RACMF: robust attention convolutional matrix factorization for rating prediction

Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA Jg. 22; H. 4; S. 1655 - 1666
Hauptverfasser: Zeng, Biqing, Shang, Qi, Han, Xuli, Zeng, Feng, Zhang, Min
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.11.2019
Springer Nature B.V
Schlagworte:
ISSN:1433-7541, 1433-755X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existing works do not perform well enough for they are not effectively use the side information. For example, using bag-of-words model, topic model to gain the latent representation of words or merely utilizing items or users’ side information, leads to the result that the performance deteriorates, especially when rating dataset is extremely large and sparse. To overcome the data sparsity problem, we present a hybrid model named robust attention convolutional matrix factorization (RACMF) model, which is composed of attention convolutional neural network (ACNN) and additional stacked denoising autoencoder (aSDAE); ACNN and aSDAE are used to extract the items’ and users’ latent factors, respectively. The experimental results show that our RACMF model has good prediction ability, even when the rating data are sparse or the scale of rating data is large. What’s more, compared with the state-of-the-art model PHD, the present model RACMF increased the accuracy rate on ML-100k, ML-1m, ML-10m and AIV-6 datasets by 4.80%, 0.57%, 1.98% and 3.67%, respectively.
AbstractList Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity problem of data, several recommender models adopt users and items’ side information to improve the recommendation results. However, some existing works do not perform well enough for they are not effectively use the side information. For example, using bag-of-words model, topic model to gain the latent representation of words or merely utilizing items or users’ side information, leads to the result that the performance deteriorates, especially when rating dataset is extremely large and sparse. To overcome the data sparsity problem, we present a hybrid model named robust attention convolutional matrix factorization (RACMF) model, which is composed of attention convolutional neural network (ACNN) and additional stacked denoising autoencoder (aSDAE); ACNN and aSDAE are used to extract the items’ and users’ latent factors, respectively. The experimental results show that our RACMF model has good prediction ability, even when the rating data are sparse or the scale of rating data is large. What’s more, compared with the state-of-the-art model PHD, the present model RACMF increased the accuracy rate on ML-100k, ML-1m, ML-10m and AIV-6 datasets by 4.80%, 0.57%, 1.98% and 3.67%, respectively.
Author Shang, Qi
Han, Xuli
Zeng, Biqing
Zeng, Feng
Zhang, Min
Author_xml – sequence: 1
  givenname: Biqing
  orcidid: 0000-0001-9088-4759
  surname: Zeng
  fullname: Zeng, Biqing
  email: zengbiqing0528@163.com
  organization: School of Computer, South China Normal University
– sequence: 2
  givenname: Qi
  surname: Shang
  fullname: Shang, Qi
  organization: School of Computer, South China Normal University
– sequence: 3
  givenname: Xuli
  surname: Han
  fullname: Han, Xuli
  organization: School of Computer, South China Normal University
– sequence: 4
  givenname: Feng
  surname: Zeng
  fullname: Zeng, Feng
  organization: School of Computer, South China Normal University
– sequence: 5
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: School of Computer, South China Normal University
BookMark eNp9kM1KAzEUhYNUsK2-gKuA69GbPztxV4pVoaKIgruQySRlynRSk4yoT--0IwouukkOl_PlnpwRGjS-sQidEjgnAJOL2J2cZ0BkBpATntEDNCScsWwixOvgV3NyhEYxrgAYYzQfosen6ex-foWDL9qYsE7JNqnyDTa-efd1u9W6xmudQvWBnTbJh-pL7yzOBxw62SzxJtiyMtvpMTp0uo725Oceo5f59fPsNls83NzNpovMMCJTpp0tSltaI3UuDWHghDCFE4YKIyx1lnKTCyc5tcyAJcAcIUAmpZalhIKwMTrr390E_9bamNTKt6HLGhWlkgNcEsY7F-1dJvgYg3VqE6q1Dp-KgNo2p_rmVNec2jWnaAfl_yBTpd2XU9BVvR9lPRq7Pc3Shr9Ue6hvnv2GSQ
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3192427
crossref_primary_10_1016_j_ins_2020_07_038
crossref_primary_10_1016_j_eswa_2022_117305
crossref_primary_10_1109_ACCESS_2022_3186719
crossref_primary_10_3389_fphy_2021_766540
Cites_doi 10.1145/2507157.2507163
10.18653/v1/D16-1058
10.1145/3178876.3186070
10.1145/2806416.2806527
10.1145/2645710.2645728
10.1609/aaai.v31i1.10747
10.1109/5.726791
10.1145/2959100.2959165
10.24963/ijcai.2017/447
10.1162/tacl_a_00097
10.1137/1.9781611972764.58
10.1145/3109859.3109890
10.1109/TKDE.2005.99
10.1016/j.ins.2017.06.026
10.1145/2020408.2020480
10.1109/MC.2009.263
10.1145/2939672.2939673
10.1145/2783258.2783273
10.18653/v1/D15-1166
10.1145/3018661.3018665
10.21236/ADA439541
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10044-019-00814-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 1666
ExternalDocumentID 10_1007_s10044_019_00814_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61503143
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-afebdedec9a89c130f55cbf5c25c5e2fe24c85f942e3c0e103f11017da9d90b13
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487034200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7541
IngestDate Thu Sep 25 00:40:58 EDT 2025
Sat Nov 29 02:31:06 EST 2025
Tue Nov 18 22:12:13 EST 2025
Fri Feb 21 02:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Attention mechanism
Additional stacked denoising autoencoder
Convolutional neural network
Rating prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-afebdedec9a89c130f55cbf5c25c5e2fe24c85f942e3c0e103f11017da9d90b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9088-4759
PQID 2294006134
PQPubID 2043691
PageCount 12
ParticipantIDs proquest_journals_2294006134
crossref_primary_10_1007_s10044_019_00814_2
crossref_citationtrail_10_1007_s10044_019_00814_2
springer_journals_10_1007_s10044_019_00814_2
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Dong X, Yu L, Wu Z, et al (2017) A hybrid collaborative filtering model with deep structure for recommender systems. In: AAAI, pp 1309–1315
Zhang S, Wang W, Ford J, et al (2006) Learning from incomplete ratings using non-negative matrix factorization. In: Proceedings of the 2006 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, pp 549–553
Sarwar B, Karypis G, Konstan J, et al (2000) Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science
Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM international on conference on information and knowledge management. ACM, pp 811–820
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
Seo S, Huang J, Yang H, et al (2017) Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Proceedings of the eleventh ACM conference on recommender systems. ACM, pp 297–305
Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1235–1244
KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer20098303710.1109/MC.2009.263
Liu J, Wang D, Ding Y (2017) PHD: a probabilistic model of hybrid deep collaborative filtering for recommender systems. In: Asian Conference on machine learning, pp 224–239
Zhang F, Yuan NJ, Lian D, et al (2016) Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 353–362
Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 448–456
Xue H, Dai X, Zhang J, et al (2017) Deep matrix factorization models for recommender systems. In: International joint conference on artificial intelligence, pp 3203–3209
McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM conference on Recommender systems. ACM, pp 165–172
KimDParkCOhJDeep hybrid recommender systems via exploiting document context and statistics of itemsInf Sci2017417728710.1016/j.ins.2017.06.026
Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025
Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. In: Advances in neural information processing systems, pp 2643–2651
Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances in neural information processing systems, pp 1257–1264
VincentPLarochelleHLajoieIStacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res201011Dec3371340827561881242.68256
Chen C, Zhang M, Liu Y, et al (2018) Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences Steering Committee, pp 1583–1592
Ling G, Lyu MR, King I (2014) Ratings meet reviews, a combined approach to recommend. In: Proceedings of the 8th ACM conference on recommender systems. ACM, pp 105–112
Wang Y, Huang M, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in Natural Language Processing, pp 606–615
Seo S, Huang J, Yang H, et al (2017) Representation learning of users and items for review rating prediction using attention-based convolutional neural network. In: 3rd international workshop on machine learning methods for recommender systems (MLRec) (SDM’17)
YinWSchützeHXiangBABCNN: attention-based convolutional neural network for modeling sentence PairsTrans Assoc Comput Linguist2016425927210.1162/tacl_a_00097
LeCunYBottouLBengioYGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
Zheng L, Noroozi V, Yu PS (2017) Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the tenth ACM international conference on Web search and data mining. ACM, pp 425–434
Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057
AdomaviciusGTuzhilinAToward the next generation of recommender systems: a survey of the state-of-the-art and possible extensionsIEEE Trans Knowl Data Eng200517673474910.1109/TKDE.2005.99
Kim D, Park C, Oh J, et al (2016) Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 233–240
814_CR6
814_CR5
814_CR4
814_CR3
Y LeCun (814_CR23) 1998; 86
814_CR9
814_CR8
D Kim (814_CR16) 2017; 417
Y Koren (814_CR17) 2009; 8
814_CR7
P Vincent (814_CR10) 2010; 11
814_CR19
814_CR18
814_CR11
W Yin (814_CR21) 2016; 4
814_CR13
814_CR12
814_CR15
814_CR14
G Adomavicius (814_CR2) 2005; 17
814_CR28
814_CR27
814_CR29
814_CR20
814_CR22
814_CR24
814_CR1
814_CR26
814_CR25
References_xml – reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
– reference: Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 448–456
– reference: Zhang S, Wang W, Ford J, et al (2006) Learning from incomplete ratings using non-negative matrix factorization. In: Proceedings of the 2006 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, pp 549–553
– reference: Seo S, Huang J, Yang H, et al (2017) Representation learning of users and items for review rating prediction using attention-based convolutional neural network. In: 3rd international workshop on machine learning methods for recommender systems (MLRec) (SDM’17)
– reference: Kim D, Park C, Oh J, et al (2016) Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 233–240
– reference: McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM conference on Recommender systems. ACM, pp 165–172
– reference: Liu J, Wang D, Ding Y (2017) PHD: a probabilistic model of hybrid deep collaborative filtering for recommender systems. In: Asian Conference on machine learning, pp 224–239
– reference: AdomaviciusGTuzhilinAToward the next generation of recommender systems: a survey of the state-of-the-art and possible extensionsIEEE Trans Knowl Data Eng200517673474910.1109/TKDE.2005.99
– reference: Ling G, Lyu MR, King I (2014) Ratings meet reviews, a combined approach to recommend. In: Proceedings of the 8th ACM conference on recommender systems. ACM, pp 105–112
– reference: Seo S, Huang J, Yang H, et al (2017) Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Proceedings of the eleventh ACM conference on recommender systems. ACM, pp 297–305
– reference: Zhang F, Yuan NJ, Lian D, et al (2016) Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 353–362
– reference: Chen C, Zhang M, Liu Y, et al (2018) Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 World Wide Web conference on World Wide Web. International World Wide Web conferences Steering Committee, pp 1583–1592
– reference: Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. In: Advances in neural information processing systems, pp 2643–2651
– reference: Zheng L, Noroozi V, Yu PS (2017) Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the tenth ACM international conference on Web search and data mining. ACM, pp 425–434
– reference: KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer20098303710.1109/MC.2009.263
– reference: Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances in neural information processing systems, pp 1257–1264
– reference: VincentPLarochelleHLajoieIStacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res201011Dec3371340827561881242.68256
– reference: Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM international on conference on information and knowledge management. ACM, pp 811–820
– reference: Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
– reference: Dong X, Yu L, Wu Z, et al (2017) A hybrid collaborative filtering model with deep structure for recommender systems. In: AAAI, pp 1309–1315
– reference: YinWSchützeHXiangBABCNN: attention-based convolutional neural network for modeling sentence PairsTrans Assoc Comput Linguist2016425927210.1162/tacl_a_00097
– reference: Wang Y, Huang M, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in Natural Language Processing, pp 606–615
– reference: Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1235–1244
– reference: Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057
– reference: LeCunYBottouLBengioYGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
– reference: Sarwar B, Karypis G, Konstan J, et al (2000) Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science
– reference: KimDParkCOhJDeep hybrid recommender systems via exploiting document context and statistics of itemsInf Sci2017417728710.1016/j.ins.2017.06.026
– reference: Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025
– reference: Xue H, Dai X, Zhang J, et al (2017) Deep matrix factorization models for recommender systems. In: International joint conference on artificial intelligence, pp 3203–3209
– ident: 814_CR9
– ident: 814_CR19
– ident: 814_CR5
  doi: 10.1145/2507157.2507163
– ident: 814_CR22
  doi: 10.18653/v1/D16-1058
– ident: 814_CR14
  doi: 10.1145/3178876.3186070
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: 814_CR10
  publication-title: J Mach Learn Res
– ident: 814_CR6
  doi: 10.1145/2806416.2806527
– ident: 814_CR7
  doi: 10.1145/2645710.2645728
– ident: 814_CR8
  doi: 10.1609/aaai.v31i1.10747
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 814_CR23
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: 814_CR1
– ident: 814_CR15
  doi: 10.1145/2959100.2959165
– ident: 814_CR26
  doi: 10.24963/ijcai.2017/447
– volume: 4
  start-page: 259
  year: 2016
  ident: 814_CR21
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00097
– ident: 814_CR18
– ident: 814_CR24
– ident: 814_CR27
  doi: 10.1137/1.9781611972764.58
– ident: 814_CR11
  doi: 10.1145/3109859.3109890
– ident: 814_CR29
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 814_CR2
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.99
– volume: 417
  start-page: 72
  year: 2017
  ident: 814_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.026
– ident: 814_CR3
  doi: 10.1145/2020408.2020480
– ident: 814_CR12
– volume: 8
  start-page: 30
  year: 2009
  ident: 814_CR17
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: 814_CR25
  doi: 10.1145/2939672.2939673
– ident: 814_CR4
  doi: 10.1145/2783258.2783273
– ident: 814_CR20
  doi: 10.18653/v1/D15-1166
– ident: 814_CR13
  doi: 10.1145/3018661.3018665
– ident: 814_CR28
  doi: 10.21236/ADA439541
SSID ssj0033328
Score 2.2283833
Snippet Matrix factorization is widely used in collaborative filtering, especially when the data are extremely large and sparse. To deal with the scale and sparsity...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1655
SubjectTerms Artificial neural networks
Computer Science
Datasets
Factorization
Industrial and Commercial Application
Model accuracy
Noise reduction
Pattern Recognition
Sparsity
Title RACMF: robust attention convolutional matrix factorization for rating prediction
URI https://link.springer.com/article/10.1007/s10044-019-00814-2
https://www.proquest.com/docview/2294006134
Volume 22
WOSCitedRecordID wos000487034200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: RSV
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPXhxfuJ0Sg7eNNCmydp4G8PhQceYH-xWmjQVQbuxduKfb16WOBUV9Jqmj_K-y3vv9xA6SULFcyUZ6cg8IYA_QrJIKhJrcIaaySKzIK5X8WCQjMdi6IbCKt_t7kuS1lN_GHYLGHRMCAJxjBHjeFdNuEvAHEc3997_RlFkN6qaRCAiMWehG5X5nsbncLTMMb-URW206Tf_952baMNll7i7UIcttKLLbdR0mSZ2dlyZI7_MwZ_toOGo27vun-PZRM6rGgPspm2ExNCX7vTTkH4GSP9XvFjT42Y4sUl8MWhS-YCnM6j8wOkuuutf3PYuiVu3QJSxw5pkhZa5zrUSWSKUiW0F50oWXFGuuKaFpkwlvBCM6kgFOgyiIgSDzjORi0CG0R5qlJNS7yMcy4JKzUzkowLq95nWgidacUbN73iHt1DouZ4qh0UOKzGe0iWKMnAxNVxMLRdT2kKn7-9MF0gcv95ue2GmziqrlFJYA28SGNZCZ154y8c_Uzv42_VDtE5B_nZksY0a9Wyuj9Caeqkfq9mx1dY3s_3jhQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah5808CaJmvj2xiOidsYc8reSpOmImg32k788811qVNRQV-v6VEu91Xu7ncInfmO4pGSjDRl5BPAHyGhKxXxNDhDzWQcFiCuPW8w8CcTMbRDYVnZ7V6WJAtP_WHYrcGgY0IQiGOMGMe7ykzEgka-0e196X9d1y02qppEwCUeZ44dlfmex-dwtMwxv5RFi2jTqf7vO7fQps0ucWuhDttoRSc7qGozTWztODOkcplDSdtFw1Gr3e9c4nQq51mOAXazaITE0Jdu9dOwfgZI_1e8WNNjZzixSXwxaFLygGcpVH6AuofuOlfjdpfYdQtEGTvMSRhrGelIKxH6QpnYFnOuZMwV5YprGmvKlM9jwah2VUM7DTd2wKCjUESiIR13H1WSaaIPEPZkTKVmJvJRAfX7UGvBfa04o-Z3vMlryCmlHiiLRQ4rMZ6CJYoySDEwUgwKKQa0hs7f35ktkDh-PV0vLzOwVpkFlMIaeJPAsBq6KC9v-fhnbod_O36K1rvjfi_oXQ9ujtAGBV0oxhfrqJKnc32M1tRL_pilJ4XmvgFmi-Zp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXxxfuJ0ah5807A1TbbGtzEdinMMv9hbadJEBO1G14l_vrkudVNUEF_TJJTcXe7C3f1-CB0FnuKxkow0ZBwQwB8hkS8VaWq4DDWTJspBXLvNXi8YDER_ros_r3YvUpLTngZAaUqy2ig2tbnGtzqD6glBwKcxYi_hRQakQfBev30o7mLf93N2VRsU-KTJmefaZr7f47NrmsWbX1KkuefplP__z2to1UWduDVVk3W0oJMNVHYRKHb2PbZDBclDMbaJ-jet9nXnFKdDORlnGOA48wJJDPXqTm_t1i8A9f-Gp_Q9rrcT24AYg4Ylj3iUQkYIRrfQfef8rn1BHA0DUdY-MxIZLWMdayWiQCjr8wznShquKFdcU6MpUwE3glHtq7r26r7xwNDjSMSiLj1_G5WSYaJ3EG5KQ6Vm1iNSAXn9SGvBA604o_aZ3uAV5BUSCJXDKAeqjOdwhq4MpxjaUwzzUwxpBR1_rBlNETp-nV0tBBs6ax2HlAI9vA1sWAWdFIKcff55t92_TT9Ey_2zTti97F3toRUKqpB3NVZRKUsneh8tqdfsaZwe5Er8DoI7700
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RACMF%3A+robust+attention+convolutional+matrix+factorization+for+rating+prediction&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zeng%2C+Biqing&rft.au=Shang%2C+Qi&rft.au=Han%2C+Xuli&rft.au=Zeng%2C+Feng&rft.date=2019-11-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=22&rft.issue=4&rft.spage=1655&rft.epage=1666&rft_id=info:doi/10.1007%2Fs10044-019-00814-2&rft.externalDocID=10_1007_s10044_019_00814_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon