447 10.1162/tacl_a_00097 10.1137/1.9781611972764.58 10.1145/3109859.3109890 10.1109/TKDE.2005.99 10.1016/j.ins.2017.06.026 10.1145/2020408.2020480 10.1109/MC.2009.263 10.1145/2939672.2939673 10.1145/2783258.2783273 10.18653/v1/D15-1166 10.1145/3018661.3018665 10.21236/ADA439541 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10044-019-00814-2 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1433-755X |
| EndPage | 1666 |
| ExternalDocumentID | 10_1007_s10044_019_00814_2 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61503143 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-afebdedec9a89c130f55cbf5c25c5e2fe24c85f942e3c0e103f11017da9d90b13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487034200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7541 |
| IngestDate | Thu Sep 25 00:40:58 EDT 2025 Sat Nov 29 02:31:06 EST 2025 Tue Nov 18 22:12:13 EST 2025 Fri Feb 21 02:29:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Attention mechanism Additional stacked denoising autoencoder Convolutional neural network Rating prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-afebdedec9a89c130f55cbf5c25c5e2fe24c85f942e3c0e103f11017da9d90b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9088-4759 |
| PQID | 2294006134 |
| PQPubID | 2043691 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2294006134 crossref_primary_10_1007_s10044_019_00814_2 crossref_citationtrail_10_1007_s10044_019_00814_2 springer_journals_10_1007_s10044_019_00814_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Pattern analysis and applications : PAA |
| PublicationTitleAbbrev | Pattern Anal Applic |
| PublicationYear | 2019 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Dong X, Yu L, Wu Z, et al (2017) A hybrid collaborative filtering model with deep structure for recommender systems. In: AAAI, pp 1309–1315 Zhang S, Wang W, Ford J, et al (2006) Learning from incomplete ratings using non-negative matrix factorization. In: Proceedings of the 2006 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, pp 549–553 Sarwar B, Karypis G, Konstan J, et al (2000) Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM international on conference on information and knowledge management. ACM, pp 811–820 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 Seo S, Huang J, Yang H, et al (2017) Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Proceedings of the eleventh ACM conference on recommender systems. ACM, pp 297–305 Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1235–1244 KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer20098303710.1109/MC.2009.263 Liu J, Wang D, Ding Y (2017) PHD: a probabilistic model of hybrid deep collaborative filtering for recommender systems. In: Asian Conference on machine learning, pp 224–239 Zhang F, Yuan NJ, Lian D, et al (2016) Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 353–362 Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 448–456 Xue H, Dai X, Zhang J, et al (2017) Deep matrix factorization models for recommender systems. In: International joint conference on artificial intelligence, pp 3203–3209 McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM conference on Recommender systems. ACM, pp 165–172 KimDParkCOhJDeep hybrid recommender systems via exploiting document context and statistics of itemsInf Sci2017417728710.1016/j.ins.2017.06.026 Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. In: Advances in neural information processing systems, pp 2643–2651 Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances in neural information processing systems, pp 1257–1264 VincentPLarochelleHLajoieIStacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res201011Dec3371340827561881242.68256 Chen C, Zhang M, Liu Y, et al (2018) Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences Steering Committee, pp 1583–1592 Ling G, Lyu MR, King I (2014) Ratings meet reviews, a combined approach to recommend. In: Proceedings of the 8th ACM conference on recommender systems. ACM, pp 105–112 Wang Y, Huang M, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in Natural Language Processing, pp 606–615 Seo S, Huang J, Yang H, et al (2017) Representation learning of users and items for review rating prediction using attention-based convolutional neural network. In: 3rd international workshop on machine learning methods for recommender systems (MLRec) (SDM’17) YinWSchützeHXiangBABCNN: attention-based convolutional neural network for modeling sentence PairsTrans Assoc Comput Linguist2016425927210.1162/tacl_a_00097 LeCunYBottouLBengioYGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 Zheng L, Noroozi V, Yu PS (2017) Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the tenth ACM international conference on Web search and data mining. ACM, pp 425–434 Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057 AdomaviciusGTuzhilinAToward the next generation of recommender systems: a survey of the state-of-the-art and possible extensionsIEEE Trans Knowl Data Eng200517673474910.1109/TKDE.2005.99 Kim D, Park C, Oh J, et al (2016) Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 233–240 814_CR6 814_CR5 814_CR4 814_CR3 Y LeCun (814_CR23) 1998; 86 814_CR9 814_CR8 D Kim (814_CR16) 2017; 417 Y Koren (814_CR17) 2009; 8 814_CR7 P Vincent (814_CR10) 2010; 11 814_CR19 814_CR18 814_CR11 W Yin (814_CR21) 2016; 4 814_CR13 814_CR12 814_CR15 814_CR14 G Adomavicius (814_CR2) 2005; 17 814_CR28 814_CR27 814_CR29 814_CR20 814_CR22 814_CR24 814_CR1 814_CR26 814_CR25 |
| References_xml | – reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 – reference: Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 448–456 – reference: Zhang S, Wang W, Ford J, et al (2006) Learning from incomplete ratings using non-negative matrix factorization. In: Proceedings of the 2006 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, pp 549–553 – reference: Seo S, Huang J, Yang H, et al (2017) Representation learning of users and items for review rating prediction using attention-based convolutional neural network. In: 3rd international workshop on machine learning methods for recommender systems (MLRec) (SDM’17) – reference: Kim D, Park C, Oh J, et al (2016) Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 233–240 – reference: McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM conference on Recommender systems. ACM, pp 165–172 – reference: Liu J, Wang D, Ding Y (2017) PHD: a probabilistic model of hybrid deep collaborative filtering for recommender systems. In: Asian Conference on machine learning, pp 224–239 – reference: AdomaviciusGTuzhilinAToward the next generation of recommender systems: a survey of the state-of-the-art and possible extensionsIEEE Trans Knowl Data Eng200517673474910.1109/TKDE.2005.99 – reference: Ling G, Lyu MR, King I (2014) Ratings meet reviews, a combined approach to recommend. In: Proceedings of the 8th ACM conference on recommender systems. ACM, pp 105–112 – reference: Seo S, Huang J, Yang H, et al (2017) Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Proceedings of the eleventh ACM conference on recommender systems. ACM, pp 297–305 – reference: Zhang F, Yuan NJ, Lian D, et al (2016) Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 353–362 – reference: Chen C, Zhang M, Liu Y, et al (2018) Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences Steering Committee, pp 1583–1592 – reference: Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. In: Advances in neural information processing systems, pp 2643–2651 – reference: Zheng L, Noroozi V, Yu PS (2017) Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the tenth ACM international conference on Web search and data mining. ACM, pp 425–434 – reference: KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer20098303710.1109/MC.2009.263 – reference: Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances in neural information processing systems, pp 1257–1264 – reference: VincentPLarochelleHLajoieIStacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res201011Dec3371340827561881242.68256 – reference: Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM international on conference on information and knowledge management. ACM, pp 811–820 – reference: Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 – reference: Dong X, Yu L, Wu Z, et al (2017) A hybrid collaborative filtering model with deep structure for recommender systems. In: AAAI, pp 1309–1315 – reference: YinWSchützeHXiangBABCNN: attention-based convolutional neural network for modeling sentence PairsTrans Assoc Comput Linguist2016425927210.1162/tacl_a_00097 – reference: Wang Y, Huang M, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in Natural Language Processing, pp 606–615 – reference: Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1235–1244 – reference: Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057 – reference: LeCunYBottouLBengioYGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 – reference: Sarwar B, Karypis G, Konstan J, et al (2000) Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science – reference: KimDParkCOhJDeep hybrid recommender systems via exploiting document context and statistics of itemsInf Sci2017417728710.1016/j.ins.2017.06.026 – reference: Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 – reference: Xue H, Dai X, Zhang J, et al (2017) Deep matrix factorization models for recommender systems. In: International joint conference on artificial intelligence, pp 3203–3209 – ident: 814_CR9 – ident: 814_CR19 – ident: 814_CR5 doi: 10.1145/2507157.2507163 – ident: 814_CR22 doi: 10.18653/v1/D16-1058 – ident: 814_CR14 doi: 10.1145/3178876.3186070 – volume: 11 start-page: 3371 issue: Dec year: 2010 ident: 814_CR10 publication-title: J Mach Learn Res – ident: 814_CR6 doi: 10.1145/2806416.2806527 – ident: 814_CR7 doi: 10.1145/2645710.2645728 – ident: 814_CR8 doi: 10.1609/aaai.v31i1.10747 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 814_CR23 publication-title: Proc IEEE doi: 10.1109/5.726791 – ident: 814_CR1 – ident: 814_CR15 doi: 10.1145/2959100.2959165 – ident: 814_CR26 doi: 10.24963/ijcai.2017/447 – volume: 4 start-page: 259 year: 2016 ident: 814_CR21 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00097 – ident: 814_CR18 – ident: 814_CR24 – ident: 814_CR27 doi: 10.1137/1.9781611972764.58 – ident: 814_CR11 doi: 10.1145/3109859.3109890 – ident: 814_CR29 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 814_CR2 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.99 – volume: 417 start-page: 72 year: 2017 ident: 814_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.026 – ident: 814_CR3 doi: 10.1145/2020408.2020480 – ident: 814_CR12 – volume: 8 start-page: 30 year: 2009 ident: 814_CR17 publication-title: Computer doi: 10.1109/MC.2009.263 – ident: 814_CR25 doi: 10.1145/2939672.2939673 – ident: 814_CR4 doi: 10.1145/2783258.2783273 – ident: 814_CR20 doi: 10.18653/v1/D15-1166 – ident: 814_CR13 doi: 10.1145/3018661.3018665 – ident: 814_CR28 doi: 10.21236/ADA439541 |
| SSID | ssj0033328 |
| Score | 2.2283833 |
| Snippet | Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1655 |
| SubjectTerms | Artificial neural networks Computer Science Datasets Factorization Industrial and Commercial Application Model accuracy Noise reduction Pattern Recognition Sparsity |
| Title | RACMF: robust attention convolutional matrix factorization for rating prediction |
| URI | https://link.springer.com/article/10.1007/s10044-019-00814-2 https://www.proquest.com/docview/2294006134 |
| Volume | 22 |
| WOSCitedRecordID | wos000487034200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-755X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: RSV dateStart: 19980301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA-iHrw4nzidkoM3DbRN0jbexnB4cYz5YLfS5iGCdmPtxD_fL1nqVFTQa5p8lO_5C_keCJ0auHVIRQPCAO8SFhsKNscMUSrhea5TnoSFGzaRDAbpeCyGviisarLdmydJ56k_FLsFzGZMCGLjGCPgeNcg3KXWHEc3943_pZS6iaoABChJOAt9qcz3ND6HoyXG_PIs6qJNv_W__9xCmx5d4u5CHbbRii53UMsjTeztuIKlZphDs7aLhqNu77p_gWeTYl7V2LbddImQ2Oale_0E0s-2pf8rXozp8TWcGIAvtppUPuDpzL782NU9dNe_vO1dET9ugUiww5rkRhdKKy1FngoJsc1wLgvDJUiT68joiMmUG8EiTWWgw4Ca0Bq0yoUSQRHSfbRaTkp9gHDKVBQnsYbbpWJANeeCc1OAc42N7WjfRmHD9Uz6XuR2JMZTtuyibLmYARczx8UsaqOz9zPTRSeOX3d3GmFm3iqrLIrsGHgAMKyNzhvhLT__TO3wb9uP0EZk5e9KFjtotZ7N9TFaly_1YzU7cdr6BjsO4ys |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBX1xXnE6NQ--aaBtkl58G8MxcRtjTtlbaXMRQbfRbuLP96RLnYoK-pqmp-XkXL5wbgidabh1CEkdwgDvEuZrCjrHNJEy4EmiQh64aTFsIuj1wtEo6tuisLzMdi9DkoWl_lDs5jCTMRER48cYAcO7Cl_gJpFvcHtf2l9KaTFRFYAAJQFnri2V-Z7GZ3e0xJhfwqKFt2lV__efW2jTokvcWIjDNlpR4x1UtUgTWz3OYakc5lCu7aL-oNHsti5xNknn-QybtptFIiQ2eelWPoH0s2np_4oXY3psDScG4IuNJI0f8DQzkR-zuofuWlfDZpvYcQtEgB7OSKJVKpVUIkrCSIBv05yLVHMBp8mVp5XHRMh1xDxFhaNch2rXKLRMIhk5qUv3UWU8GasDhEMmPT_wFdwuJQOqCY841ykYV1-bjvY15JZcj4XtRW5GYjzFyy7KhosxcDEuuBh7NXT-_s500Ynj19318jBjq5V57HlmDDwAGFZDF-XhLR__TO3wb9tP0Xp72O3EnevezRHa8IwsFOWLdVSZZXN1jNbEy-wxz04KyX0D6VXmDw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIr44P3E6NQ--aVjbJP3wbUyHoo7hF3srbT5E0G5snfjnm2tTN0UF8TVNjpK7y_1C7u6H0KE2tw4hqUOYwbuE-Zoan2OaSBnwJFEhD9y0IJsIut2w3496M1X8RbZ79SRZ1jRAl6Ysbw6lbs4UvjkMsiciAjGNEXMILzAgDYL7-u1DdRZTSgt2VQMKKAk4c23ZzPcyPoemKd788kRaRJ5O7f__vIpWLOrErdJM1tCcytZRzSJQbP17bIYqkodqbAP1blrt684JHg3SyTjH0I6zSJDEkK9u7daIfoFW_2-4pO-xtZ3YAGIMFpY94uEIXoRgdBPdd87u2ufE0jAQYfwzJ4lWqVRSiSgJI2FinuZcpJoLo2WuPK08JkKuI-YpKhzlOlS74OgyiWTkpC7dQvPZIFPbCIdMen7gK3PrlMxITXjEuU7Noetr6HRfR26lgVjYHuVAlfEcT7srwy7GZhfjYhdjr46OPtYMyw4dv85uVIqNrbeOY88DengDbFgdHVeKnH7-WdrO36YfoKXeaSe-uuhe7qJlD0yhqGpsoPl8NFF7aFG85k_j0X5hxO_4n-7z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RACMF%3A+robust+attention+convolutional+matrix+factorization+for+rating+prediction&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zeng%2C+Biqing&rft.au=Shang%2C+Qi&rft.au=Han%2C+Xuli&rft.au=Zeng%2C+Feng&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=22&rft.issue=4&rft.spage=1655&rft.epage=1666&rft_id=info:doi/10.1007%2Fs10044-019-00814-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |